

QUANTUM JUMPS AND SPIKES

A mathematical curiosity ?

Antoine Tilloy, with Denis Bernard and Michel Bauer

Laboratoire de Physique théorique, École Normale Supérieure Paris

Fundamental Problems in Quantum Mechanics, Erice, 23-27 March 2015

DISCLAIMER

Work done in collaboration with Denis Bernard and Michel Bauer.

Ongoing work: some results of this talk are buried in a (relatively bad) preprint: [arXiv:1410.7231](https://arxiv.org/abs/1410.7231), the rest is **new**

Mathematical curiosity or interesting physical effect ? **Glad to have your point of view at the end.**

OUTLINE

A simple classical model

Back to the quantum

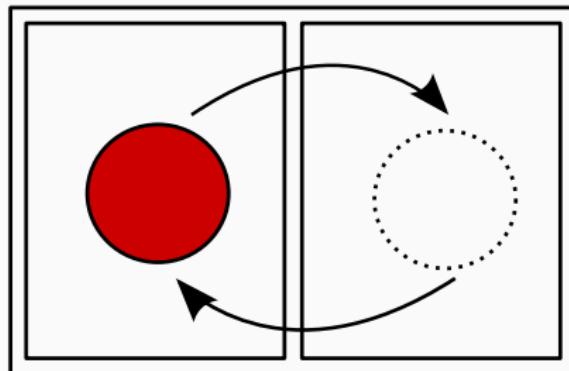
Discussion

A SIMPLE CLASSICAL MODEL

A SIMPLE CLASSICAL MODEL

Repeated fuzzy measurements

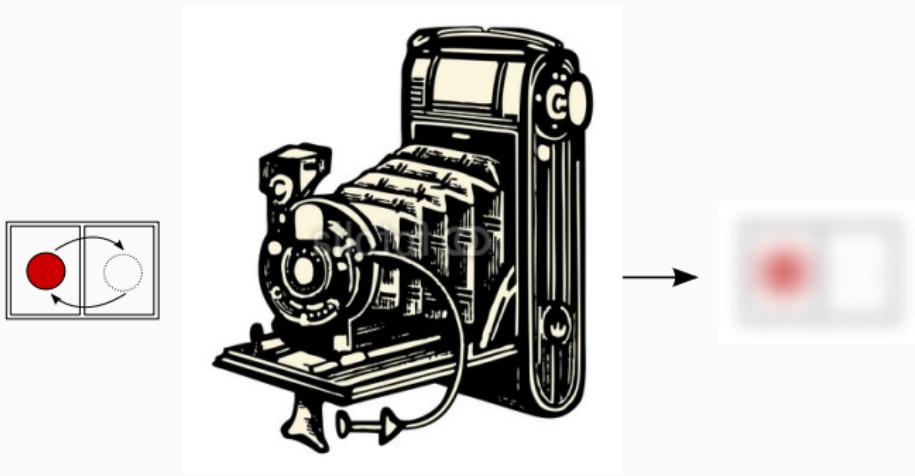
Consider a classical 2-state Markov process. Typically a particle randomly jumping between two compartments of a box.



A SIMPLE CLASSICAL MODEL

Repeated fuzzy measurements

The box is very small and we take fuzzy pictures from far away.



Every picture gives a tiny bit of information about where the particle is.

Mathematical Model

- The particle jump rate is λ , the number of jumps is a Poisson process.

Mathematical Model

- The particle jump rate is λ , the number of jumps is a Poisson process.
- Every picture gives a binary answer $\delta_n = \pm 1$ which gives a bit of information:

$$\mathbb{P}(\delta_n = 1 \mid \text{particle on the left}) = \frac{1 + \epsilon}{2}$$

$$\mathbb{P}(\delta_n = 1 \mid \text{particle on the right}) = \frac{1 - \epsilon}{2}$$

Mathematical Model

- The particle jump rate is λ , the number of jumps is a Poisson process.
- Every picture gives a binary answer $\delta_n = \pm 1$ which gives a bit of information:

$$\mathbb{P}(\delta_n = 1 \mid \text{particle on the left}) = \frac{1 + \epsilon}{2}$$

$$\mathbb{P}(\delta_n = 1 \mid \text{particle on the right}) = \frac{1 - \epsilon}{2}$$

- We are interested in:

$$Q_n = \mathbb{P}(\text{particle on the left at time } n \mid \text{all the pictures before } n)$$

A SIMPLE CLASSICAL MODEL

Mathematical Model

To compute Q_{n+1} knowing Q_n we need to:

- Incorporate the measurement result δ_n using **Bayes rule**:

$$\begin{aligned} Q_{n+1} &= \mathbb{P}(\text{left at } n+1 | Q_n \& \delta_{n+1}) \\ &= \frac{\mathbb{P}(\delta_{n+1} | \text{left at } n+1) \mathbb{P}(\text{left at } n+1 | Q_n)}{\mathbb{P}(\delta_{n+1} | Q_n)} \end{aligned}$$

