

Continuous tensor networks in $d \geq 1$

possible approaches

Antoine Tilloy

Max Planck Institute of Quantum Optics, Garching, Germany

MPQ Theory division workshop, June 1-3 2017

Why go to continuous TN

- ▶ Discrete TNs in $d \geq 2$ are hard to contract

Why go to continuous TN

- ▶ Discrete TNs in $d \geq 2$ are hard to contract
- ▶ Model QFTs **directly**

Why go to continuous TN

- ▶ Discrete TNs in $d \geq 2$ are hard to contract
- ▶ Model QFTs **directly**
- ▶ Why not?

Matrix product states

Definition of a MPS:

$$|A\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1} A_{i_2} \cdots A_{i_n} | R \rangle |i_1, \dots, i_n\rangle$$

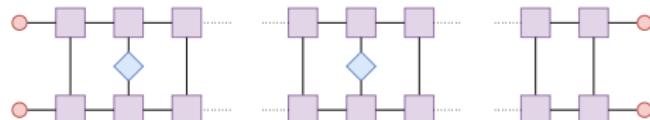
Matrix product states

Definition of a MPS:

$$|A\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1} A_{i_2} \cdots A_{i_n} | R \rangle |i_1, \dots, i_n\rangle$$

Operator expectation values:

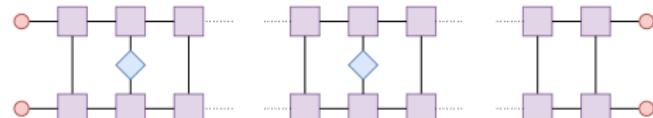
$$\langle A | \mathcal{O}(\ell_1) \mathcal{O}(\ell_2) | A \rangle =$$



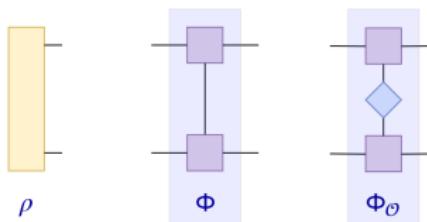
Matrix product states

Operator expectation values:

$$\langle A | \mathcal{O}(\ell_1) \mathcal{O}(\ell_2) | A \rangle =$$



Evolution picture

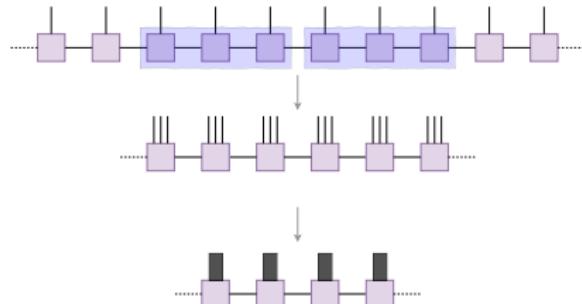


$$\langle A | \mathcal{O}(\ell_1) \mathcal{O}(\ell_2) | A \rangle = \text{tr} \left[\rho_R \Phi^{n_1} \cdot \Phi_{\mathcal{O}} \cdot \Phi^{n_2} \cdot \Phi_{\mathcal{O}} \cdot \Phi^{n_3} \rho_L \right]$$

A can be seen as prescribing **dynamics** (or laws) rather than as a **state**

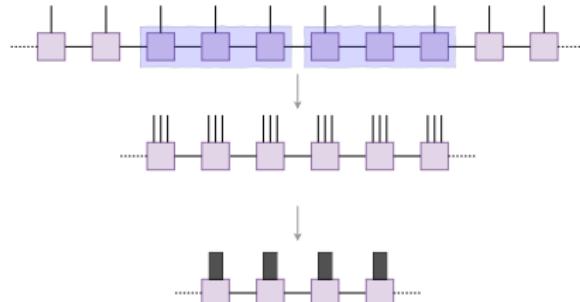
From MPS to cMPS

Zooming out



From MPS to cMPS

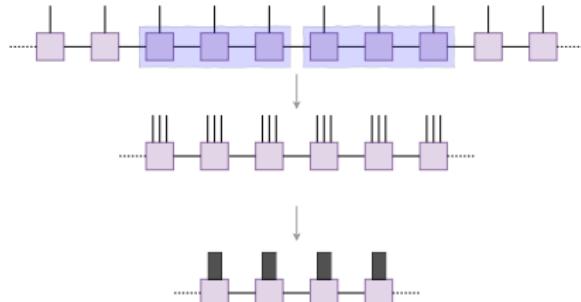
Zooming out



- ▶ the bond dimension stays fixed
- ▶ the physical dimension explodes $\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 \longrightarrow \mathcal{F}(L^2([x, x + dx]))$.

