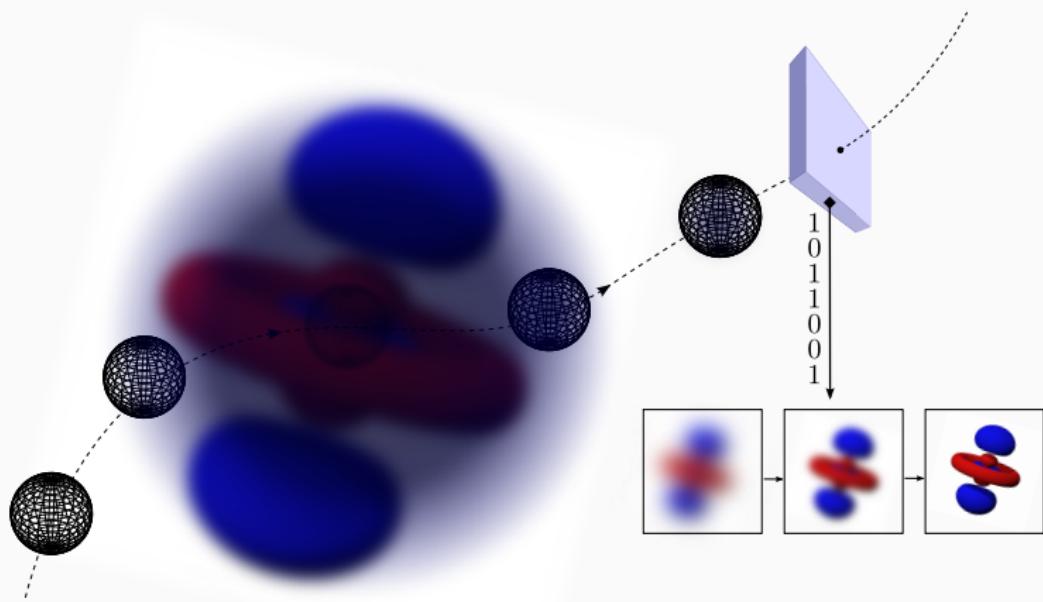


UNDERSTANDING JUMPS AND SPIKES IN CONTINUOUS QUANTUM TRAJECTORIES

Antoine Tilloy, with Denis Bernard and Michel Bauer
Laboratoire de Physique théorique, École Normale Supérieure Paris

MPQ theory seminar, February 2016

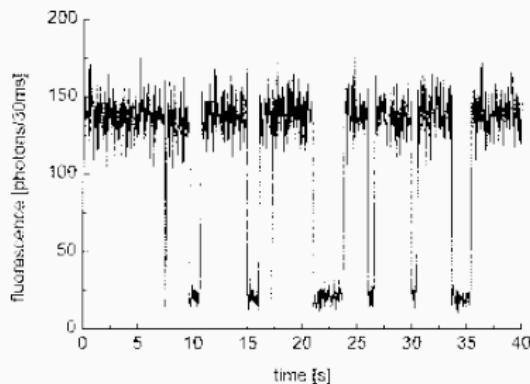
ABOUT



ABOUT

Work done with **Denis Bernard** and **Michel Bauer**.

The objective is to understand the emergence of quantum jumps from a finer study of continuous measurements. See quantum jumps as the limit of some more detailed evolution. Possibly discover new phenomena.

