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about



about

Work done with Denis Bernard and Michel Bauer and mostly based

on arXiv:1410.7231.

The objective is to understand the emergence of quantum jumps

from a finer study of continuous measurements. See quantum

jumps as the limit of some more detailed evolution.



repeated interactions

More precisely



repeated interactions

Ideal situations of application

∙ Discrete situations “a la

Haroche”, with actual repeated

interactions

∙ True continuous measurement

settings (homodyne detection in

quantum optics)



repeated interactions

Other applications

∙ Any progressive measurement

(e.g. quantum point contacts)

∙ Dynamical reduction models in

foundations (not today)



model

System Hilbert space Hs, “probe” Hilbert space Hp = C2. The full

density matrix is initially in a product state: ρ = ρs ⊗ |+〉〈+|

One weak measurement consists in:

1– Unitary evolution entangling the system and the probe:

ρ → B+ρsB
†
+ ⊗ |+〉〈+| + B−ρsB

†
− ⊗ |−〉〈−|

∼ to taking a picture of the particle but not looking at it yet.

Unitarity only implies: B
†
+B+ + B

†
−B− = 1



model

2– Measurement of the probe

ρ →
B±ρsB

†
± ⊗ |±〉〈±|

tr(B±ρsB
†
±)

and result ± 1

∼ to reading the picture and updating the probability



model

3– Forgetting about the probe and taking a new one |+〉〈+| for the
next iteration



continuous limit

Scaling

Develop B+ and B− in the vicinity of 1/
√
2 with the constraint:

B
†
+B+ + B

†
−B− = 1

General solution

B± =
1√
2

[
1±

√
εN± − ε

(
±M± +

1

2
N
†
±N±

)
+O(ε3/2)

]

with <e(N+) = <e(N−) and <e(M+) = <e(M−)

See e.g. arXiv:1303.6658 or arXiv:1312.1600



continuous limit

In practice

If we put additional constraints:

∙ well defined continuous limit

∙ the interaction with the probe does not change the Hamiltonian

of the system

We get:

B± =
1√
2

[
1±

√
εN− ε

2
N†N+O(ε3/2)

]
where N is just any matrix.



continuous limit

Next steps

∙ Compute dρ(t) = ρ(t+ dt)− ρ(t) with dt = ε explicitly (expand

everything up to order dt).

∙ Separate the random part coming from the measurement in

[average] + [noise with zero average] (Doob martingale

decomposition)

∙ Notice that [noise with zero average] becomes white noise in

the continuous limit



continuous limit

Result

dρt =

(
NρtN

† − N†Nρt + ρtN
†N

2

)
︸ ︷︷ ︸

LN(ρt)

dt+
(
Nρt + ρtN

† − tr
[
Nρt + ρtN

†] ρt)︸ ︷︷ ︸
DN(ρt)

dWt

∙ LN(ρt) is the Linbladian, responsible for decoherence

∙ DN(ρt) is responsible for the collapse

∙ Wt is a Wiener process, i.e. dW/dt is white noise (with Itô

convention)



heuristics

Pure measurement

Take a qubit (Hs = C2), N =
√
γ σz and no qubit Hamiltonian.

∙ The phases decrease exponentially fast with characteristic time

γ−1

∙ The probabilities obey:

dPt = 2
√
γ Pt(1− Pt)dWt

with Pt = 〈+|ρt|+〉 and are decoupled from the phases.



heuristics

Pure measurement

Focus on the probabilities:

dPt = 2
√
γ Pt(1− Pt)dWt

The SDE has two fixed points, 0 and 1 corresponding to perfect

certainty in the eigenbasis of σz.

−→ progressive collapse



thermal jumps

Qubit coupled to a thermal bath

Long story short: in a proper limit (weak coupling, infinite bath)

probabilities behave as in the classical case:

dPt = λ(p− Pt)dt

where λ is the system-bath coupling and p the equilibrium

probability.