From MPS to cMPS

Zooming out



- ▶ the bond dimension stays fixed
- ▶ the physical dimension explodes $\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 \longrightarrow \mathcal{F}(L^2([x, x + dx]))$.
 \implies **Spins** become **fields**.
- ▶ a cMPS aims at describing in continuous space

cMPS

Type of ansatz

- Matrices $A_{i_k}(x)$ where the index i_k corresponds to $a^{\dagger i_k}(x)|0\rangle$ in physical space.

Informal cMPS definition

$$A_0 = \mathbb{1} + \varepsilon Q$$

$$A_1 = \varepsilon R$$

$$A_2 = \frac{(\varepsilon R)^2}{\sqrt{2}}$$

...

$$A_n = \frac{(\varepsilon R)^n}{\sqrt{n}}$$

...

so we go from ∞ to 2 matrices

cMPS

Type of ansatz

- Matrices $A_{i_k}(x)$ where the index i_k corresponds to $a^{\dagger i_k}(x)|0\rangle$ in physical space.

Informal cMPS definition

$$A_0 = \mathbb{1} + \varepsilon Q$$

$$A_1 = \varepsilon R$$

$$A_2 = \frac{(\varepsilon R)^2}{\sqrt{2}}$$

...

$$A_n = \frac{(\varepsilon R)^n}{\sqrt{n}}$$

...

so we go from ∞ to 2 matrices

- Finite particle number

$$\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ \square & \square & \square & \square & \square & \square \end{matrix} \propto 1$$

$$\begin{matrix} 0 & 1 & 0 & 0 & 0 & 0 \\ \square & \square & \square & \square & \square & \square \end{matrix} \propto \varepsilon$$

cMPS

Type of ansatz

- Matrices $A_{i_k}(x)$ where the index i_k corresponds to $a^{\dagger i_k}(x)|0\rangle$ in physical space.

Informal cMPS definition

$$A_0 = \mathbb{1} + \varepsilon Q$$

$$A_1 = \varepsilon R$$

$$A_2 = \frac{(\varepsilon R)^2}{\sqrt{2}}$$

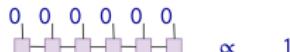
...

$$A_n = \frac{(\varepsilon R)^n}{\sqrt{n}}$$

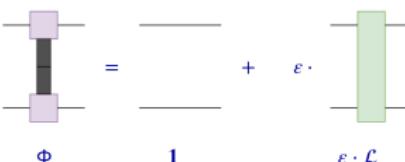
...

so we go from ∞ to 2 matrices

- Finite particle number



- Non trivial map



cMPS

Type of ansatz

- Matrices $A_{i_k}(x)$ where the index i_k corresponds to $a^{\dagger i_k}(x)|0\rangle$ in physical space.

Informal cMPS definition

$$A_0 = \mathbb{1} + \varepsilon Q$$

$$A_1 = \varepsilon R$$

$$A_2 = \frac{(\varepsilon R)^2}{\sqrt{2}}$$

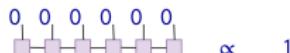
...

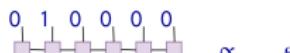
$$A_n = \frac{(\varepsilon R)^n}{\sqrt{n}}$$

...

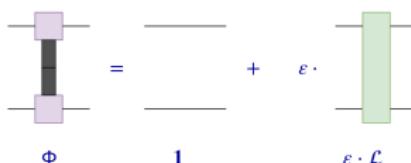
so we go from ∞ to 2 matrices

- Finite particle number


$$0 \ 0 \ 0 \ 0 \ 0 \ 0 \propto 1$$


$$0 \ 1 \ 0 \ 0 \ 0 \ 0 \propto \varepsilon$$

- Non trivial map


$$\Phi = \mathbb{1} + \varepsilon \cdot \mathcal{L}$$

- Consistency

$$1 \ 1 \simeq 2 \ 0$$

cMPS

Formal cMPS definition

$$|Q, R\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q \otimes \mathbb{1} + R \otimes a^\dagger(x) \right\} | \omega_R \rangle |0\rangle$$

