

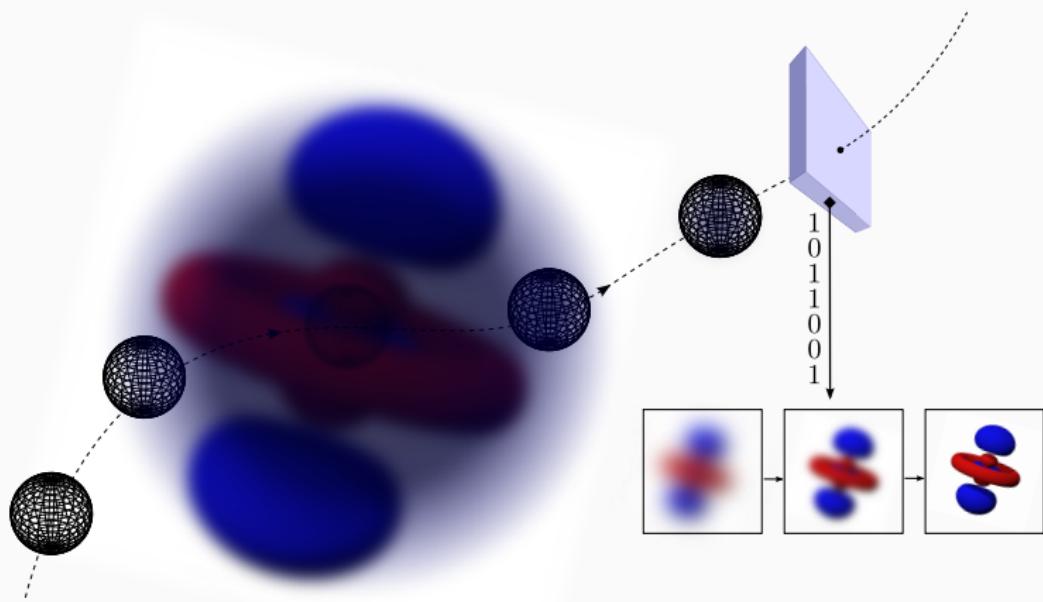
QUANTUM JUMPS FROM CONTINUOUS QUANTUM TRAJECTORIES

Antoine Tilloy, with Denis Bernard and Michel Bauer

Laboratoire de Physique théorique, École Normale Supérieure Paris

LPTM seminar, Cergy, October 15th, 2015

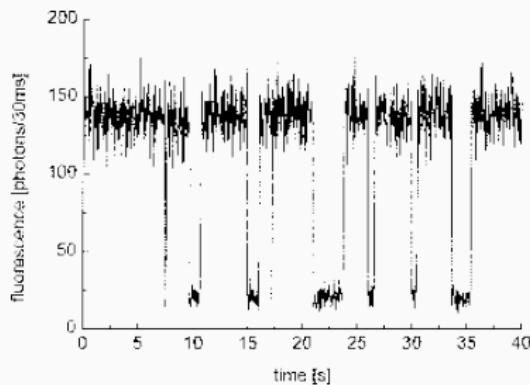
ABOUT



ABOUT

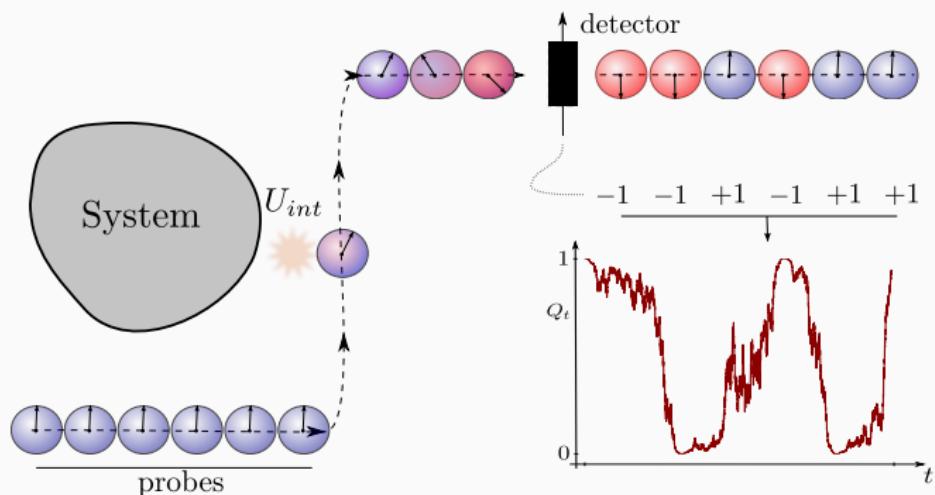
Work done with **Denis Bernard** and **Michel Bauer** and mostly based on [arXiv:1410.7231](https://arxiv.org/abs/1410.7231).

The objective is to understand the emergence of quantum jumps from a finer study of continuous measurements. See quantum jumps as the limit of some more detailed evolution.