→ exponential convergence to the equilibrium probability p.



thermal fluctuations

Put the two together!

dPt = λ(p− Pt)dt+ 2
√
γ Pt(1− Pt)dWt

Non trivial competition between thermalization and information

extraction. [studied in arXiv:1308.0793 by Michel and Denis]

Fascinating equation



thermal fluctuations

Results

No Measurements



thermal fluctuations

Results

γ = 0.5



thermal fluctuations

Results

γ = 1.0



thermal fluctuations

Results

γ = 2.0



thermal fluctuations

Results

γ = 5.0



thermal fluctuations

Results

γ = 20.0



thermal fluctuations

Results

γ = 100.0, no difference with γ = +∞



thermal fluctuations

Conclusion

A jumpy behavior “emerges”. We do not “reveal” an underlying jump

process but provide finer continuous description of quantum jumps.

Actually, one can find a hidden variable model for the previous SDE. In this case, we do reveal a

preexisting jump process (see arXiv:1510.01232). The next example will eliminate this

possibility



pure quantum case

Qubit in an external field

Consider a two level system (a qubit) with Hamiltonian H = ω
2
σx with

σz continuously monitored at a rate γ.

The evolution is given by the stochastic master equation:

dρt = −i
ω

2
[σx, ρt]dt+ γLσz

(ρt)dt+
√
γDσz

(ρt)dWt︸ ︷︷ ︸
same measurement as before

We will look at 〈+|ρt|+〉z, i.e. at the probabilities in the eigenbasis of

the measurement.



pure quantum case

Results

Without measurement γ = 0.0



pure quantum case

Results

γ = 0.1



pure quantum case

Results

γ = 0.5



pure quantum case

Results

γ = 1.0



pure quantum case

Results

γ = 2.0



pure quantum case

Results

γ = 5.0



pure quantum case

Results

γ = 10



pure quantum case

Results

γ = 20



pure quantum case

Results

Actually, I had to cheat a bit and take ω ∝ γ for the previous plots to

counter the Zeno effect.



general case

Theorem

Consider quantum system subjected to the measurement of the

operator O at rate γ and with an evolution without measure:

dρt
dt

= L(ρt) = −i[H, ρt] + LM(ρt)

1. For large γ its density matrix ρ behaves like a continuous time

Markov chain between the eigenvectors of O
2. The jump rates mij can be computed exactly as a function of L

and O. The generic form is a bit complicated but the dominant

contribution if of the form :

mij ∝
[coeff. of H]2

γ︸ ︷︷ ︸
Zeno effect!

+ coeff. of LM



general case

Comments

∙ The convergence is weak in the sense that it is only valid for the

finite dimensional distributions (spikes don’t disappear)

∙ The generalization to multiple observables is easy

∙ The measurement efficiency does not matter (i.e. you can “miss”

probes without changing the formulae)

∙ The Zeno effect does not touch the jumps induced by the

coupling with a bath



general case

Possible application

Exploit the different behavior of unitary quantum jumps and thermal

quantum jumps with respect to the Zeno effect to control systems

arXiv:1404.7391

a eβµl

a

u

b eβµr

b

Right BathLeft Bath

→ Maxwell Daemon from measurement only!



general case

Idea of the proof

Not completely standard because strong noise limit −→ “perturb”

around the pure measurement situation

∙ Consider the probability kernel Kt(ρ0,dρ) to go from a given

density matrix ρ0 to another density matrix ρ, up to dρ, after a

time t.

∙ Write its Kolmogorov equation ∂tK = KD where D can be

expanded in:

D = γ2D2 +D0

∙ Compute the eigenvectors of D2 (invariant measures) and

perturbatively expand Kt = etγ
2D2+tD0



more about the convergence

Spikes

Sharp scale invariant fluctuations, “spikes”, decorate the jump

process when γ → +∞.

This implies that the convergence is necessarily weak.



outlook

What could be done?

∙ Study the fluctuations, the spikes, in the general case (specific

cases already studied in arXiv:1510.01232).

∙ Study the infinite dimensional setting (already some earlier

study in the context of dynamical reduction models by Bassi

and Dürr)

∙ Probe the semi-classical behavior of many systems! (tunneling

processes, trajectories in cloud chambers, etc.)

∙ Apply the technique of the proof to other strong noise systems

(turbulence?)



outlook

More generally

Repeated interactions have applications in:

∙ Quantum information

∙ Quantum control

∙ Quantum foundations

∙ Stochastic Thermodynamics


