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Introduction
Classically, no transfer occurs between two equally filled
reservoirs no matter how one looks at them, but the situ-
ation can be different quantum mechanically. This para-
doxically surprising phenomenon rests on the distinctive
property of the quantum world that one cannot stare at
a system without disturbing it. It was recently discovered
that this seemingly annoying feature could be harnessed
to control small quantum systems using weak measure-
ments. Here we present one of the simplest models –
an idealised double quantum dot – where by toying with
the dot measurement strength, i.e. the intensity of the
look, it is possible to create a particle flux in an otherwise
completely symmetric system. The basic property under-
lying this phenomena is that measurement disturbances
are very different on a system evolving unitarily and a sys-
tem evolving dissipatively.

Main equations and model
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Figure: Schematics of a double quantum dot (DQD) measured by
a quantum point contact (QPC) and the idealised model we derive
from it, with an electron on the right. The arrows represent the
possible dynamical processes.

System Hilbert space (encoding eletron position)
H = Vect{|0⟩, |L⟩, |R⟩}

Full evolution of the system
dρt = dρtunnelt + dρbatht + dρmeasure

t (1)
Unitary tunnelling

dρtunnelt = −i[H, ρt]dt

H = u (|R⟩⟨L|+ |L⟩⟨R|)
Dissipative coupling with the bath

dρbatht = Lbath(ρt)dt
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Here Lσ(ρ) = σρσ† − 1
2
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Measurement back-action
dρmeasure

t = LO(ρt)dt+DO(ρt)dWt

Here DO(ρ) = {O, ρ} − 2 ρ tr(Oρ) with O = hl|L⟩⟨L| +
hr|R⟩⟨R|+ h0|0⟩⟨0| and h0 = 0, h = hl = −hr to simplify.
Measurement results

dXt = 2 tr(Oρt)dt+ dWt (2)
Parametrisation (stable form)

ρ =
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
(3)

Quantum jumps
In the strong measurement limit, the behaviour of ρ gets
jumpy even if the driving measurement noise is Gaussian.

Figure: A trajectory with a = b = 0.02, βµl = −βµr = 1.0,
hr = −hl = 7.0 (i.e. strong measurement) and u = 1.0.

Computing the jump rates
The jump rates can be computed from (1) for
strong measurement with Kramers-like approximations.
λOL, λOR, λL0, λR0 converge to constants, (no Zeno ef-
fect), for large measurement but λRL = λLR = u2/h2 →
0 (Zeno effect)
Redefining the flux
Jumps give a new classically inspired way to compute the
quantum flux. One simply has to count the number of
transitions L → R minus R → L.
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Figure: Invariant measure in the Q0 +Ql +Qr = 1 domain
computed with the Monte-Carlo method illustrating the
approximation of the evolution as a Markov chain on a simplex.

This new definition for the flux can then be computed
numerically or with a Markovian approximation and be
compared with the standard quantum flux tr

̂Jρstat
. The

different methods are consistent for strong measurements
but only the classically inspired computation is possible in
the presence of feedback.
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Figure: Comparison between purely analytic (quantum mechanical
average) flux, Markov approximated and numeric statistical flux as a
function of the measurement strength with a = b = 0.02 and
u = 1.0. Constant difference of potential βµl = −βµr = 2.0 and
the measurement strength varies. The three methods converge for
strong measurements.

Feedback

One can use the fact that the transition rates do not have
the same dependence in the measurement strength (dis-
sipative junctions cannot be Zeno frozen) to bias the flux
with a controlled stroboscopic measurement.

Idea
Measure strongly (h = hmax) when the electron is in the
right dot and mildly otherwise (h = hmin) to create a
non-zero additional average flux from left to right.
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Figure: Influence of the feedback scheme on the transition rates.

Results
The average flux with feedback can be estimated with
the Markovian approximation or numerically computed di-
rectly from equation (1) with a time dependant h. The
Markov approximation gives:

⟨J⟩stat ∝ u2


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−
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 (4)
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Figure: Average electron flux as a function of the difference of
chemical potential between the two electron baths. The analytic
expressions in the Markovian limit are shown in dashed lines. The
feedback scheme indeed increases the flux in the DQD and is even
able to counter a small difference of potential ! (a = b = 0.02,
u = 1.0)

Conclusion

Using a simple feedback scheme, in the sense that it relies
on the measurement strength of the apparatus only, it is
possible to create, control or reverse a particle flux in a
quantum system. The controlled stroboscopic measure-
ment scheme we propose bears strong similarities with an
effective Maxwell Daemon. This effect shows that adap-
tive measurements can have dramatic effects enabling
transport control but possibly inducing biases in the mea-
surement of macroscopic quantities if not handled with
care.
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