Mathematical Model

To compute Q_{n+1} knowing Q_n we need to:

- Incorporate the measurement result δ_n using **Bayes rule**:

$$\begin{aligned} Q_{n+1} &= \mathbb{P}(\text{left at } n+1 | Q_n \& \delta_{n+1}) \\ &= \frac{\mathbb{P}(\delta_{n+1} | \text{left at } n+1) \mathbb{P}(\text{left at } n+1 | Q_n)}{\mathbb{P}(\delta_{n+1} | Q_n)} \end{aligned}$$

- Incorporate the fact that **we know that the particle tends to jump** during the time interval:

$$\mathbb{P}(\text{left at } n+1 | Q_n) = (1 - \lambda)Q_n + \lambda(1 - Q_n)$$

Mathematical Model

At the continuous limit, for extremely fuzzy pictures (and a proper rescaling) we have:

$$dQ_t = \lambda \left(\frac{1}{2} - Q_t \right) dt + \gamma Q_t(1 - Q_t) dW_t \quad (1)$$

with γ the rate at which pictures are taken.

A SIMPLE CLASSICAL MODEL

Mathematical Model

At the continuous limit, for extremely fuzzy pictures (and a proper rescaling) we have:

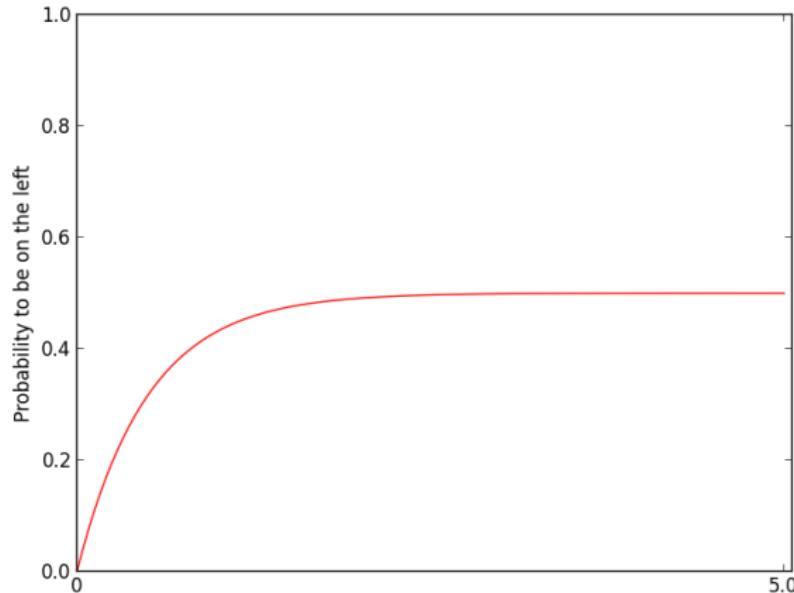
$$dQ_t = \lambda \left(\frac{1}{2} - Q_t \right) dt + \gamma Q_t(1 - Q_t) dW_t \quad (1)$$

with γ the rate at which pictures are taken.

The continuous limit is only needed for the closed form results, all the rest is true in the discrete case. **What follows is not an artifact of the diffusive limit.**