REPEATED INTERACTIONS

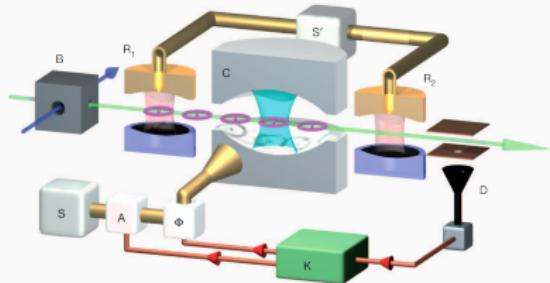
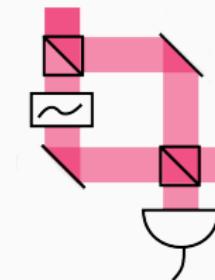
More precisely



REPEATED INTERACTIONS

Ideal situations of application

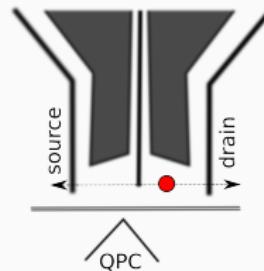
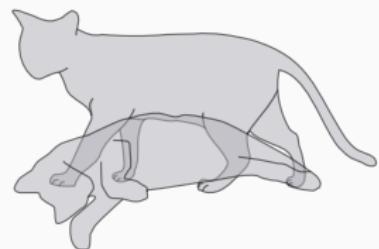
- Discrete situations “a la Haroche”, with **actual** repeated interactions
- True continuous measurement settings (homodyne detection in quantum optics)



REPEATED INTERACTIONS

Other applications

- Any progressive measurement
(e.g. quantum point contacts)
- Dynamical reduction models in foundations (not today)



MODEL

System Hilbert space \mathcal{H}_s , “probe” Hilbert space $\mathcal{H}_p = \mathbb{C}^2$. The full density matrix is initially in a product state: $\rho = \rho_s \otimes |+\rangle\langle +|$

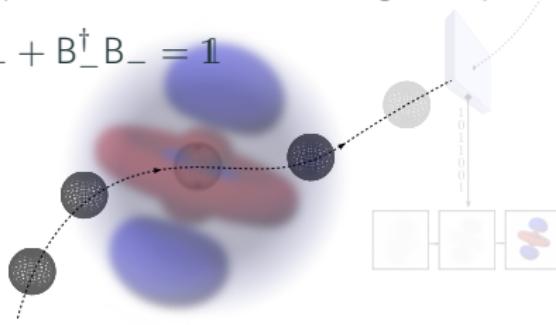
One weak measurement consists in:

1– Unitary evolution entangling the system and the **probe**:

$$\rho \rightarrow B_+ \rho_s B_+^\dagger \otimes |+\rangle\langle +| + B_- \rho_s B_-^\dagger \otimes |-\rangle\langle -|$$

~ to taking a picture of the particle but not looking at it yet.

Unitarity only implies: $B_+^\dagger B_+ + B_-^\dagger B_- = 1$

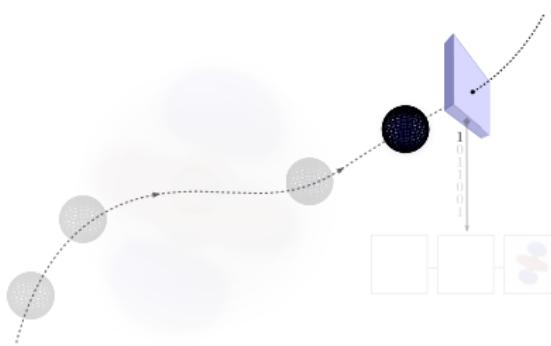


MODEL

2– Measurement of the probe

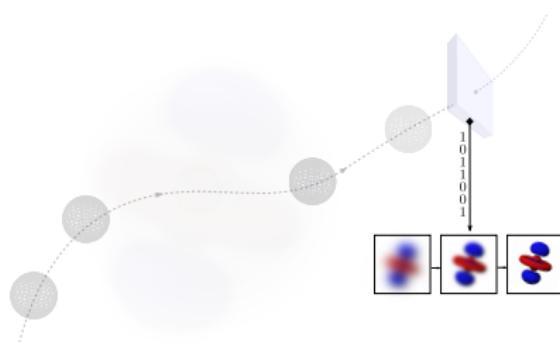
$$\rho \rightarrow \frac{B_{\pm} \rho_s B_{\pm}^{\dagger} \otimes |\pm\rangle\langle\pm|}{\text{tr}(B_{\pm} \rho_s B_{\pm}^{\dagger})} \text{ and result } \pm 1$$

~ to reading the picture and updating the probability



MODEL

3- Forgetting about the probe and taking a **new** one $|+\rangle\langle+|$ for the next iteration



Scaling

Develop B_+ and B_- in the vicinity of $1/\sqrt{2}$ with the constraint:

$$B_+^\dagger B_+ + B_-^\dagger B_- = 1$$

General solution

$$B_\pm = \frac{1}{\sqrt{2}} \left[1 \pm \sqrt{\epsilon} N_\pm - \epsilon \left(\pm M_\pm + \frac{1}{2} N_\pm^\dagger N_\pm \right) + \mathcal{O}(\epsilon^{3/2}) \right]$$

with $\Re(N_+) = \Re(N_-)$ and $\Re(M_+) = \Re(M_-)$

See e.g. arXiv:1303.6658 or arXiv:1312.1600

CONTINUOUS LIMIT

In practice

If we put additional constraints:

- well defined continuous limit
- the interaction with the probe does not change the Hamiltonian of the system

We get:

$$B_{\pm} = \frac{1}{\sqrt{2}} \left[1 \pm \sqrt{\epsilon} N - \frac{\epsilon}{2} N^\dagger N + \mathcal{O}(\epsilon^{3/2}) \right]$$

where N is just any matrix.