Idea:

$$\begin{aligned} A(x) &\simeq A_0 \mathbb{1} + A_1 a^\dagger(x) \\ &\simeq \mathbb{1} \otimes \mathbb{1} + \varepsilon Q \otimes \mathbb{1} + \varepsilon R \otimes a^\dagger(x) \\ &\simeq \exp \left[\varepsilon \left(Q \otimes \mathbb{1} + R \otimes a^\dagger(x) \right) \right] \end{aligned}$$

cMPS

Formal cMPS definition

$$|Q, R\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q \otimes \mathbb{1} + R \otimes a^\dagger(x) \right\} | \omega_R \rangle |0\rangle$$

Idea:

$$\begin{aligned} A(x) &\simeq A_0 \mathbb{1} + A_1 a^\dagger(x) \\ &\simeq \mathbb{1} \otimes \mathbb{1} + \varepsilon Q \otimes \mathbb{1} + \varepsilon R \otimes a^\dagger(x) \\ &\simeq \exp [\varepsilon (Q \otimes \mathbb{1} + R \otimes a^\dagger(x))] \end{aligned}$$

Equivalent cMPS definition

$$|K, R\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ -i \int_0^L dx \ K \otimes \mathbb{1} + iR \otimes a^\dagger(x) - iR^\dagger a(x) \right\} | \omega_R \rangle |0\rangle$$

with $iK = Q + \frac{1}{2}R^\dagger R$.

Field wave function

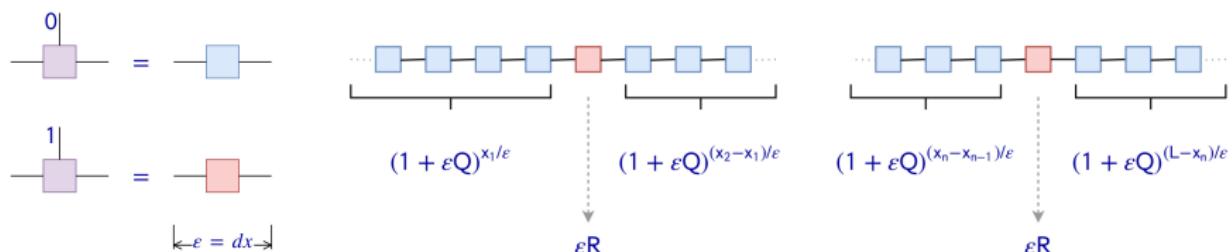
$$|\Psi\rangle = \sum_{n=0}^{+\infty} \int_{[0, L]^n} dx_1 \cdots dx_n \psi_n(x_1, \dots, x_n) a^\dagger(x_1) \cdots a^\dagger(x_n) |0\rangle$$

cMPS

Field wave function

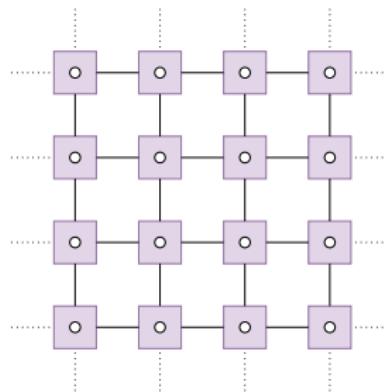
$$|\Psi\rangle = \sum_{n=0}^{+\infty} \int_{[0,L]^n} dx_1 \cdots dx_n \psi_n(x_1, \dots, x_n) a^\dagger(x_1) \cdot a^\dagger(x_n) |0\rangle$$

Field wave function for the cMPS

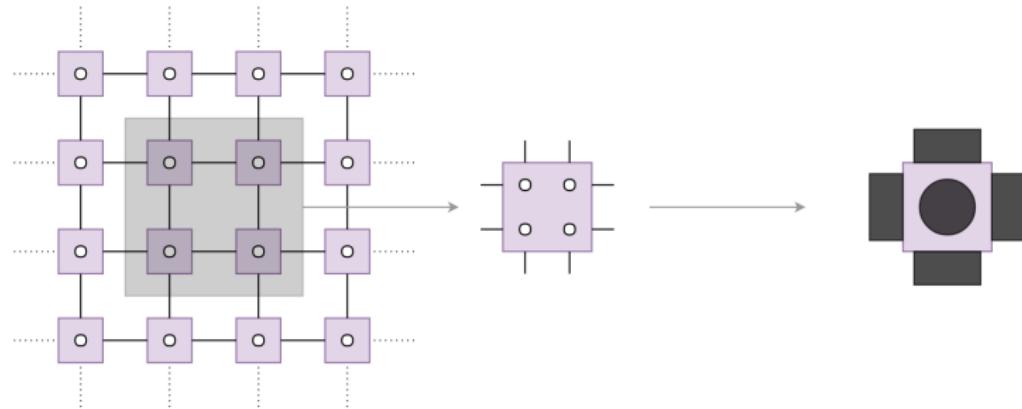


$$\psi_n(x_1, \dots, x_n) dx_1 \cdots dx_n = e^{x_1 Q} \textcolor{red}{R} e^{(x_2 - x_1) Q} \cdots e^{(x_n - x_{n-1}) Q} \textcolor{red}{R} e^{(L - x_n) Q} \underbrace{\varepsilon \cdot \varepsilon \cdots \varepsilon}_{dx_1 \cdots dx_n}$$

