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Why go to continuous TN

I Discrete TNs in d ≥ 2 are hard to contract

I Model QFTs directly
I Why not?
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Matrix product states

Definition of a MPS:

|A〉 =
∑

i1,i2,··· ,in

〈L|Ai1 Ai2 · · ·Ain |R〉 |i1, · · · in〉

=

Operator expectation values:

〈A|O(`1)O(`2)|A〉 =
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Matrix product states

Operator expectation values:

〈A|O(`1)O(`2)|A〉 =

Evolution picture

〈A|O(`1)O(`2)|A〉 = tr
[
ρR Φn1 · ΦO · Φn2 · ΦO · Φn3 ρL

]
A can be seen as prescribing dynamics (or laws) rather than as a state
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From MPS to cMPS

Zooming out

I the bond dimension stays fixed
I the physical dimension explodes C2 ⊗ · · · ⊗C2 −→ F (L2([x , x + dx ])).

=⇒ Spins become fields.

I a cMPS aims at describing in continuous space
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cMPS

Type of ansatz
I Matrices Aik (x) where the index ik corresponds to a†ik (x)|0〉 in physical space.

Informal cMPS definition

A0 = 1+ εQ
A1 = εR

A2 = (εR)2
√

2
· · ·

An = (εR)n
√

n
· · ·

so we go from ∞ to 2 matrices

I Finite particle number

I Non trivial map

I Consistency
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cMPS

Formal cMPS definition

|Q,R〉 = 〈ωL|P exp
{∫ L

0
dx Q ⊗ 1+ R ⊗ a†(x)

}
|ωR〉 |0〉

Idea:

A(x) ' A01+ A1a†(x)

' 1⊗ 1+ εQ ⊗ 1+ εR ⊗ a†(x)

' exp
[
ε
(
Q ⊗ 1+ R ⊗ a†(x)

)]

Equivalent cMPS definition

|K ,R〉 = 〈ωL|P exp
{
−i
∫ L

0
dx K ⊗ 1+ iR ⊗ a†(x)− iR†a(x)

}
|ωR〉 |0〉

with iK = Q + 1
2 R†R.

-

7 / 21



cMPS

Formal cMPS definition

|Q,R〉 = 〈ωL|P exp
{∫ L

0
dx Q ⊗ 1+ R ⊗ a†(x)

}
|ωR〉 |0〉

Idea:

A(x) ' A01+ A1a†(x)

' 1⊗ 1+ εQ ⊗ 1+ εR ⊗ a†(x)

' exp
[
ε
(
Q ⊗ 1+ R ⊗ a†(x)

)]
Equivalent cMPS definition

|K ,R〉 = 〈ωL|P exp
{
−i
∫ L

0
dx K ⊗ 1+ iR ⊗ a†(x)− iR†a(x)

}
|ωR〉 |0〉

with iK = Q + 1
2 R†R.

-

7 / 21



cMPS

Field wave function

|Ψ〉 =
+∞∑
n=0

∫
[0,L]n

dx1 · · · dxn ψn(x1, · · · , xn) a†(x1) · a†(xn) |0〉

Field wave function for the cMPS

ψn(x1, · · · , xn)dx1 · · · dxn = ex1Q R e(x2−x1)Q · · · e(xn−xn−1)Q R e(L−xn)Q ε · ε · · · ε︸ ︷︷ ︸
dx1···dxn
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Tensor networks in 2d
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Zooming out

I The physical dimension becomes infinite
I The bond dimension becomes infinite

Do we need an ansatz with a field theory on the virtual space?
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iMPS

Take Ai (xi ) an operator of a QFT

Naive example: Ψ̂0,1 is a spin 1/2 field, Ai (xi ) = Ψ̂i (xi )

|iMPS〉 =
∑

i1,··· ,in

〈0|Ψ̂i1 (x1) · · · Ψ̂in (xn)|0〉 |i1, · · · , in〉

I wave function of something = correlation function of something else
I typically Ai (xi ) a vertex operator of a CFT
I not dense in field states but analytic
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More traditional/naive continuous TNs

A continuous TN is an object that takes a (discrete) bunch of (discrete) tensors and
spits a field state:

|A,B, · · ·〉 =
∫∑

ψ(x1, · · · , xn) a†(x1) · · · a†(xn) |0〉

−→

I dense in field states
I not too abstract
I maybe not in 1 to 1 with the discrete
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A few options

Get inspiration from cMPS:

1. Extending the “wave function” picture → random curves

2. Extending the P-ordered product → path integral

|K ,R〉 = 〈ωL|P exp
{
−i
∫ L

0
dx K ⊗ 1+ iR ⊗ a†(x)− iR†a(x)

}
|ωR〉 |0〉
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“Wave function” picture

For cMPS:

For cPEPS:

with a†(xi ) and 1 on the physical space
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“Wave function” picture

Take as the ansatz:

→
∑

=⇒ Sum on self-avoiding loops with defects
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“Wave function” picture

Along a line, just a product of matrices ∼ exp(` Q̂)

Along a closed loop without defect, a trace ∼ tr[exp(` Q̂)]

Take Q̂ = iĤ, s.t. tr[exp(` Q̂)] = 1 to
remove the contribution of loops
without defects

Finally, the wave function reads as a sum of:

Each line of length ` represents the
matrix exp[`Q̂]
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Continuum limit and generalization

A few difficulties still:
I Self avoiding loops are not trivial to manage
I Model not manifestly isotropic

Tentative cTN definition
Main objects:

I A self-adjoint matrix H
I A fully symmetric n-tensor T
I A family of random curves C with Euclidean

invariant probability distribution dµ(C )
Construction:

I Propagate a curve until nodes T are hit n times
I Contract the network, with each line e i`H

I Sum
∫

C
· dµ(C )
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Comments

I A cTN is the limit of a TN only in d = 1
I The connectivity of the graph is unrelated to the dimension

I In 2d , lots of nice random curves: Brownian motion, SLE...
I Provides a natural deformation of conformal field theories
I Of course, very non-explicit so far
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back to cMPS

Operator definition:

|K ,R〉 = 〈ωL|P exp
{
−i
∫ L

0
dx K ⊗ 1+ iR ⊗ a†(x)− iR†a(x)

}
|ωR〉 |0〉

Path integral representation of cMPS

|K ,R〉 =
∫
D[φ]e−Skinetic(φ,φ∗) exp

{
−i
∫ L

0
φ†x Kφx 1+ iφ†x Rφx a†(x)− iφ†x R†φx a(x)

}
|0〉

with the Euclidean action:

Skinetic(φ, φ∗) = i
∫ L

0
φ†x∂xφx

Equivalently:

|K ,R〉 =
∫

dµ(φ)
measure

e−i
∫ L

0
φ
†
x Kφx

phase
|φ†Rφ〉

coherent state
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Path integral in d ≥ 2

Path integral definition of cTN
Basic objects:

I n random fields φi with Euclidean invariant probability
I a self-adjoint n × n “phase” matrix K
I a generic n × n “coherent amplitude” matrix R

Construction:

|K ,R〉 = Eφ

[
exp
{
−i
∫ L

0
ddx φ†x Kφx

}
|φ†Rφ〉

]

A cTN is obtained by “mixing” statistical field theories.
I Can be evaluated by Monte-Carlo
I What about CFTs?
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Conclusion

I For a cTN, we may want finite or infinite bond dimension
I If finite, 2 “natural” different constructions:

I with random curves
I with random fields

I Carefully choosing the randomness complements the optimization of the tensor
I Nothing is done but it seems (at least mathematically) interesting
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