Next steps

- Compute $d\rho(t) = \rho(t + dt) - \rho(t)$ with $dt = \epsilon$ explicitly (expand everything up to order dt).
- Separate the random part coming from the measurement in [average] + [noise with zero average] (Doob martingale decomposition)
- Notice that [noise with zero average] becomes white noise in the continuous limit

Result

$$d\rho_t = \underbrace{\left(N\rho_t N^\dagger - \frac{N^\dagger N\rho_t + \rho_t N^\dagger N}{2} \right)}_{L_N(\rho_t)} dt + \underbrace{\left(N\rho_t + \rho_t N^\dagger - \text{tr} [N\rho_t + \rho_t N^\dagger] \rho_t \right)}_{D_N(\rho_t)} dW_t$$

- $L_N(\rho_t)$ is the Linbladian, responsible for **decoherence**
- $D_N(\rho_t)$ is responsible for the **collapse**
- W_t is a Wiener process, i.e. dW/dt is white noise (with Itô convention)

Pure measurement

Take a qubit ($\mathcal{H}_s = \mathbb{C}^2$), $N = \sqrt{\gamma} \sigma_z$ and **no** qubit Hamiltonian.

- The phases decrease exponentially fast with characteristic time γ^{-1}
- The probabilities obey:

$$dP_t = 2\sqrt{\gamma} P_t (1 - P_t) dW_t$$

with $P_t = \langle + | \rho_t | + \rangle$ and are decoupled from the phases.

Pure measurement

Focus on the probabilities:

$$dP_t = 2\sqrt{\gamma} P_t(1 - P_t) dW_t$$

The SDE has two fixed points, 0 and 1 corresponding to perfect certainty in the eigenbasis of σ_z .

→ progressive collapse

Qubit coupled to a thermal bath

Long story short: in a proper limit (weak coupling, infinite bath) probabilities behave as in the classical case:

$$dP_t = \lambda(p - P_t)dt$$

where λ is the system-bath coupling and p the equilibrium probability.

→ exponential convergence to the equilibrium probability p .

THERMAL FLUCTUATIONS

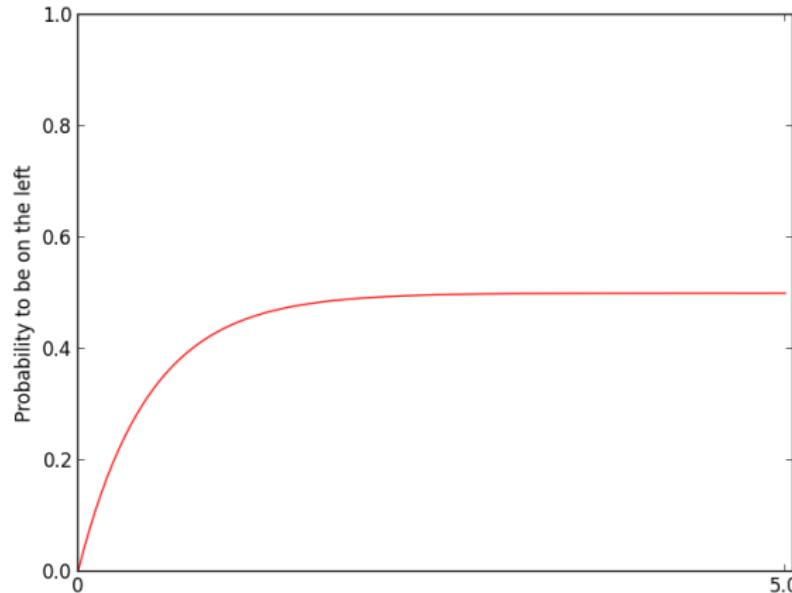
Put the two together!

$$dP_t = \lambda(p - P_t)dt + 2\sqrt{\gamma}P_t(1 - P_t)dW_t$$

Non trivial competition between thermalization and information extraction. [studied in [arXiv:1308.0793](https://arxiv.org/abs/1308.0793) by Michel and Denis]