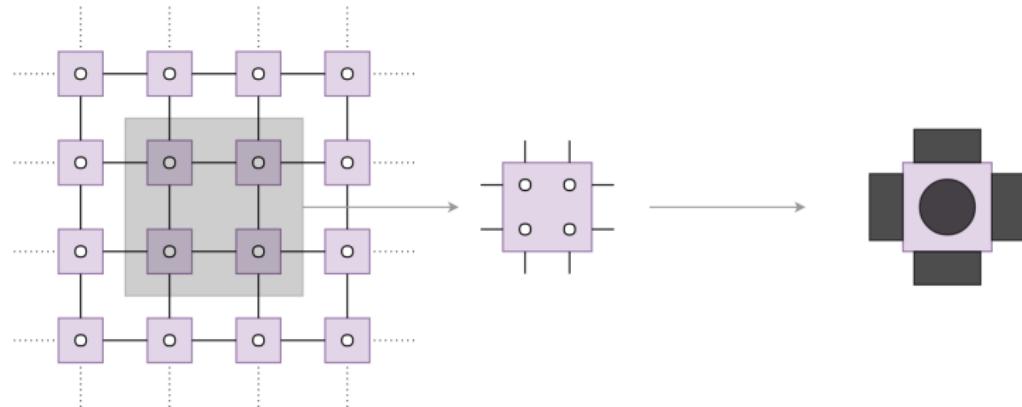
Tensor networks in 2d



Zooming out



Zooming out



- ▶ The physical dimension becomes infinite
- ▶ **The bond dimension becomes infinite**

Do we need an ansatz with a field theory on the virtual space?

iMPS

Take $A_i(x_i)$ an operator of a QFT

Naive example: $\hat{\Psi}_{0,1}$ is a spin $1/2$ field, $A_i(x_i) = \hat{\Psi}_i(x_i)$

$$|iMPS\rangle = \sum_{i_1, \dots, i_n} \langle 0 | \hat{\Psi}_{i_1}(x_1) \dots \hat{\Psi}_{i_n}(x_n) | 0 \rangle |i_1, \dots, i_n\rangle$$

iMPS

Take $A_i(x_i)$ an operator of a QFT

Naive example: $\hat{\Psi}_{0,1}$ is a spin 1/2 field, $A_i(x_i) = \hat{\Psi}_i(x_i)$

$$|iMPS\rangle = \sum_{i_1, \dots, i_n} \langle 0 | \hat{\Psi}_{i_1}(x_1) \dots \hat{\Psi}_{i_n}(x_n) | 0 \rangle |i_1, \dots, i_n\rangle$$

- ▶ wave function of something = correlation function of something else
- ▶ typically $A_i(x_i)$ a vertex operator of a CFT
- ▶ not dense in field states but analytic

More traditional/naive continuous TNs

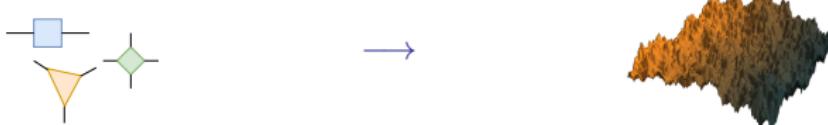
A **continuous TN** is an object that takes a (discrete) bunch of (discrete) tensors and spits a field state:

$$|A, B, \dots \rangle = \sum \psi(x_1, \dots, x_n) a^\dagger(x_1) \dots a^\dagger(x_n) |0\rangle$$

More traditional/naive continuous TNs

A **continuous TN** is an object that takes a (discrete) bunch of (discrete) tensors and spits a field state:

$$|A, B, \dots\rangle = \sum \psi(x_1, \dots, x_n) a^\dagger(x_1) \dots a^\dagger(x_n) |0\rangle$$