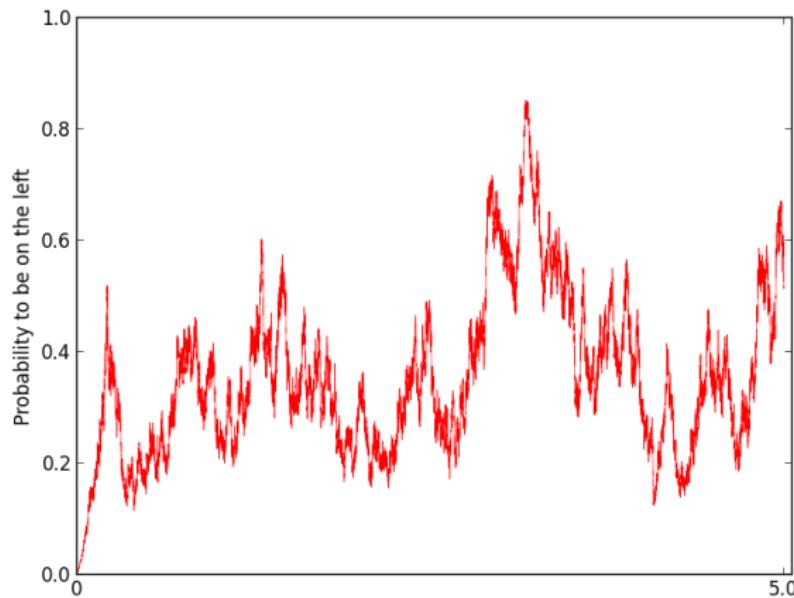
A SIMPLE CLASSICAL MODEL

Results



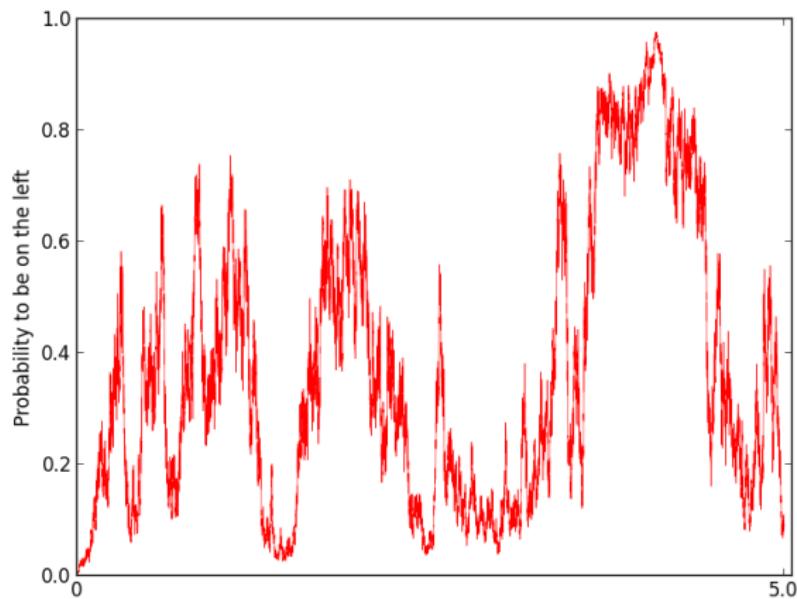
No Measurements

Results



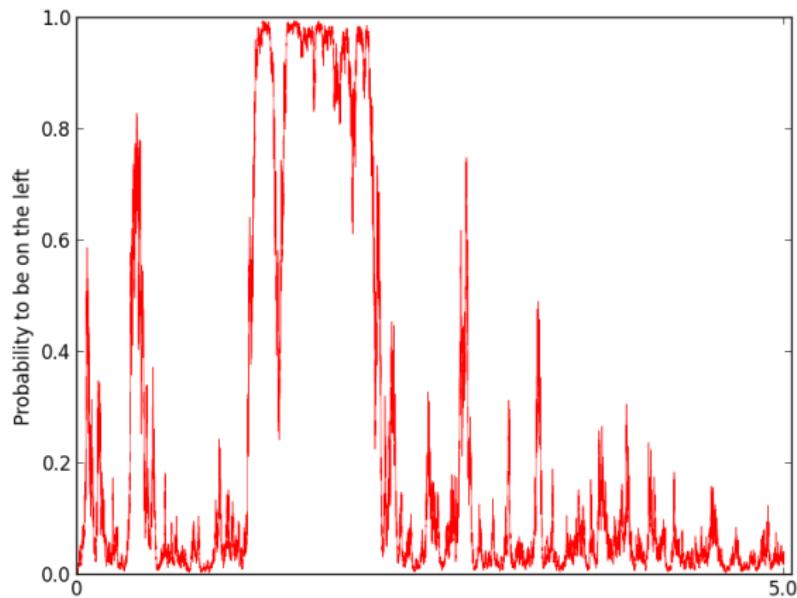
$$\gamma = 0.5$$

Results



$$\gamma = 1.0$$

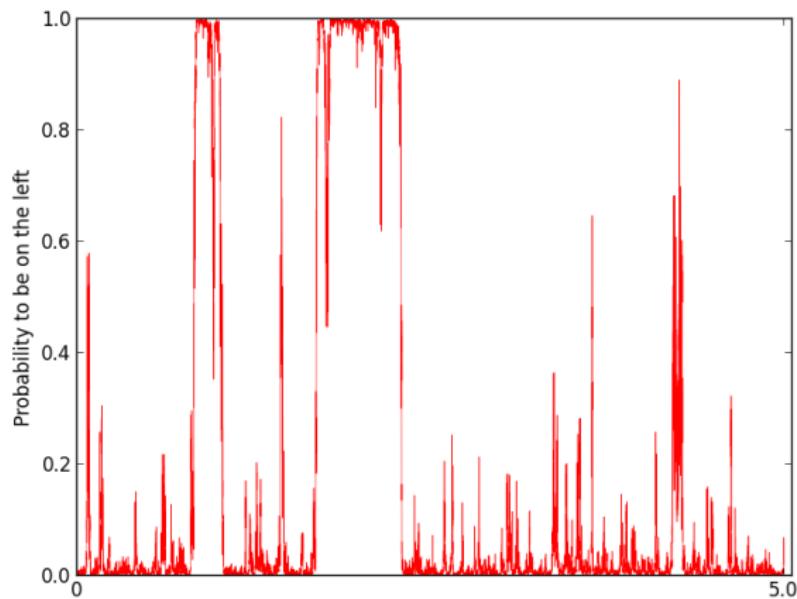
Results



$$\gamma = 2.0$$

A SIMPLE CLASSICAL MODEL

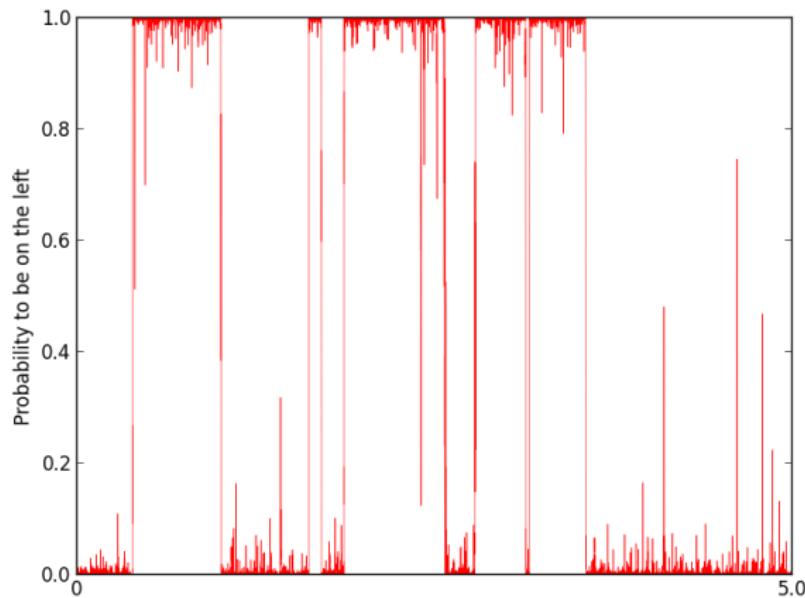