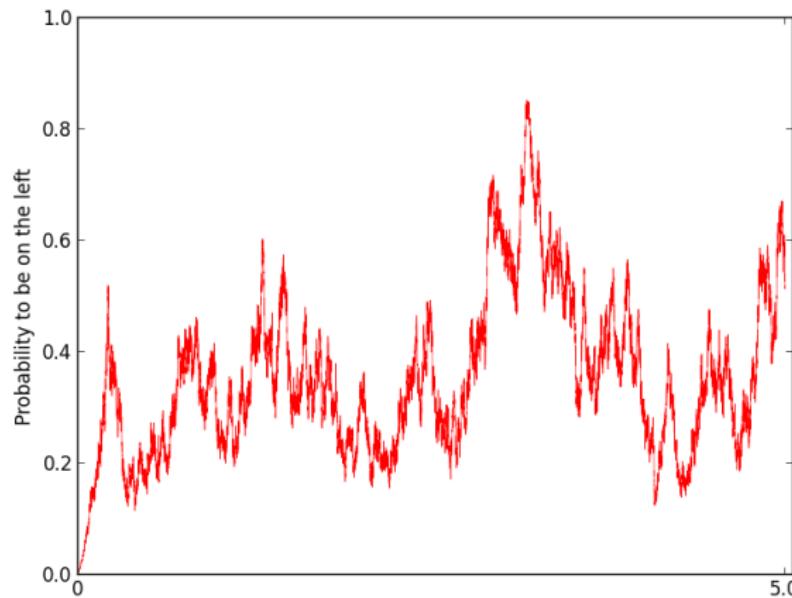
Fascinating equation

Results



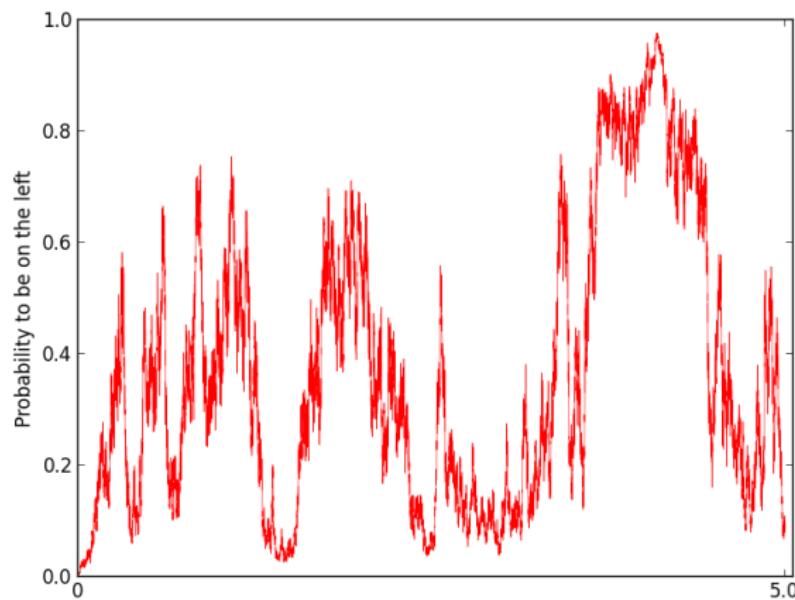
No Measurements

Results



$$\gamma = 0.5$$

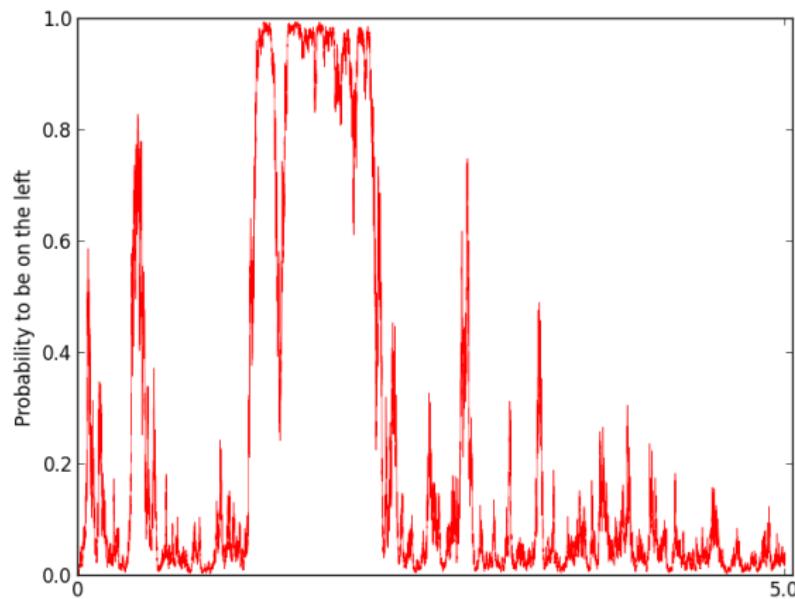
Results



$$\gamma = 1.0$$

Thermal Fluctuations

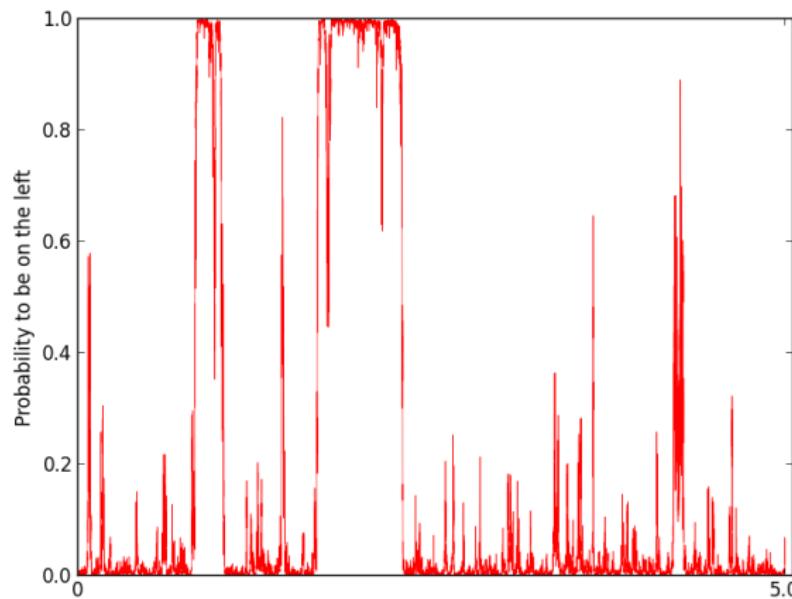
Results



$$\gamma = 2.0$$

THERMAL FLUCTUATIONS

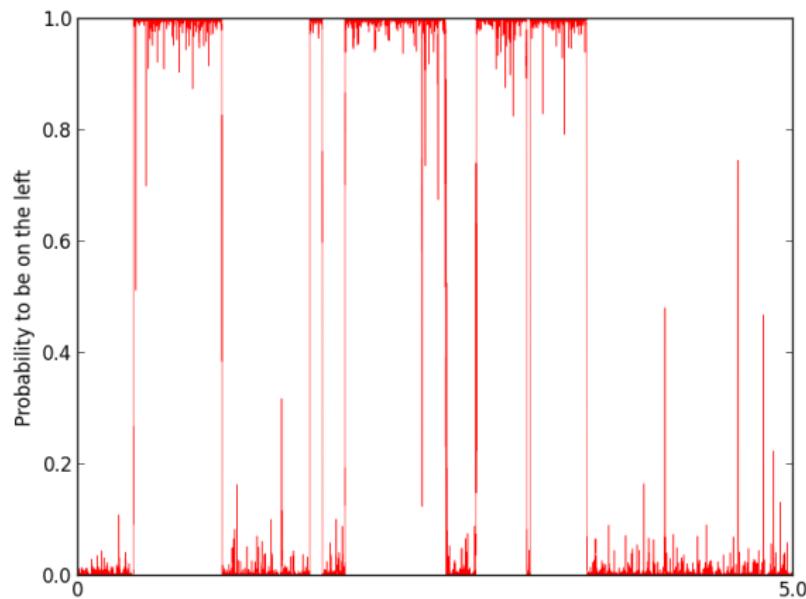
Results



$$\gamma = 5.0$$

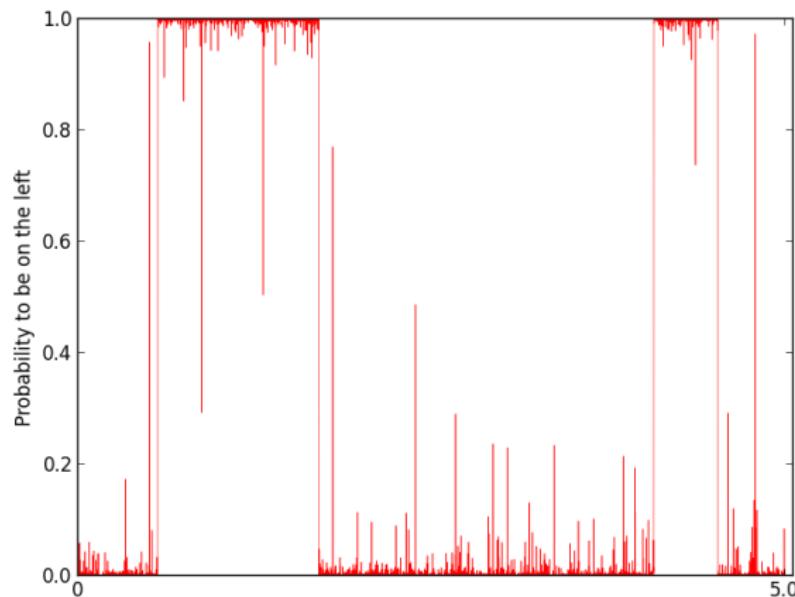
THERMAL FLUCTUATIONS

Results



$$\gamma = 20.0$$

Results



$\gamma = 100.0$, no difference with $\gamma = +\infty$

Conclusion