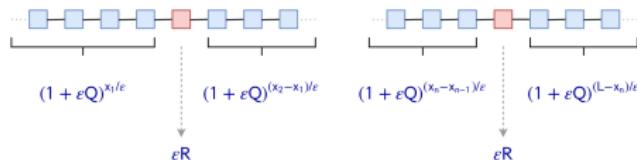


- ▶ **dense** in field states
- ▶ not **too** abstract
- ▶ maybe not in **1 to 1** with the discrete

A few options

Get inspiration from **cMPS**:

1. Extending the “wave function” picture \rightarrow **random curves**



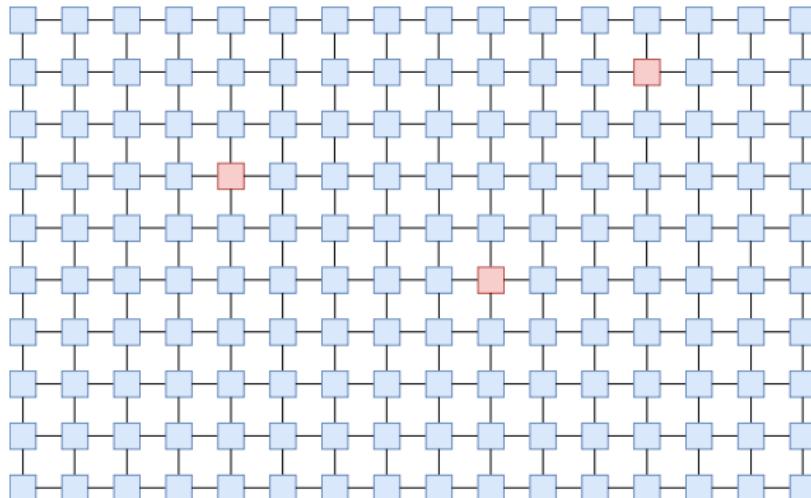
2. Extending the \mathcal{P} -ordered product \rightarrow **path integral**

$$|K, R\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ -i \int_0^L dx \ K \otimes \mathbb{1} + iR \otimes a^\dagger(x) - iR^\dagger a(x) \right\} | \omega_R \rangle | 0 \rangle$$

“Wave function” picture

For cMPS:

For cPEPS:

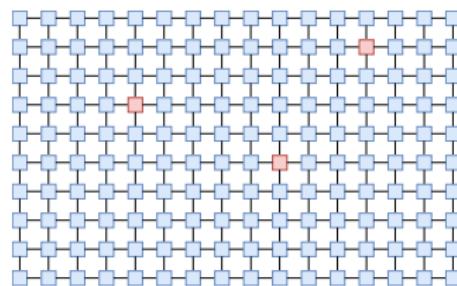


with $a^\dagger(x_i)$ and $\mathbb{1}$ on the physical space

“Wave function” picture

Take as the **ansatz**:

$$\text{---} \square \text{---} = \text{---} \circlearrowleft \text{---} + \text{---} \circlearrowright \text{---}$$



$$\rightarrow \sum \text{---} \circlearrowleft \text{---} \circlearrowright \text{---} \circlearrowleft \text{---} \circlearrowright \text{---}$$

⇒ Sum on self-avoiding loops with defects

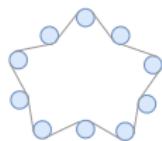
“Wave function” picture

Along a line, just a product of matrices $\sim \exp(\ell \hat{Q})$

“Wave function” picture

Along a line, just a product of matrices $\sim \exp(\ell \hat{Q})$

Along a closed loop without defect, a trace $\sim \text{tr}[\exp(\ell \hat{Q})]$

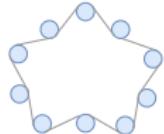


Take $\hat{Q} = i\hat{H}$, s.t. $\text{tr}[\exp(\ell \hat{Q})] = 1$ to remove the contribution of loops without defects

“Wave function” picture

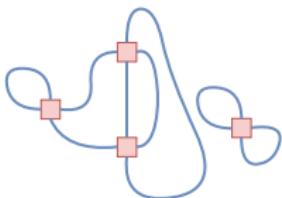
Along a line, just a product of matrices $\sim \exp(\ell \hat{Q})$

Along a closed loop without defect, a trace $\sim \text{tr}[\exp(\ell \hat{Q})]$



Take $\hat{Q} = i\hat{H}$, s.t. $\text{tr}[\exp(\ell \hat{Q})] = 1$ to remove the contribution of loops without defects

Finally, the **wave function** reads as a sum of:



