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The main problem of this talk is to understand the regime switch in the simplest
OQRW model.
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Based Open quantum random walks by S. Attal, F. Petruccione C.
Sabot and I. Sinayskiy
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o System Hilbert space: Hinternal @ Hposition = C* @ C*
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o System Hilbert space: Hinternal @ H position = C?®C”

po @ i) (il
!
BipoBl @i+ 1)(i + 1|+ B_poBl @i — 1)(i — 1]
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o Completely positive map defined with the help of By and B_:
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Basics

Classical trajectories

o System Hilbert space: Hinternal @ H position = C?®C”
o Completely positive map defined with the help of By and B_
po ® | i) (i
1

BipoBl @i+ 1)(i + 1|+ B_poBl @i —1)(i — 1|
o Can be dilated on C? ® C” @ (C? 2 C? & ...) to get a
physical picture.
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After two iterations one gets:

2 . . o . .
B2poBL " @ |i+2)(i+2 + (BiB_poBT B] + B_B1poBIBI ) ® i) (il + B_poBl ® |i —2)(i - 2|
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Basics
Classical trajectories

After two iterations one gets:

2
B2poBL " @ |i+2)(i+2 + (BiB_poBT B] + B_B1poBIBI ) ® i) (il + B_poBl ® |i —2)(i - 2|

So the probabilities to be in i+ 2, i and i — 2 at time 2 are
respectively:
2
Tr B2poBlL

(1)
Tr (B4B-poB! B] + BB, p0B| B!

()
(3)

Tr B2 poBt°

which cannot be expressed in terms of the previous probabilities
only
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Model
Fokker-Planck picture
Stochastic Differential Equation

Basics
Classical trajectories

Tautology

What happens if one measures the trajectory but does not read the
result before the end of the experiment ?
Let us imagine that at time t=n, the density matrix of the system

IS:
p" = pili)il
i
If the position is measured but not read, the density matrix is now:

Tr(pi)

i.e. by definition of the density matrix, the system is described by
the density matrix:

n _ Zgg;;pi,gm = pili)(il ="

A. Tilloy Ballistically induced diffusion in OQRW

pili)(i| with probability Tr(p;)
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o OQRW are non-Markovian stochastic processes
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o OQRW are non-Markovian stochastic processes
o OQRW are classical stochastic processes
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Basics

Classical trajectories

o OQRW are non-Markovian stochastic processes
o OQRW are classical stochastic processes

— Trajectories (or realizations) of OQRW have a sense and can
be studied in contrast with what happens with UQW.
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Basics

Classical trajectories
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A trivial Model
Scaling

Fokker-Planck equation

Short Break: study of a toy model

o Reverse-engineer the weird behavior of our OQRW in an even
simpler case

o Understand the modification of the diffusion constant
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What would be the Fokker-Planck equation of such an idealized
process ?

2.0

Slope +1 with a rate of change A
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This process if of course non Markovian: we need to define
p+(x, t) and p_(x, t) the probabilities to be in x at time t with
respectively positive and negative slope.
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A trivial Model
Scaling

Fokker-Planck equation

This process if of course non Markovian: we need to define
p+(x, t) and p_(x, t) the probabilities to be in x at time t with

respectively positive and negative slope.
Otp+ + Oxp+ — AM(p+ —p-) =0
Otp— — Oxp— — AMp— —p+) =0

(4)
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A trivial Model
Scaling

Fokker-Planck equation

This process if of course non Markovian: we need to define

p+(x, t) and p_(x, t) the probabilities to be in x at time t with
respectively positive and negative slope.

