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Why go to continuous TN

» Discrete TNs in d > 2 are hard to contract
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Why go to continuous TN

» Discrete TNs in d > 2 are hard to contract
» Model QFTs directly
» Why not?
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Matrix product states

Definition of a MPS:
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Matrix product states

Definition of a MPS:

A= > (LA A, - A IR) Jit, - in)
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Operator expectation values:
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Matrix product states

Operator expectation values:

et 1841808
Evolution picture
) @ Do

(AJO(6:)O(£2)|A) = tr[pR O Dy - DT D - D™ pL}
A can be seen as prescribing dynamics (or laws) rather than as a state
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From MPS to cMPS

Zooming out
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From MPS to cMPS

Zooming out

> the bond dimension stays fixed

> the physical dimension explodes C? @ - -- @ C? — Z(L*([x, x + dx])).

5/21



From MPS to cMPS

Zooming out

> the bond dimension stays fixed

> the physical dimension explodes C? @ - -- @ C? — Z(L*([x, x + dx])).
— Spins become fields.

» a cMPS aims at describing JF in continuous space
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cMPS

Type of ansatz

» Matrices A;, (x) where the index ix corresponds to a'’*(x)|0) in physical space.

Informal cMPS definition

Ar=1+¢eQ
A1 :é‘R
(eR)®
A, — =0
T2
(eR)"
An =
/n

so we go from oo to 2 matrices

6/21



cMPS

Type of ansatz

» Matrices A;, (x) where the index ix corresponds to a'’*(x)|0) in physical space.

> Finite particle number
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cMPS

Type of ansatz

» Matrices A;, (x) where the index ix corresponds to a'’*(x)|0) in physical space.

> Finite particle number
Informal cMPS definition

0,00 00 0
e e e e e !
Ac=1-+¢e@Q
0,100 00
A1 =¢eR Bodddd « -
2
Ax = @ > Non trivial map
V2
| - v
eR)" I 1
A _ CR)
\/ﬁ > 1 e L
» Consistency
so we go from oo to 2 matrices 1o 2 q
’ A+ - {1+
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cMPS

Formal cMPS definition

|Q, R) = (wL|P exp {/ dx Q®1+R® aT(x)} |wr) |0)

Idea:
A(x) ~ Aol + Ara'(x)
~1®14+:QR1+eR®al(x)
~ exp [6 (Q@ 1+R® aT(x))]

7/21



cMPS

Formal cMPS definition

|Q, R) = (wL|P exp {/ dx Q®1+R® aT(x)} |wr) |0)
0

Idea:
A(x) ~ Aol + Ara'(x)
~1®14+:QR1+eR®al(x) -
~ exp [6 (Q® 1+R® aT(x))]

Equivalent cMPS definition

L
|K,R) = (wL|Pexp{—i/ dx KQ1+iR®a'(x) — iRTa(x)} lwr) |0)

with iK = Q + 1RTR.
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cMPS

Field wave function

W) = Z/ dxi - dxo Pn(x1, -, xa) @' (x1) - @' (xn) 0)

n=0 [01 L]"
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cMPS
Field wave function

V) = Z/ dxy - dxn Yn(xa, -+, Xn) aT(Xl) . aT(X,,) |0)

n=0 [01 L]"

Field wave function for the cMPS

%
@

1 : :
] _ (1 + Q)" ¢ 4 eQ)lee (1 4 Q)X (1 + Q)L

L—s:d.rsl eR eR
1/1n(X1, L ,Xn)dX1 Cdx, = eX1Q Re(><2*><1)Q . e(Xn*Xn—l)Q R e(L*Xn)Q cog-g

dxy -+ -dxp
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Tensor networks in 2d
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Zooming out

1o oL
1o ol
[
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Zooming out

» The physical dimension becomes infinite

» The bond dimension becomes infinite

Do we need an ansatz with a field theory on the virtual space?
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iMPS

e

Take A;(x;) an operator of a QFT

Naive example: \iJoJ is a spin 1/2 field, Ai(x;) = Vi(x;)

iMPS) = >~ (0, (xa) -+ Wy, (x0)[0) [t -+, i)

15 5in
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iMPS

R R R

Take A;(x;) an operator of a QFT

Naive example: \iJoJ is a spin 1/2 field, Ai(x;) = Vi(x;)

iMPS) = >~ (0, (xa) -+ Wy, (x0)[0) [t -+, i)

15 5in

> wave function of something = correlation function of something else
» typically A;(x;) a vertex operator of a CFT

> not dense in field states but analytic
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More traditional/naive continuous TNs

A continuous TN is an object that takes a (discrete) bunch of (discrete) tensors and
spits a field state:

A B, = ijw(xl,w ) 3l () - 2l (x2) 10)
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More traditional/naive continuous TNs

A continuous TN is an object that takes a (discrete) bunch of (discrete) tensors and
spits a field state:

AB.--) :ij(xl,--- ) 3l () - 2l (x2) 10)

» dense in field states
> not too abstract

» maybe not in 1 to 1 with the discrete
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A few options

Get inspiration from cMPS:

1. Extending the “wave function” picture — random curves

CHH O

J

Ve

(1 + Q)" (14 eQ)UeVe (1 + eQ)*-1) (1 4 eQ)Le

2. Extending the P-ordered product — path integral

L
|K,R) = <wL|Pexp{i/ de®n+iR®aT(x)iR*a(X)}|wR> 0)
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“Wave function” picture

For cMPS:

For cPEPS:

with a'(x;) and 1 on the physical space
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“Wave function” picture

Take as the ansatz:

#-Qg‘qb

b d
Jd % Eg
%@
o

= Sum on self-avoiding loops with defects
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“Wave function” picture

Along a line, just a product of matrices ~ exp({ Q)

OOOOOOO
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“Wave function” picture

Along a line, just a product of matrices ~ exp({ Q)

OOOOOOO

Along a closed loop without defect, a trace ~ tr[exp(¢ Q)]

O © Q A ~ A
9] ¢ Take Q = iH, s.t. trlexp(£ Q)] =1 to
3 4 remove the contribution of loops
oo without defects
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“Wave function” picture

Along a line, just a product of matrices ~ exp({ Q)

0006

Along a closed loop without defect, a trace ~ tr[exp(¢ Q)]

o ° o) Take Q = if, s.t. tr[exp(£ Q)] =1 to
o remove the contribution of loops
O B
oo without defects

Finally, the wave function reads as a sum of:
Each line of length ¢ represents the
% matrix exp[{Q)]
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Continuum limit and generalization

A few difficulties still:
» Self avoiding loops are not trivial to manage

» Model not manifestly isotropic

17/21



Continuum limit and generalization

A few difficulties still:
» Self avoiding loops are not trivial to manage

» Model not manifestly isotropic

Tentative cTN definition
Main objects:
> A self-adjoint matrix H
» A fully symmetric n-tensor T

> A family of random curves ¥ with Euclidean
invariant probability distribution du(%)

o
o o o

Construction:
> Propagate a curve until nodes T are hit n times

» Contract the network, with each line e’“"

> Sum [ -du(%)
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Comments

v

A cTN is the limit of a TN only in d =1

» The connectivity of the graph is unrelated to the dimension

\4

In 2d, lots of nice random curves: Brownian motion, SLE...

v

Provides a natural deformation of conformal field theories

» Of course, very non-explicit so far
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back to cMPS

Operator definition:

|K,R) = (wLPexp{—i/ dx K®1L+iR®aT(x)—iRTa(x)}|wR> |0)
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back to cMPS

Operator definition:

L
|K,R) = (w|P exp {—i/ dx K®1+iR®a'(x)— iRTa(x)} lwg) |0)
0
Path integral representation of cMPS

L

IKJﬁ—/fWE4m“@w%m{—¢jdK@ﬂAJ@R@JQ)—@Uﬂwﬂﬂ}w>
0

with the Euclidean action:

L
Skinetic(¢7 ¢*) - I/ ¢Iax¢x
0

Equivalently:
x Kéx
KRy = [[aut@)e 5 101Ro)

measure se coherent state
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Path integral in d > 2

Path integral definition of cTN

Basic objects:
» n random fields ¢; with Euclidean invariant probability
> a self-adjoint n x n “phase” matrix K
> a generic n X n “coherent amplitude” matrix R

Construction:

L
|K,R) = Ey [exp {:/ d"x«;squsx} |¢*R¢>]
0
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Path integral in d > 2

Path integral definition of cTN

Basic objects:
» n random fields ¢; with Euclidean invariant probability
> a self-adjoint n x n “phase” matrix K
> a generic n X n “coherent amplitude” matrix R

Construction:

L
|K,R) = Ey {exp {:/ ddx¢iK¢x} |¢*R¢>]
0

A cTN is obtained by “mixing” statistical field theories.

» Can be evaluated by Monte-Carlo
> What about CFTs?
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Conclusion

v

For a ¢cTN, we may want finite or infinite bond dimension

v

If finite, 2 “natural” different constructions:

» with random curves
> with random fields

v

Carefully choosing the randomness complements the optimization of the tensor

v

Nothing is done but it seems (at least mathematically) interesting
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