Each line of length ℓ represents the matrix $\exp[\ell \hat{Q}]$

Continuum limit and generalization

A few difficulties still:

- ▶ Self avoiding loops are not trivial to manage
- ▶ Model not manifestly isotropic

Continuum limit and generalization

A few difficulties still:

- ▶ Self avoiding loops are not trivial to manage
- ▶ Model not manifestly isotropic

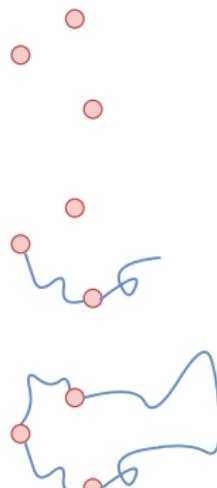
Tentative cTN definition

Main objects:

- ▶ A self-adjoint matrix H
- ▶ A fully symmetric n -tensor T
- ▶ A family of random curves \mathcal{C} with Euclidean invariant probability distribution $d\mu(\mathcal{C})$

Construction:

- ▶ Propagate a curve until nodes T are hit n times
- ▶ Contract the network, with each line $e^{i\ell H}$
- ▶ Sum $\int_{\mathcal{C}} \cdot d\mu(\mathcal{C})$



Comments

- ▶ A cTN is the limit of a TN only in $d = 1$
- ▶ The connectivity of the graph is unrelated to the dimension

- ▶ In $2d$, lots of nice random curves: Brownian motion, SLE...
- ▶ Provides a natural deformation of conformal field theories
- ▶ Of course, very non-explicit so far

back to cMPS

Operator definition:

$$|K, R\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ -i \int_0^L dx \ K \otimes \mathbb{1} + iR \otimes a^\dagger(x) - iR^\dagger a(x) \right\} | \omega_R \rangle |0\rangle$$

back to cMPS

Operator definition:

$$|K, R\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ -i \int_0^L dx \, K \otimes \mathbb{1} + i R \otimes a^\dagger(x) - i R^\dagger a(x) \right\} | \omega_R \rangle |0\rangle$$

Path integral representation of cMPS

$$|K, R\rangle = \int \mathcal{D}[\phi] e^{-S_{\text{kinetic}}(\phi, \phi^*)} \exp \left\{ -i \int_0^L \phi_x^\dagger K \phi_x \mathbb{1} + i \phi_x^\dagger R \phi_x a^\dagger(x) - i \phi_x^\dagger R^\dagger \phi_x a(x) \right\} |0\rangle$$

with the Euclidean action:

$$S_{\text{kinetic}}(\phi, \phi^*) = i \int_0^L \phi_x^\dagger \partial_x \phi_x$$

Equivalently:

$$|K, R\rangle = \int \underset{\text{measure}}{d\mu(\phi)} \underset{\text{phase}}{e^{-i \int_0^L \phi_x^\dagger K \phi_x}} \underset{\text{coherent state}}{|\phi^\dagger R \phi\rangle}$$

Path integral in $d \geq 2$

Path integral definition of cTN

Basic objects:

- n random fields ϕ_i with Euclidean invariant probability
- a self-adjoint $n \times n$ “phase” matrix K
- a generic $n \times n$ “coherent amplitude” matrix R

Construction:

$$|K, R\rangle = \mathbb{E}_\phi \left[\exp \left\{ -i \int_0^L d^d x \phi_x^\dagger K \phi_x \right\} |\phi^\dagger R \phi\rangle \right]$$

Path integral in $d \geq 2$

Path integral definition of cTN

Basic objects:

- ▶ n random fields ϕ_i with Euclidean invariant probability
- ▶ a self-adjoint $n \times n$ “phase” matrix K
- ▶ a generic $n \times n$ “coherent amplitude” matrix R

Construction:

$$|K, R\rangle = \mathbb{E}_\phi \left[\exp \left\{ -i \int_0^L d^d x \phi_x^\dagger K \phi_x \right\} |\phi^\dagger R \phi\rangle \right]$$

A cTN is obtained by “mixing” **statistical field theories**.

- ▶ Can be evaluated by Monte-Carlo
- ▶ What about CFTs?

Conclusion

- ▶ For a cTN, we may want **finite** or **infinite** bond dimension
- ▶ If finite, 2 “natural” **different** constructions:
 - ▶ with random curves
 - ▶ with random fields
- ▶ Carefully choosing the randomness complements the optimization of the tensor
- ▶ Nothing is done but it seems (at least mathematically) interesting