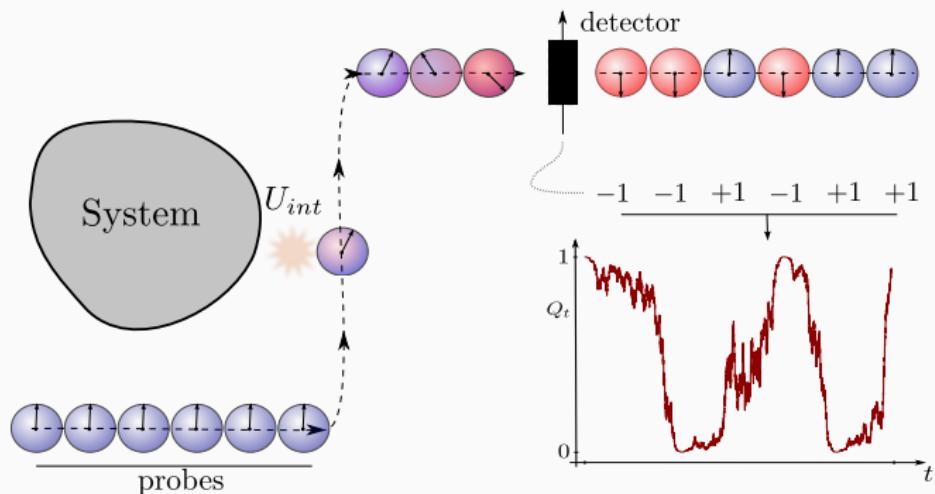


OUTLINE

1. Continuous measurements
2. Jumps
3. Spikes

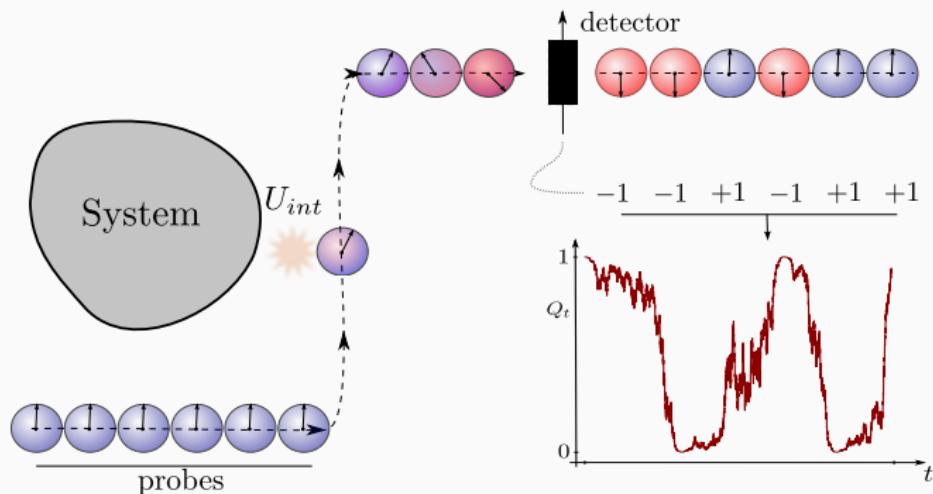
REPEATED INTERACTIONS

How do you make a continuous measurement?



REPEATED INTERACTIONS

How do you make a continuous measurement?

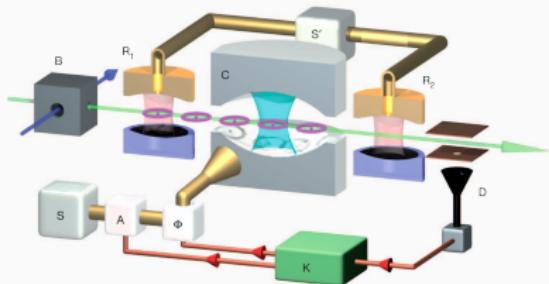
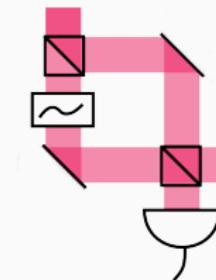


There are other ways of deriving the same results: weak coupling with infinite bosonic bath + unravelling, quantum noises, modified path integrals...

REPEATED INTERACTIONS

Ideal situations of application

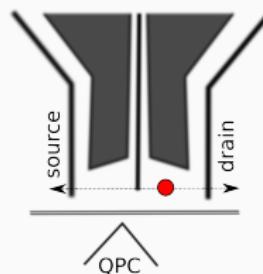
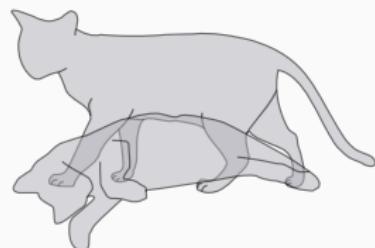
- Discrete situations “a la Haroche”, with **actual** repeated interactions
- “True” continuous measurement settings (homodyne detection in quantum optics)



REPEATED INTERACTIONS

Other applications

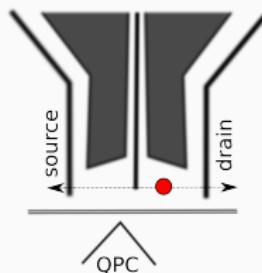
- Any progressive measurement (e.g. quantum point contacts)
- Dynamical reduction models in foundations* (not today)



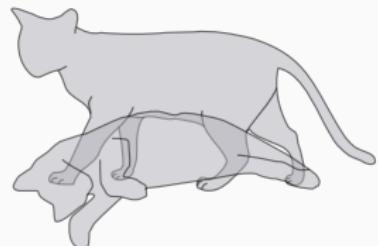
REPEATED INTERACTIONS

Other applications

- Any progressive measurement (e.g. quantum point contacts)



- Dynamical reduction models in foundations* (not today)



* actually they can always be formally written as the continuous measurement of something

MODEL

System Hilbert space \mathcal{H}_s , “probe” Hilbert space $\mathcal{H}_p = \mathbb{C}^2$. The full density matrix is initially in a product state: $\rho = \rho_s \otimes |+\rangle\langle +|$

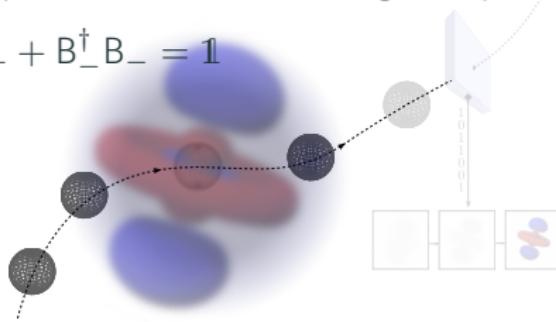
One weak measurement consists in:

1– Unitary evolution entangling the system and the **probe**:

$$\rho \rightarrow B_+ \rho_s B_+^\dagger \otimes |+\rangle\langle +| + B_- \rho_s B_-^\dagger \otimes |-\rangle\langle -|$$

~ to taking a picture of the particle but not looking at it yet.

