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ABOUT

Work done with Denis Bernard and Michel Bauer and mostly based
on arXiv:1410.7231.

The objective is to understand the emergence of quantum jumps
from a finer study of continuous measurements. See quantum
jumps as the limit of some more detailed evolution.
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REPEATED INTERACTIONS

More precisely
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REPEATED INTERACTIONS

Ideal situations of application

- Discrete situations “a la ‘i“’?ri:,\o o
Haroche”, with actual repeated ‘// Ty

interactions

=

- True continuous measurement !
settings (homodyne detection in
quantum optics) A\
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REPEATED INTERACTIONS

Other applications

- Any progressive measurement
(e.g. quantum point contacts)

- Dynamical reduction models in
foundations (not today)




MODEL

System Hilbert space Hs, “probe” Hilbert space 7, = €. The full
density matrix is initially in a product state: p = ps ® |+)(+

One weak measurement consists in:
1- Unitary evolution entangling the system and the probe:
p—BypsBL @ | +)(+] + BpsBL @[ )(~|

~ to taking a picture of the particle but not looking at it yet.

Unitarity only implies: BZB+ +BIB_ =
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MODEL

2- Measurement of the probe

BipSBl (39 ‘i\, (£
tr(BiPsBTi)

p— and result +1

~ to reading the picture and updating the probability




MODEL

3- Forgetting about the probe and taking a new one |+)(+/| for the
next iteration




CONTINUOUS LIMIT

Scaling
Develop B, and B_ in the vicinity of 1/v/2 with the constraint:

BIB, +BB.=1

General solution

1 1
By = 7 {1 +/eNy —€ (il\/\i + ZNItNi) + 0(63/2)]

with Re(Ny) = Re(N_) and Re(My) = Re(M_)

See e.g. arXiv:1303.6658 or arXiv:1312.1600




CONTINUOUS LIMIT

In practice

If we put additional constraints:

- well defined continuous limit

- the interaction with the probe does not change the Hamiltonian
of the system
We get:
1 € s
By = — [H[ eN — SNIN + O
+= 75 VeN =5 (e77)

where N is just any matrix.




CONTINUOUS LIMIT

Next steps

- Compute dp(t) = p(t + dt) — p(t) with dt = € explicitly (expand
everything up to order dt).
- Separate the random part coming from the measurement in

[average] + [noise with zero average] (Doob martingale
decomposition)

- Notice that [noise with zero average] becomes white noise in
the continuous limit
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CONTINUOUS LIMIT

Result

dt+(Npt + peNT —tr [Npt + peNT] pr) dW,

Dn(pt)

NTNp: + pNTN
dpy = (NW B Ptzﬂt>

Ln(p1)

- Ln(pt) is the Linbladian, responsible for decoherence
- Dn(pt) i1s responsible for the collapse

- W, is a Wiener process, i.e. dW/dt is white noise (with It6
convention)




HEURISTICS

Pure measurement

Take a qubit (Hs = €?), N = /70, and no qubit Hamiltonian.

- The phases decrease exponentially fast with characteristic time

,ny

- The probabilities obey:
dPy = 2,/ Pe(1 — Py)dW,

with Py = (+|pt|+) and are decoupled from the phases.




HEURISTICS

Pure measurement

Focus on the probabilities:
dPy = 2,/7 Pe(1 — Py)dW;

The SDE has two fixed points, 0 and 1 corresponding to perfect
certainty in the eigenbasis of o,.

— progressive collapse




THERMAL JUMPS

Qubit coupled to a thermal bath

Long story short: in a proper limit (weak coupling, infinite bath)
probabilities behave as in the classical case:

dPt = )\(p — Pt)dt

where X is the system-bath coupling and p the equilibrium
probability.

— exponential convergence to the equilibrium probability p.




THERMAL FLUCTUATIONS

Put the two together!