A jumpy behavior “emerges”. We do not “reveal” an underlying jump process but provide finer continuous description of quantum jumps.

Actually, one can find a hidden variable model for the previous SDE. In this case, we **do** reveal a preexisting jump process (see [arXiv:1510.01232](https://arxiv.org/abs/1510.01232)). The next example will eliminate this possibility

PURE QUANTUM CASE

Qubit in an external field

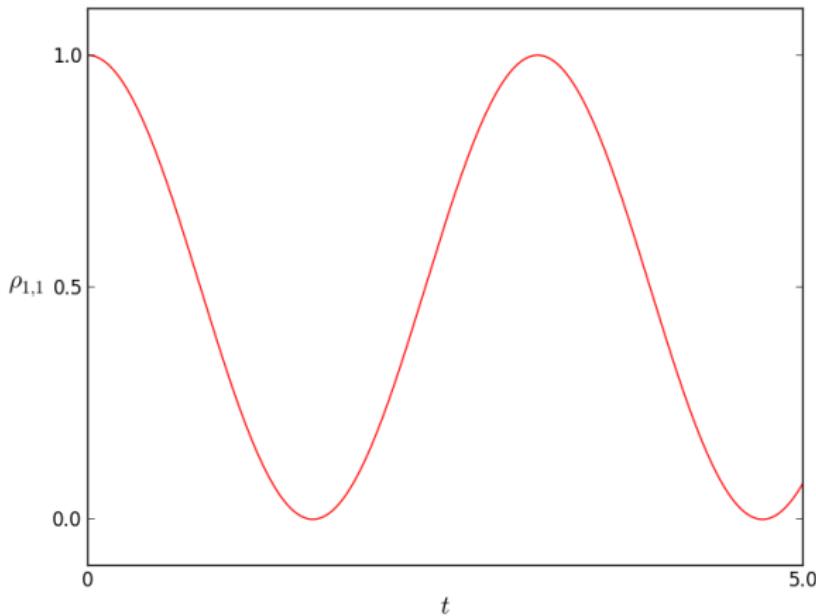
Consider a two level system (a qubit) with Hamiltonian $H = \frac{\omega}{2}\sigma_x$ with σ_z continuously monitored at a rate γ .