Results



$$\gamma = 5.0$$

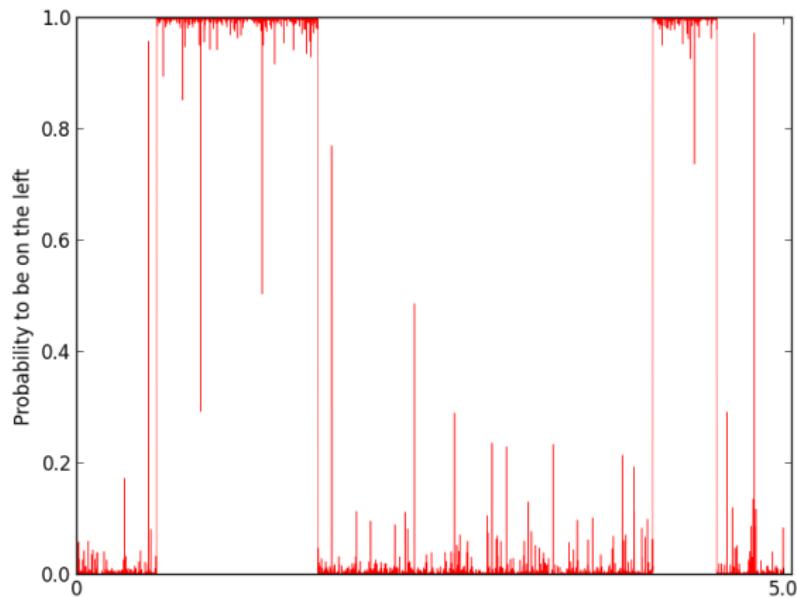
A SIMPLE CLASSICAL MODEL

Results



$$\gamma = 20.0$$

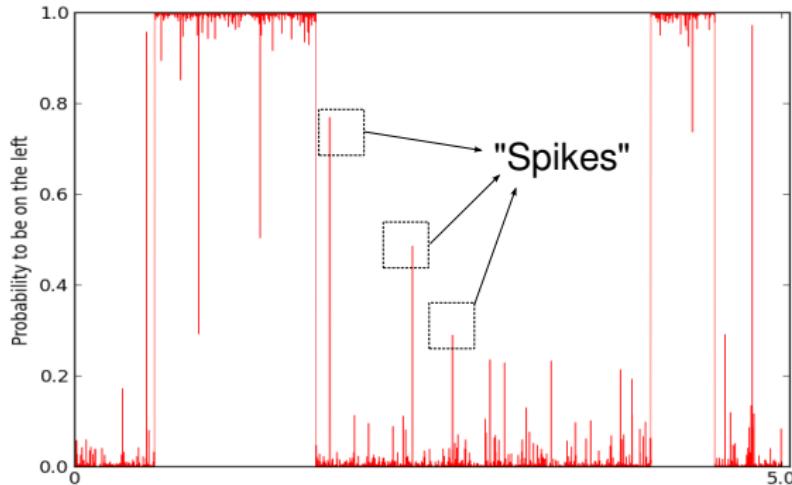
Results



$\gamma = 100.0$, no difference with $\gamma = +\infty$

A SIMPLE CLASSICAL MODEL

What we call spikes:



Spikes do not disappear when $\gamma \rightarrow +\infty$! They just become sharper and sharper.