Otp+ + Oxp+ — AM(p+ —p-) =0

Orp— — Oxp— — AM(p— — p4) =0

0P = —0,00P + M1 — o) P
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Results:
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A trivial Model
Scaling

Fokker-Planck equation

o No need for a Laplacian term to converge to a Gaussian at
large time

o The matrix o4 couples the two ballistic evolution in the
Fokker-Planck picture and allows the regime switch.
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A trivial Model
Scaling

Fokker-Planck equation

in the following form:

We want to find the most general scaling limit to be sure not to
forget anything at the continuous limit. We try to find By and B_

1
B.

-5

B_ = 7 (I+ VeN_ + eM_ + o(e))

(]I + \/EN+ + €M+ + O(E))
And we write the full density matrix:

b= / dx p(x, 1) [x)(x
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A trivial Model
Scaling

Fokker-Planck equation

Then we keep on the dirty way writing:

And the previous expression for the B's gives:

9 1
HePe = (—p(x, t) +

Ve

p(x + dX7 t) + p(X - dX: t)
2dt

)

+-5 ()

[m]

=

p(x, t+dt) = B_p(x + dx, t)B" + By p(x — dx, t)B_TF

(N+p(x —dx, t) + N_p(x + dx) + p(x — dx, t)N:rr + p(x + dx)Ni)
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Scaling
Fokker-Planck equation
Constraint:

o keep the maximum number of non diverging terms

o verify B_TFBJr +B'B. =1 up to order €
This gives:
Scaling
B, =— (I++eN+e(iH. —Sy)+ o(e
qF \/E( \/_ ( Sl +) ( ))
1
B_.=—
V2

(I— VeN + e(iH- — S_) + o(e))
with Sy +S_ = NN

(8)
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A trivial Model
Scaling

Fokker-Planck equation

Writing H = HetH- and dx2 = € = dt one gets eventually
Fokker-Planck equation
op 1

_ 9p  9p
ot 2Ap (N

NNT
ax T —NT)—H [H, p]+NTpN — {— } (9)
trivial model

) 5 » P
Which shows a convective term similar to what one can see in the
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Derivation
Back to Fokker-Planck

Example

We want to use the trajectory representation we described at the
beginning to understand the regime switch better.

Let us write p, the partial density matrix once position has been
measured at time n and X, the corresponding position.
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Derivation
Back to Fokker-Planck
Example

We want to use the trajectory representation we described at the
beginning to understand the regime switch better.

Let us write p, the partial density matrix once position has been
measured at time n and X, the corresponding position.

0n+1 the random variable F,, 11 mesurable equal to +1 with

probability tr(B+p,,Bl) and —1 with the complementary
probability.
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Derivation
Back to Fokker-Planck
Example

We want to use the trajectory representation we described at the
beginning to understand the regime switch better.

Let us write p, the partial density matrix once position has been
measured at time n and X, the corresponding position.

0n+1 the random variable F,, 11 mesurable equal to +1 with
probability tr(B+p,,Bl) and —1 with the complementary

probability.
o B+PnB_]:_ ]I B—PnBi ]I 10
Pril = fg ey Monn=+1) F o g lena=-1) (10)
Xnt1 = Xn + ]I(O'n+1:+1) - ]I(Un+1=—1) (11)
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Back to Fokker-Planck
Example
This gives:

Derivation

1 ( B+PnBl
Pn+1 — Pn :E

B—PnBT_
T +
tr(B+pnB..)

— 2pn

tr(B_p,,Bi) )
1( B+PnB_J¢r.

*3

(12)
B—PnBT_ (X X,)
tr(BipnBl)  tr(B_p,BT)) T
Then inserting the e-development one gets:

i 1

Prt1 — on = (5[H, ool + o' — ~{NTN, pn} = 2R(er(Npn)) (Npn -+ poN") + m(tr(an»an)
+ /e (Npo + palT = 2R [tr(Np)] o) (Xnt1 = Xa)

Xpt1 — Xn = Tni1 + 2VeR [tr(Npp)]

Where 7, = X, — E(Xp| Fp—1)

(13)
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Derivation
Back to Fokker-Planck
Example
Eventually with the notations:
y_ Hit H
2

£(p) = NpN' — (NN, p}

D(p) = Np + pNT — 2R[tr(Np)]p
U(p) = 2R[tr(Np)]
We get:

Stochastic differential equation

(14)

dpe = {i[H, pe] + L (pt)} dt + D(pe)dW,
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A good consistency check is to go back to the Fokker-Planck
equation using the equivalence of the two approaches:

/ dxp(x, £)|x) (x| = Elpel Xe) (Xe]]

it
-
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Derivation

Back to Fokker-Planck
Example

A good consistency check is to go back to the Fokker-Planck
equation using the equivalence of the two approaches