The evolution is given by the stochastic master equation:

$$d\rho_t = -i\frac{\omega}{2}[\sigma_x, \rho_t]dt + \underbrace{\gamma L_{\sigma_z}(\rho_t)dt + \sqrt{\gamma}D_{\sigma_z}(\rho_t)dW_t}_{\text{same measurement as before}}$$

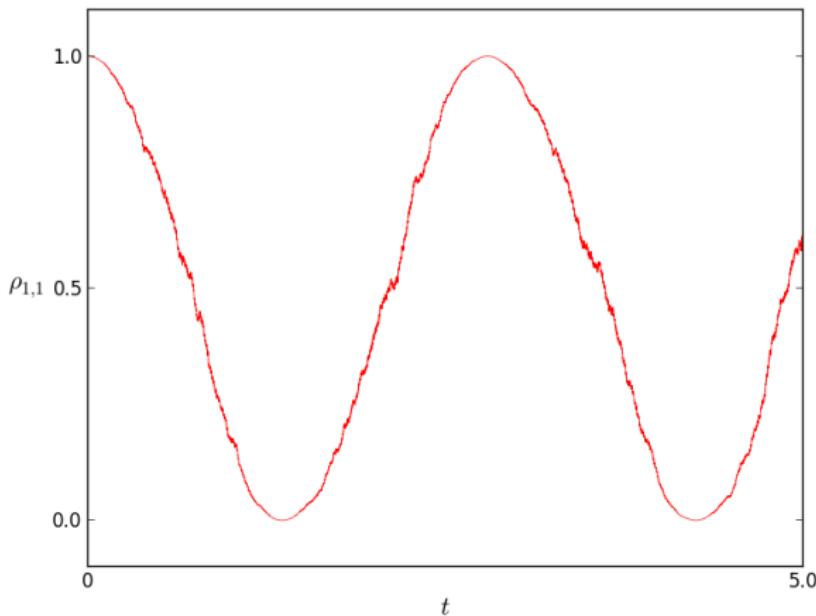
We will look at $\langle +|\rho_t|+\rangle_z$, i.e. at the probabilities in the eigenbasis of the measurement.