Theorem

When $\gamma \rightarrow \infty$, on a time interval without jumps, the process giving the top of the spikes \tilde{Q}_t is a **Poisson process** of intensity:

$$d\nu = \lambda dt \frac{dQ}{Q^2}$$

Theorem

When $\gamma \rightarrow \infty$, on a time interval without jumps, the process giving the top of the spikes \tilde{Q}_t is a **Poisson process** of intensity:

$$d\nu = \lambda dt \frac{dQ}{Q^2}$$

- Infinitely many small spikes on any time interval

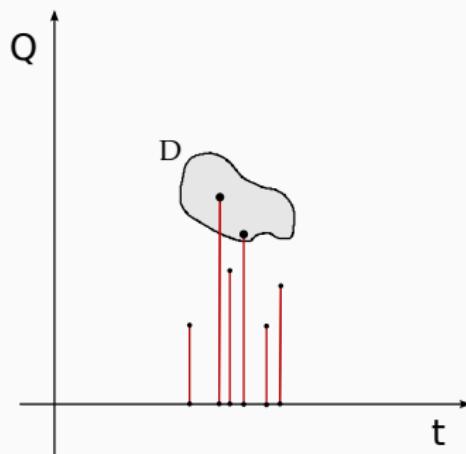
Theorem

When $\gamma \rightarrow \infty$, on a time interval without jumps, the process giving the top of the spikes \tilde{Q}_t is a **Poisson process** of intensity:

$$d\nu = \lambda dt \frac{dQ}{Q^2}$$

- Infinitely many small spikes on any time interval
- The proof is general in the sense that it relies only on the fact that a stopped martingale is a martingale.

General Poisson Process



The number N of spikes in the domain D is a standard Poisson process of intensity μ , i.e. $P(N) = \frac{\mu^N}{N!} e^{-\mu}$ with:

$$\mu = \int_D d\nu$$

Classical meaning of spikes

The implications of spikes in this classical model are benign:

Classical meaning of spikes

The implications of spikes in this classical model are benign:

- Spikes can be seen as a **artifact** of Bayesian inference, nothing real is intrinsically "spiky".

Classical meaning of spikes

The implications of spikes in this classical model are benign:

- Spikes can be seen as a **artifact** of Bayesian inference, nothing real is intrinsically "spiky".
- Spikes can be removed by forward-backward estimation (smoothing) or more brutally by low-pass filtering.

BACK TO THE QUANTUM

A quantum system with spikes

Consider a two level system (a qubit) with Hamiltonian $H = \frac{\omega}{2}\sigma_x$ with σ_z continuously monitored at a rate γ .

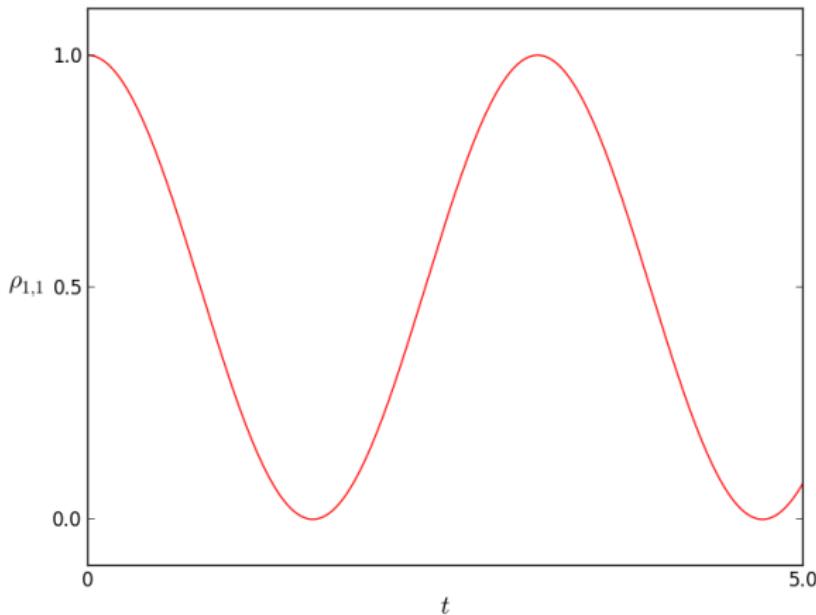
A quantum system with spikes

Consider a two level system (a qubit) with Hamiltonian $H = \frac{\omega}{2}\sigma_x$ with σ_z continuously monitored at a rate γ .