Non trivial competition between thermalization and information
extraction. [studied in arXiv:1308.0793 by Michel and Denis]

Fascinating equation




THERMAL FLUCTUATIONS

Results
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THERMAL FLUCTUATIONS

Results
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THERMAL FLUCTUATIONS

Results
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THERMAL FLUCTUATIONS

Results
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THERMAL FLUCTUATIONS

Results
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THERMAL FLUCTUATIONS

Results
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THERMAL FLUCTUATIONS

Conclusion

A jumpy behavior “emerges”. We do not “reveal” an underlying jump
process but provide finer continuous description of quantum jumps.

Actually, one can find a hidden variable model for the previous SDE. In this case, we do reveal a
preexisting jump process (see arXiv:1510.01232). The next example will eliminate this

possibility
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PURE QUANTUM CASE

Qubit in an external field

Consider a two level system (a qubit) with Hamiltonian H = %o, with
o, continuously monitored at a rate +.

The evolution is given by the stochastic master equation:

dpr = =i [0, pldt + Lo, ()L + V7D, (1) AW,

same measurement as before

We will look at (+]pt|+),, i.e. at the probabilities in the eigenbasis of
the measurement.
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PURE QUANTUM CASE

Results
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PURE QUANTUM CASE

Results
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PURE QUANTUM CASE

Results
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PURE QUANTUM CASE

Results




PURE QUANTUM CASE

Results
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PURE QUANTUM CASE
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PURE QUANTUM CASE

Results
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PURE QUANTUM CASE

Results
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PURE QUANTUM CASE

Results

Actually, I had to cheat a bit and take w oc «y for the previous plots to
counter the Zeno effect.




GENERAL CASE

Theorem

Consider quantum system subjected to the measurement of the
operator O at rate v and with an evolution without measure:

d .

< = LLp) = =ilH, pil + Lu(p1)

1. For large ~ its density matrix p behaves like a continuous time
Markov chain between the eigenvectors of O

2. The jump rates mj can be computed exactly as a function of £
and O. The generic form is a bit complicated but the dominant
contribution if of the form :

[coeff. of H]?
mjj oc ——————

i -+ coeff. of Ly,

v
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GENERAL CASE

Comments

- The convergence is weak in the sense that it is only valid for the
finite dimensional distributions (spikes don't disappear)

- The generalization to multiple observables is easy

- The measurement efficiency does not matter (i.e. you can “miss”
probes without changing the formulae)

- The Zeno effect does not touch the jumps induced by the
coupling with a bath




GENERAL CASE

Possible application

Exploit the different behavior of unitary quantum jumps and thermal
quantum jumps with respect to the Zeno effect to control systems
arXiv:1404.7391

a ePr b eBrr
Left Bath Right Bath
| @
\_/ \_/
a b
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GENERAL CASE

Idea of the proof

Not completely standard because strong noise limit — “perturb”
around the pure measurement situation

- Consider the probability kernel Ki(po, dp) to go from a given
density matrix pg to another density matrix p, up to dp, after a
time t.

- Write its Kolmogorov equation 9;K = KD where D can be
expanded in:
D =7"D;+ Do

- Compute the eigenvectors of D, (invariant measures) and
perturbatively expand K; = et ®2+t2o
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MORE ABOUT THE CONVERGENCE

Spikes

Sharp scale invariant fluctuations, “spikes”, decorate the jump
process when v — +o0.
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This implies that the convergence is necessarily weak.
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OUTLOOK

What could be done?

- Study the fluctuations, the spikes, in the general case (specific
cases already studied in arXiv:1510.01232).

- Study the infinite dimensional setting (already some earlier
study in the context of dynamical reduction models by Bassi
and Drr)

- Probe the semi-classical behavior of many systems! (tunneling
processes, trajectories in cloud chambers, etc.)

- Apply the technique of the proof to other strong noise systems
(turbulence?)




OUTLOOK

More generally
Repeated interactions have applications in:

- Quantum information
- Quantum control
- Quantum foundations

- Stochastic Thermodynamics