Results



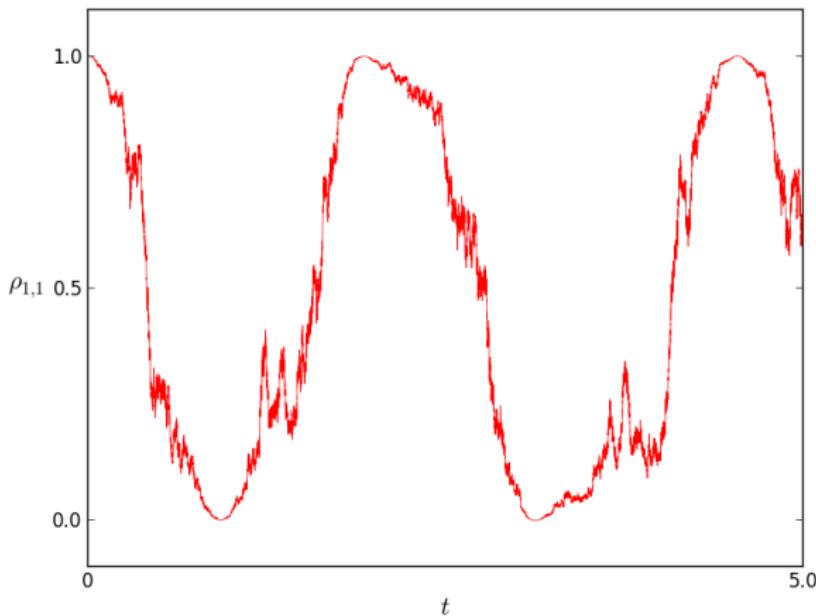
Without measurement $\gamma = 0.0$

Results



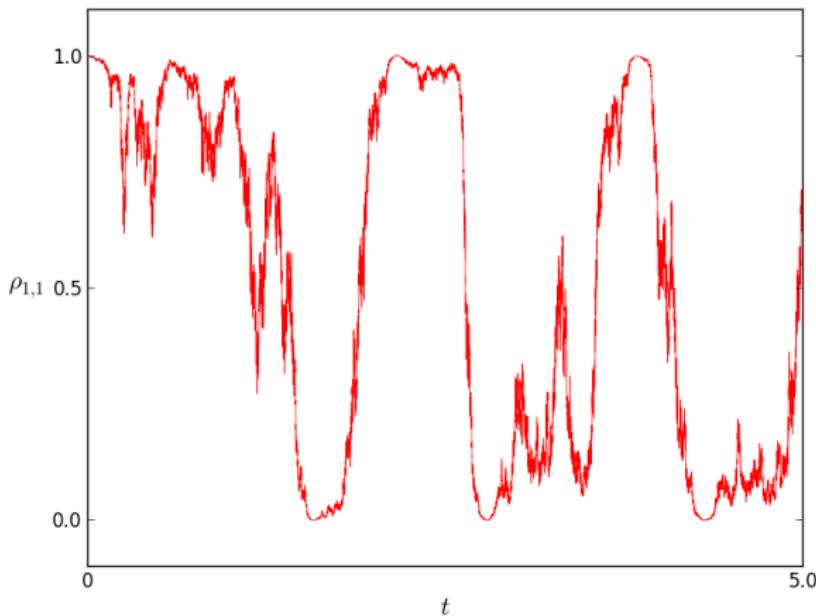
$$\gamma = 0.1$$

Results



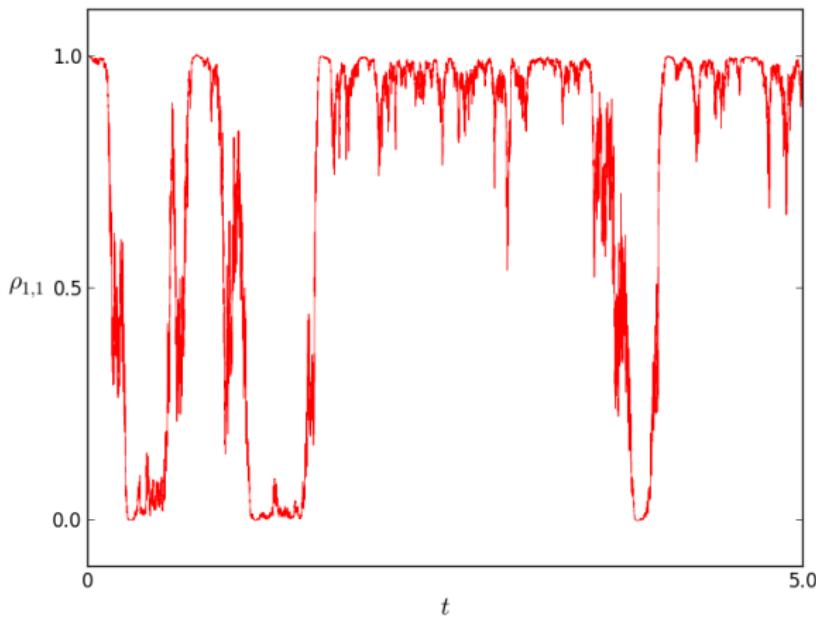
$$\gamma = 0.5$$

Results



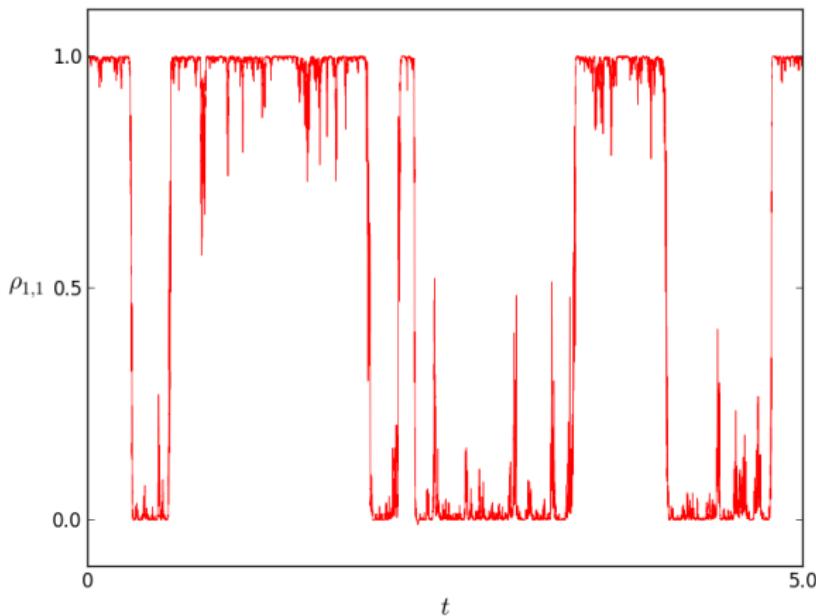
$$\gamma = 1.0$$

Results



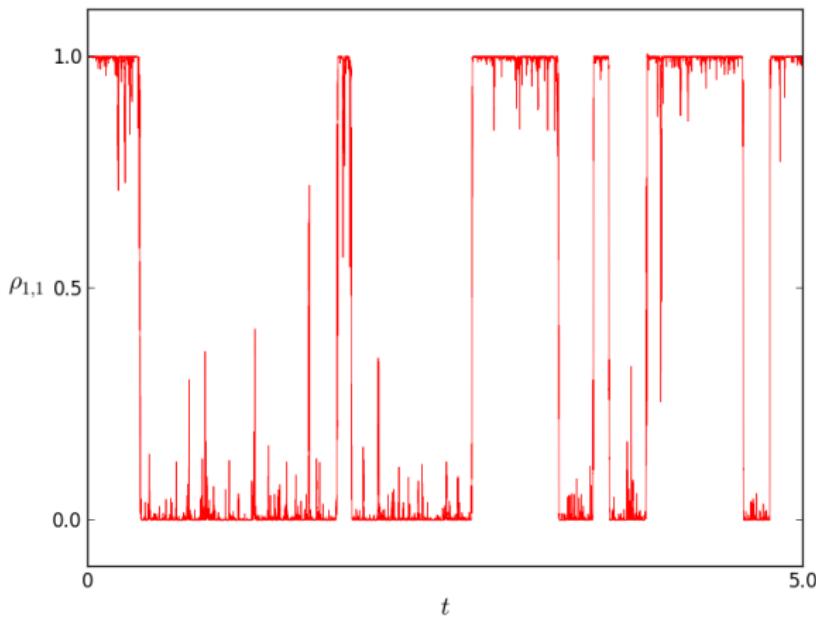
$$\gamma = 2.0$$

Results



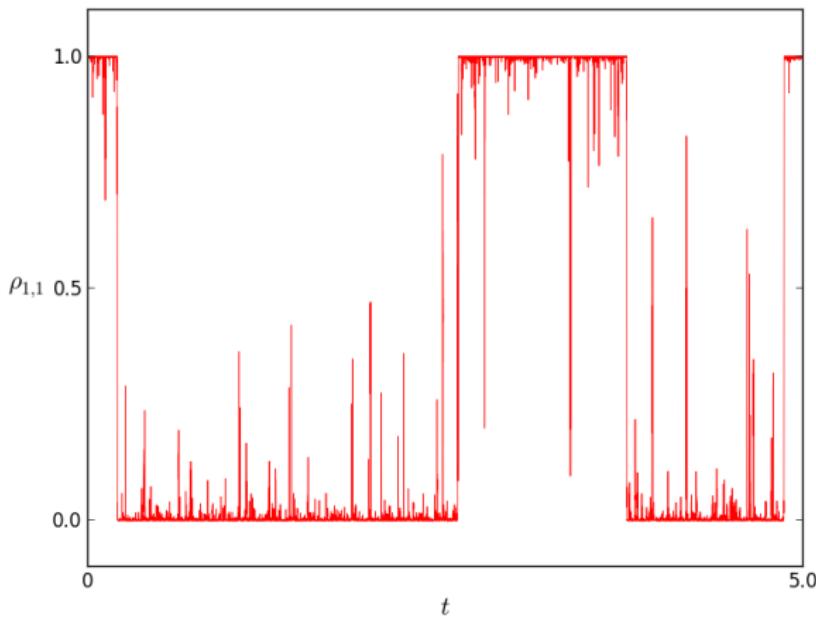
$$\gamma = 5.0$$

Results



$$\gamma = 10$$

Results



$$\gamma = 20$$

Results

Actually, I had to cheat a bit and take $\omega \propto \gamma$ for the previous plots to counter the **Zeno effect**.

Theorem

Consider quantum system subjected to the measurement of the operator \mathcal{O} at rate γ and with an evolution without measure:

$$\frac{d\rho_t}{dt} = \mathcal{L}(\rho_t) = -i[H, \rho_t] + L_M(\rho_t)$$

1. For large γ its density matrix ρ behaves like a continuous time Markov chain between the eigenvectors of \mathcal{O}
2. The jump rates m_{ij} can be computed exactly as a function of \mathcal{L} and \mathcal{O} . The generic form is a bit complicated but the dominant contribution is of the form :

$$m_{ij} \propto \underbrace{\frac{[\text{coeff. of } H]^2}{\gamma}}_{\text{Zeno effect!}} + \text{coeff. of } L_M$$

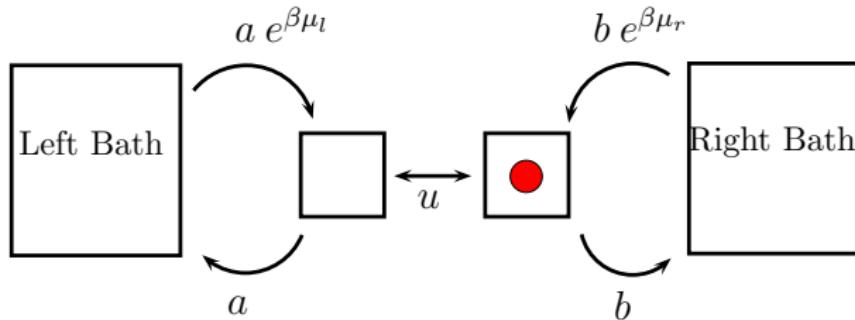
Comments

- The convergence is weak in the sense that it is only valid for the finite dimensional distributions (spikes don't disappear)
- The generalization to multiple observables is easy
- The measurement efficiency does not matter (i.e. you can “miss” probes without changing the formulae)
- The Zeno effect does not touch the jumps induced by the coupling with a bath

GENERAL CASE

Possible application