The evolution is given by the stochastic master equation:

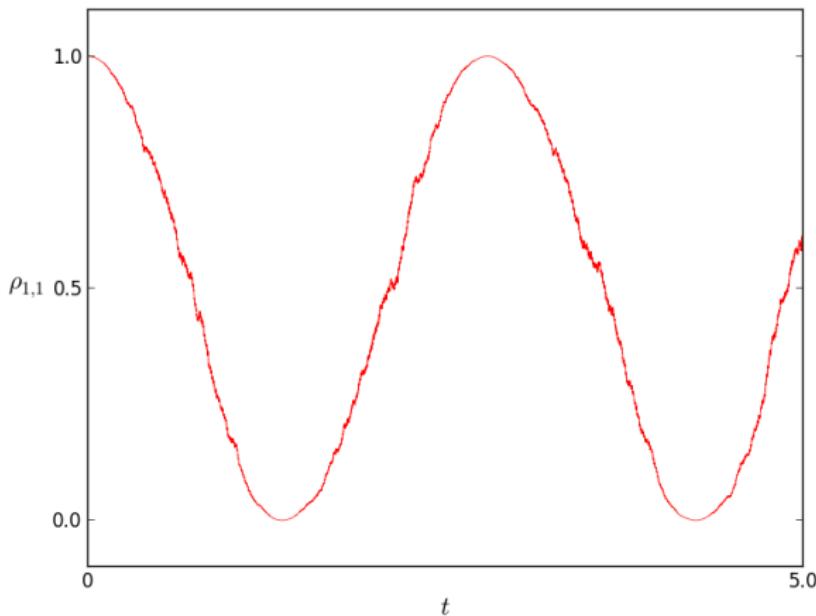
$$d\rho_t = -i\frac{\omega}{2}[\sigma_x, \rho_t]dt - \frac{\gamma^2}{2} [\sigma_z [\sigma_z, \rho_t]] dt + \gamma (\sigma_z \rho_t + \rho_t \sigma_z - 2\text{tr}\sigma_z \rho_t) dW_t$$