[ ot D) x] = Bl X))

Both sides are distributions: make them act on f*g and

differentiate. Then 0¢p(x, t) will simply be found by duality.
([ axplx, 1)F* () = Bl (pelF1X0) (Xelg))
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Derivation

Back to Fokker-Planck
Example

Then one just has to compute.

o By Itd's Lemma one has:

d(F1Xe)(X,le)) = P )W+ |U(pO(r ) + 302(°8)
o Then

= E({ilH, pe] + L (pe)} 7 (Xe)g(Xe)+

(15)
d(/ dxp(x, O)F " (x)g(x)) = Eld(pe)(F1Xe) (Xelg) + ped({FIXe) (Xelg)) + d(pe)d((F|Xe) (Xe|&))]

pt [U(pr)a(f*g)(xr) + éaz(f*g)(xz)] + D(pt)0(f"g) )dt
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Eventually one finds, as expected:

dp 1 Op | Op 4 ) - NNT
i 5Ap—<N8X+—6XN +i[H,p]+ N"pN P
(16)
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Derivation

Back to Fokker-Planck
Example

Example:

Let us go back to our example. We restrict ourselves
to real matrices iH = iop and N = ac3. Hence p; can be written
the following way:

1
pt = 5(]1 + q1o1 + q303)
with g? + g3 < 1 The SDE gives:

dgs = qudt +2a(1 — g3)dW,;

dqr = —2(q3 + a°q1)dt — 2aq1g3dW;

(17)
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Derivation

Back to Fokker-Planck
Example

Using state purification one can reduce further the number of
parameters to one angle 6 which verifies the following SDE:

d0; = —2 (1 + 2% cos O sin 0¢) dt —[2asin b, [dW,

(18)
Still not a canonical form to apply Kramers' results — change of
variable: y; = —|logtan6;/2| to get a SDE of the form:

dye = —V'(yz) + 2adW;
With V(y) = —2 (£sinh(y) + 2a° log cosh(y))
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Figure : Potential V/(y) = —2 (£sinh(y) + 2a® log cosh(y)) for a = 0.25,
a=landa=3
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Derivation
Back to Fokker-Planck
Example
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Flgu Fe : lllustration of the 3 regimes, for a = 0.25 oscillating, a = 1 critical and a = 3.0 ballistic
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Derivation

Back to Fokker-Planck
Example

Eventually, one can use Kramers' results (basically the relation
between kinetics and activation energy) for large a to get:

AV 2
< T >~ el ~g

Then the behavior for X; is trivial because:

dX; = dW; + 2R (trNp;) dt ~ 2a(—1)Nedt
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Derivation
Back to Fokker-Planck
Example

"Philosophical” summary of the talk

o Trajectories of OQRW are as simple as trajectories of classical
processes and are therefore a complementary way to study
OQRW, perhaps slightly underused.

o OQRW can give rise to very high diffusion constants with
small noise terms.

o Counting processes can emerge from Gaussian fluctuations.
There is no need to have a counting process in a Belavkin
equation to see jumps.
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Model Derivation
Fokker-Planck picture Back to Fokker-Planck
Stochastic Differential Equation Example

Next on the theoretical side:

o Exhaustively explore the space of B matrices at least at the
continuous limit.

o Investigate higher dimensions (both in internal space and
position space).

o Include temperature in this description.

o Add disorder with random B matrices to see if Anderson
localization breaks down with OQRW (idea of Alain Joye)

On the application side
o Find situations with unexpectedly high diffusion constants
o Find applications of the classical process to other fields

(Biology for example).

A. Tilloy Ballistically induced diffusion in OQRW



Derivation

Back to Fokker-Planck
Example

For more information:

o An unreadable PRL failure that is on the arxiv
o My never read internship report. Nearly readable by
undergrads. A few typos.

o Soon: a revenge in Physical Review A.
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Derivation

Back to Fokker-Planck
Example

For more information:

o An unreadable PRL failure that is on the arxiv
o My never read internship report. Nearly readable by
undergrads. A few typos.
o Soon: a revenge in Physical Review A.

Thank you for your attention.
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