Exploit the different behavior of unitary quantum jumps and thermal quantum jumps with respect to the Zeno effect to control systems
arXiv:1404.7391



→ Maxwell Daemon from measurement only!

Idea of the proof

Not completely standard because strong noise limit \rightarrow “perturb” around the pure measurement situation

- Consider the probability kernel $K_t(\rho_0, d\rho)$ to go from a given density matrix ρ_0 to another density matrix ρ , up to $d\rho$, after a time t .
- Write its Kolmogorov equation $\partial_t K = K \mathfrak{D}$ where \mathfrak{D} can be expanded in:

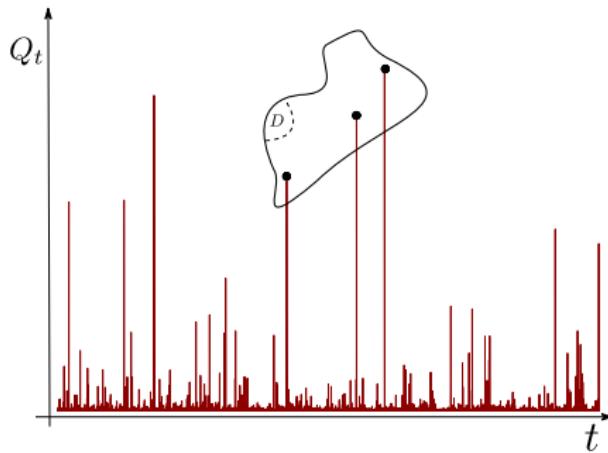
$$\mathfrak{D} = \gamma^2 \mathfrak{D}_2 + \mathfrak{D}_0$$

- Compute the eigenvectors of \mathfrak{D}_2 (invariant measures) and perturbatively expand $K_t = e^{t\gamma^2 \mathfrak{D}_2 + t\mathfrak{D}_0}$

MORE ABOUT THE CONVERGENCE

Spikes

Sharp scale invariant fluctuations, “spikes”, decorate the jump process when $\gamma \rightarrow +\infty$.



This implies that the convergence is necessarily weak.

What could be done?

- Study the **fluctuations**, the spikes, in the general case (specific cases already studied in [arXiv:1510.01232](https://arxiv.org/abs/1510.01232)).
- Study the **infinite dimensional** setting (already some earlier study in the context of dynamical reduction models by Bassi and Dürr)
- Probe the **semi-classical** behavior of many systems! (tunneling processes, trajectories in cloud chambers, etc.)
- Apply the technique of the proof to other strong noise systems (turbulence?)

More generally

Repeated interactions have applications in:

- Quantum information
- Quantum control
- Quantum foundations
- Stochastic Thermodynamics