Results



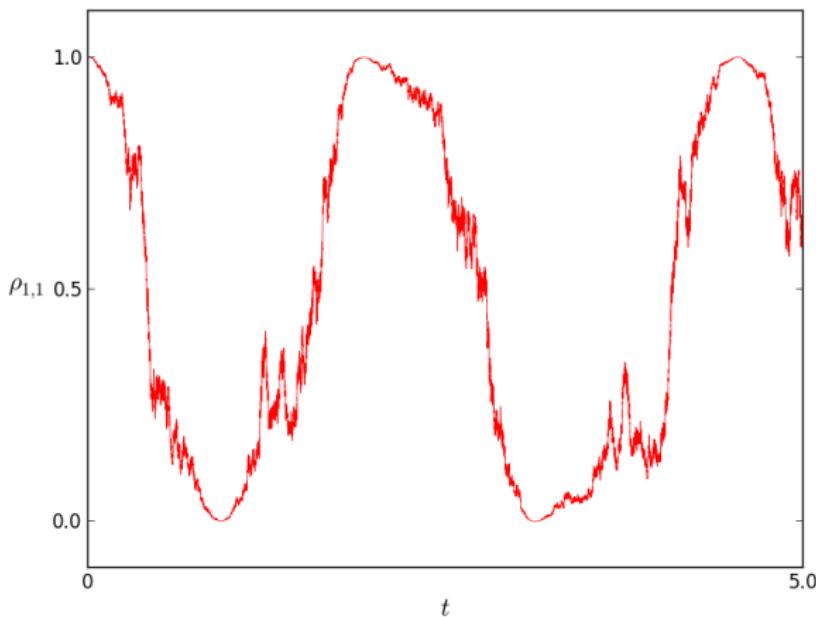
Without measurement $\gamma = 0.0$

Results



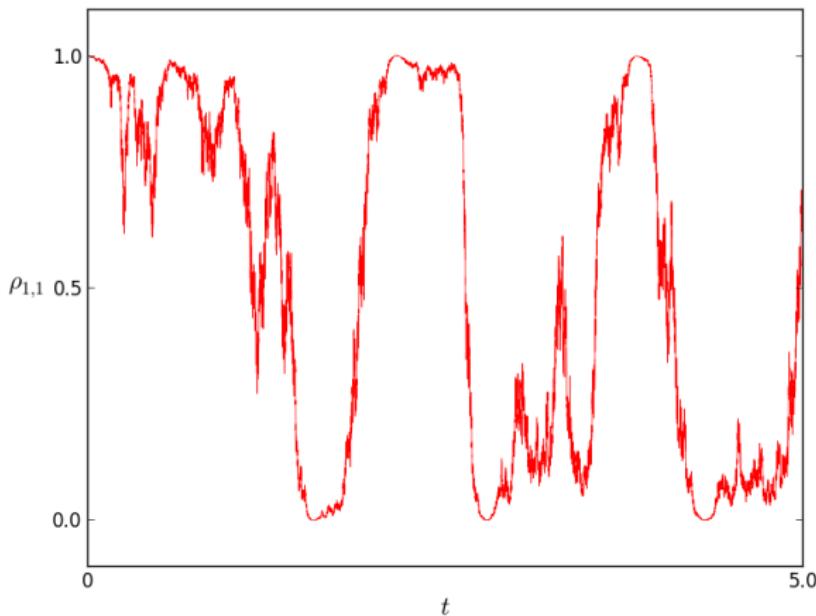
$$\gamma = 0.1$$

Results



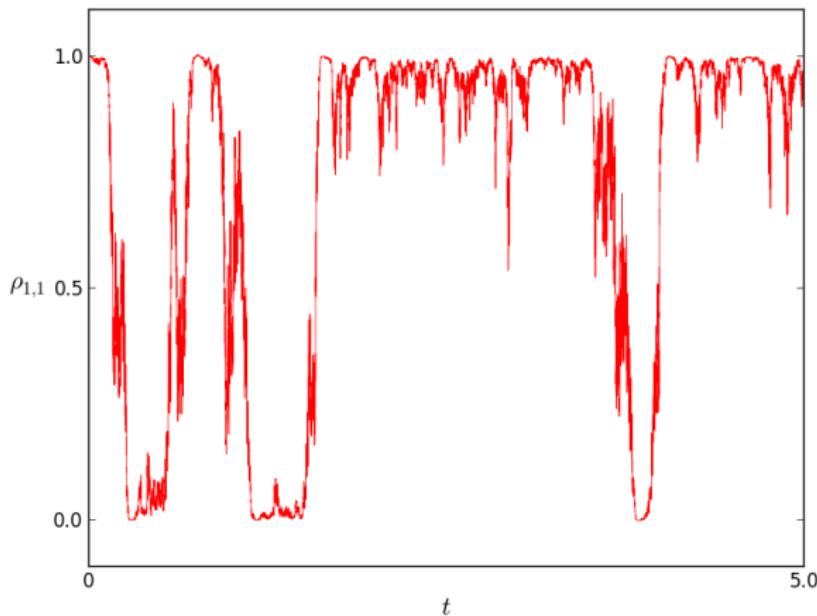
$$\gamma = 0.5$$

Results



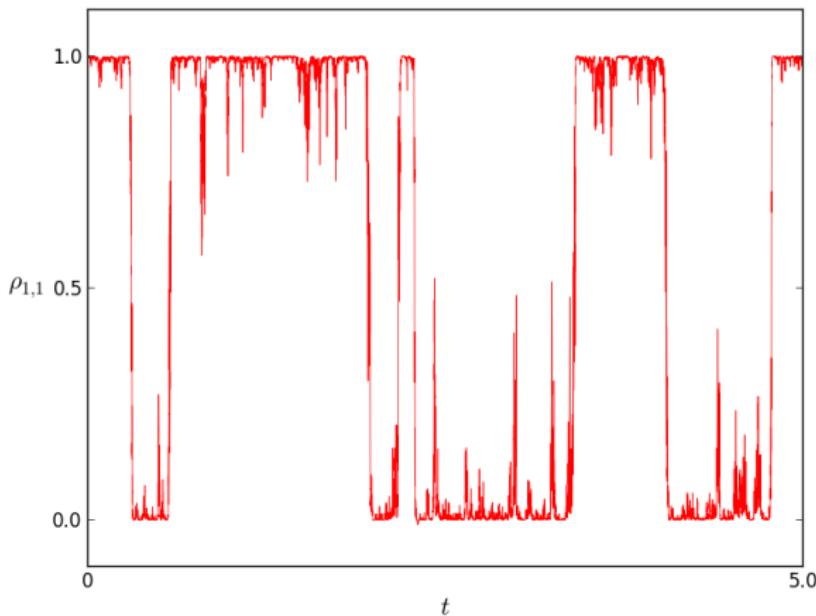
$$\gamma = 1.0$$

Results



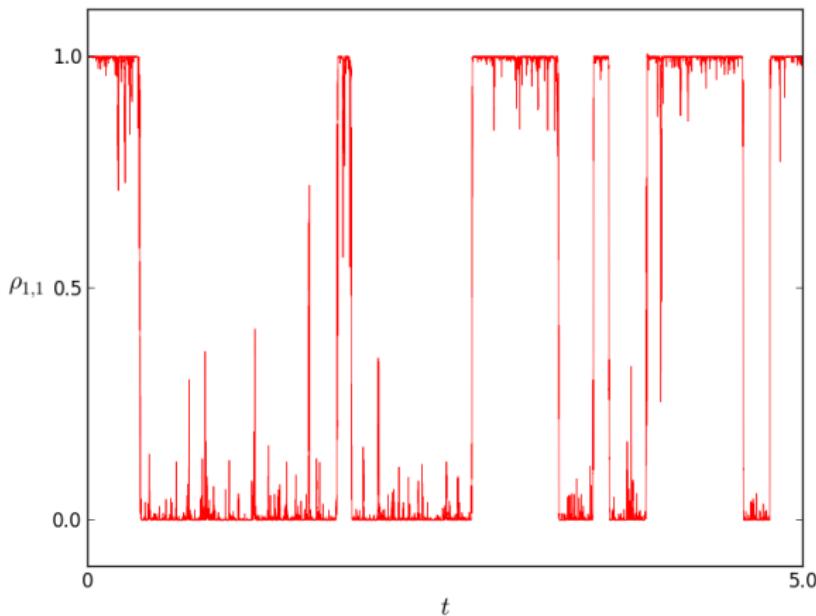
$$\gamma = 2.0$$

Results



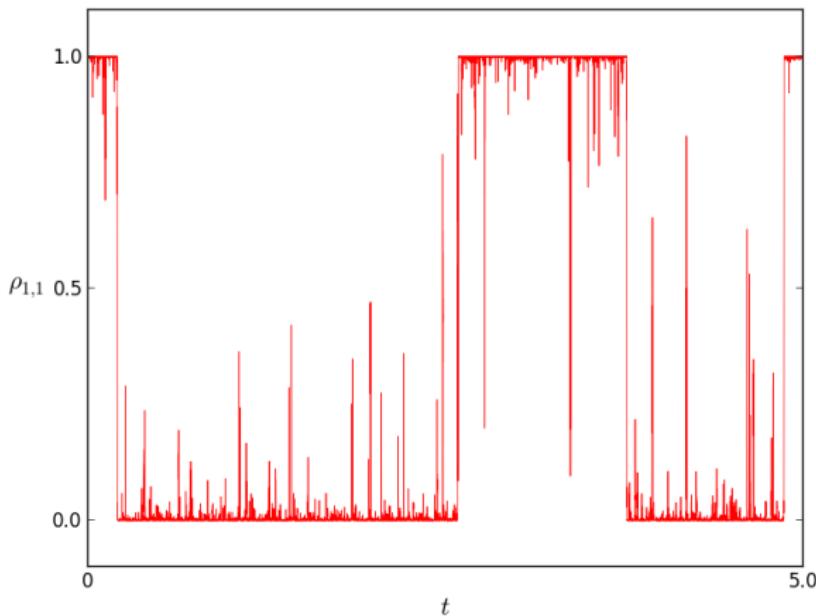
$$\gamma = 5.0$$

Results



$$\gamma = 10$$

Results



$$\gamma = 20$$

Theorem

With $\omega = \gamma\Omega$ (to avoid complete Zeno freezing), when $\gamma \rightarrow \infty$ and on a time interval without jumps, $\rho_{1,1}(t) = Q_t$ is a **Poisson process** of intensity:

$$d\nu = \Omega dt \frac{dQ}{Q^2}$$

Theorem

With $\omega = \gamma\Omega$ (to avoid complete Zeno freezing), when $\gamma \rightarrow \infty$ and on a time interval without jumps, $\rho_{1,1}(t) = Q_t$ is a **Poisson process** of intensity:

$$d\nu = \Omega dt \frac{dQ}{Q^2}$$

Remark

- The system density matrix stays pure during the spike (a probability spike is compensated by a phase spike)

Conjecture

Spikes are **universal**, i.e. for any quantum system subjected to a strong measurement and on a time interval without jumps, $\rho_{ii}(t) = Q_i(t)$ has spikes given by a **Poisson process** of intensity:

$$d\nu \propto dt \frac{dQ_i}{Q_i^2}$$

