Spikes in quantum trajectories

and how to blow them up
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Introduction Jumps and Spikes When y — +00:

When a quantum system is continuously monitored in a
basis which is not preserved by its proper evolution, an
interesting competition arises between free evolution and
measurement. When the continuous measurement part
dominates, the system undergoes quantum jumps between
measurement pointer states. This phenomenon is ubiqui-
tous, but there is an additional less known subtlety: sharp
fluctuations around the jumps, dubbed spikes, persist even
when the measurement process fully dominates the dy-
namics. Essentially, this means that a system subjected
to a strong continuous measurement does not behave ex-
actly as expected, i.e. as if it were subjected to repeated
standard Von-Neumann measurements. We propose to
illustrate this phenomenon on an example.

Main equation

A 1-variable quantum trajectory equation which captures
the quintessential subtlety of the competition between
measurement and evolution is that of a qubit coupled to
a thermal bath and subjected to the continuous measure-
ment of its energy. In such a problem, the only relevant
quantity (see box below) is the probability Q; to be in the
ground state at time t which obeys:

dQt = A(peq — Qi) dt + /¥ Qi(1 — Qi) AW

effect of the bath effect of the measurements

(1)
where A is the coupling with the bath, p., the equilibrium
orobability, v the measurement rate and W, is a Wiener
Drocess.
ntuitively:

* A(Peq — Qt) dt drags the system towards the
equilibrium Boltzmann probability pe.

= /Y Q[T — Q) dW; drags the system towards Q = 0
or Q =1, i.e. perfect certainty.

We are interested in the behavior of this equation when
the continuous measurement becomes strong, i.e. when

Y — +oo (with A fixed).

Eq. (1) from continuous measurement theory
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dpt dpbath_l_ dpmeas (2)
Effect of the bath

1
dpbath _}\peq(o-—po—%— - 2{G+G—> p})

]
=+ }\(] D peq)(0+p0— T Z{G—G+> p})
Effect of the continuous measurement

dp{"“" =vDlo./2](p:) dt + /YHl0./2](p) AW,
with:

1
Mi(p) = MpM' —_ {MM, p.}
M](p) = Mp + pM' — p Tr Mp + pM]

Expanding (2) shows that Qi = (0|p|0) verifies ex-
actly eq. (1). Additionally the non-diagonal coeffi-
cients are suppressed exponentially fast and can thus

)
)

be neglected.
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Equation (1) gives rise to two interesting phenomena in
the large y limit: jumps [2] and spikes [1].
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Figure: Quantum trajectories of Q¢ for increasing values
of v (y ={0.1,1,10,250 ~ 400}). In the last figure,
one can see distinctively the presence of jumps, i.e. fast
excursions O — 1 or T — O and spikes, i.e. fast
excursions 0 - 0and 1T — 1.

Spikes
The spikes, which can be seen in the previous figure, be-
come sharper and sharper when y — +00 but never dis-

appear and can be quantified in the limit. Consider for
simplicity the spikes starting from 0.
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Figure: Quantifying spikes

The number of spikes in a domain D (where there is no
jump) can be shown to be [1] a Poisson process of inten-
sity I = fD dv with:

_Ap
dv =02 dt dQ

Unfolding time

Spikes and jumps spoil the well-definiteness of the limit
Y — +o00. The solution is to redefine the time to blow
them up and resolve their inner structure. A global rescal-
ing would not do the trick because we would need an infi-
nite amount of time to see Q vary: we have to act locally.
Define the effective time

T(t) = JO(dQu)Z _ vJO QX(1—Qudu  (3)

With this new time parametrisation, things are well de-
fined when v — 400 and the limiting process takes a
very simple form.

(i) Q< is a Brownian motion reflected at O and 1.
(ii) The linear time t can the be expressed as a function of

the effective time T:

L+ | U,

Ap - A(1—p)

where L; and U are the local times spent by Q-
respectively in O and 1.

t(t) =

(4)

L. ocal time For a Brownian like process X, the local
time L; at O is defined formally by L; := fg dt’d(Xy).
Intuitively, the local time in O represents the rescaled
time the process spends in O.
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Figure: Trajectories of Q in real time and effective time.
In real time, the trajectory is spiky, with infinitely sharp
fluctuations. In effective time, the trajectory is a
reflected Brownian motion where the inner structure of
the spikes is unfolded. The last plot shows the effective
time as a function of the real time which increases like a
Devil's staircase, only where there are spikes.

Example of the linear entropy

SL=1—Trlp? =2Q(1 — Q)

In real time t, it verifies the SDE:

dSy = 2A(1—2Q4)(p — Qy) dt
+Q4(1— Qo) 2y ¥(1 —2Q)dW4—2yQ:(1 — Q¢)dt]

which has no well defined limit when vy — +00.

However, introducing the effective time T and using the
proposition one gets:

dSt =2(1 —2Q+)dB; — 2dt + 2(dL. + dL.) (5)

which shows a non trivial competition between mea-
surement (—2 dt+2(dL;+dL:)) and the bath (2(1—
2Q~) dB:). This level of details would have been lost
taking naively the limit in real-time : the linear entropy
is an anomalous observable.

Conclusion

Strongly monitored quantum systems display a very un-
intuitive behavior with spikes in addition to the expected
jumps. Nevertheless, using a time redefinition, it is possi-
ble to capture this singular phenomenon and to do exact
computations in the limit.
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