Conjecture

Spikes are **universal**, i.e. for any quantum system subjected to a strong measurement and on a time interval without jumps, $\rho_{ii}(t) = Q_i(t)$ has spikes given by a **Poisson process** of intensity:

$$d\nu \propto dt \frac{dQ_i}{Q_i^2}$$

"Physicists" arguments but rigorous proofs in two situations

- for any system with an evolution preserving the diagonality of the density matrix
- for a 2-level system with a generic Hamiltonian

DISCUSSION

A few additional facts

- The spikes disappear with Gammelmark's et al. quantum equivalent of forward-backward filtering, the **past quantum state** –defined in [PRL 111, 160401\(2013\)](#)
- They do not disappear with Guevara & Wiseman's version called **quantum smoothing** –defined in [arXiv:1503.02799](#)

DISCUSSION

An interest for collapse models ?

With an ontic state, spikes become more interesting

- With the mass density ontology, spikes are actual fluctuations of matter, is it a problem or a good thing ?

An interest for collapse models ?

With an ontic state, spikes become more interesting

- With the mass density ontology, spikes are actual fluctuations of matter, is it a problem or a good thing ?
- To eliminate spikes from the theory, is it possible to use the past quantum state in some way in collapse models ?

DISCUSSION

Thank you for your time

Erice is beautiful !