Unitarity only implies: $B_+^\dagger B_+ + B_-^\dagger B_- = 1$

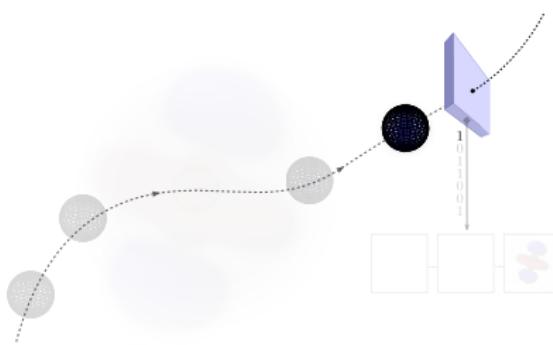


MODEL

2– Measurement of the probe

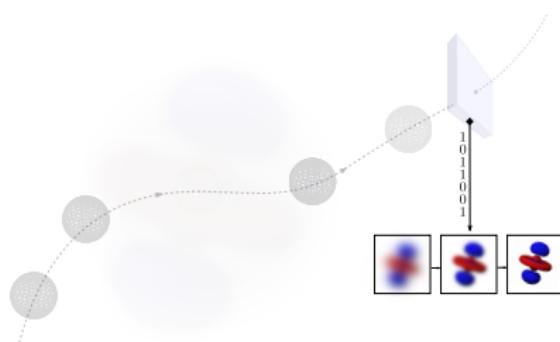
$$\rho \rightarrow \frac{B_{\pm} \rho_s B_{\pm}^{\dagger} \otimes |\pm\rangle \langle \pm|}{\text{tr}(B_{\pm} \rho_s B_{\pm}^{\dagger})} \text{ and result } \pm 1$$

~ to reading the picture and updating the probability



MODEL

3- Forgetting about the probe and taking a **new** one $|+\rangle\langle+|$ for the next iteration



CONTINUOUS LIMIT

Scaling

Develop B_+ and B_- in the vicinity of $\mathbb{1}/\sqrt{2}$ with the constraint:

$$B_+^\dagger B_+ + B_-^\dagger B_- = \mathbb{1}$$

Particular solution

$$B_\pm = \frac{1}{\sqrt{2}} \left[1 \pm \sqrt{\epsilon} N - \frac{\epsilon}{2} N^\dagger N + \mathcal{O}(\epsilon^{3/2}) \right]$$

where N is just any matrix.

Next steps

- Compute $d\rho(t) = \rho(t + dt) - \rho(t)$ with $dt = \epsilon$ explicitly (expand everything up to order dt).
- Separate the random part coming from the measurement in [average] + [noise with zero average] (Doob martingale decomposition)
- Notice that [noise with zero average] becomes white noise in the continuous limit

WHAT YOU GET

New equation:

$$d\rho_t = \mathcal{L}(\rho_t) dt + \gamma \mathcal{D}[N](\rho_t) dt + \sqrt{\gamma} \mathcal{H}[N](\rho_t) dW_t \quad (1)$$

WHAT YOU GET

New equation:

$$d\rho_t = \mathcal{L}(\rho_t) dt + \gamma \mathcal{D}[N](\rho_t) dt + \sqrt{\gamma} \mathcal{H}[N](\rho_t) dW_t \quad (1)$$

- $\mathcal{L}(\rho_t)$ your favorite **evolution** in the absence of measurement:

“unitary”

$$\mathcal{L}(\rho) = -i[H, \rho]$$

“thermal”

$$\mathcal{L}(\rho) = \Gamma_{\uparrow} \left(\sigma_{+} \rho \sigma_{-} - \frac{1}{2} \{ \sigma_{-} \sigma_{+}, \rho \} \right) + \Gamma_{\downarrow} \left(\sigma_{-} \rho \sigma_{+} - \frac{1}{2} \{ \sigma_{+} \sigma_{-}, \rho \} \right)$$

WHAT YOU GET

New equation:

$$d\rho_t = \mathcal{L}(\rho_t) dt + \gamma \mathcal{D}[N](\rho_t) dt + \sqrt{\gamma} \mathcal{H}[N](\rho_t) dW_t \quad (1)$$

- $\mathcal{L}(\rho_t)$ your favorite **evolution** in the absence of measurement:

“unitary”

$$\mathcal{L}(\rho) = -i[H, \rho]$$

“thermal”

$$\mathcal{L}(\rho) = \Gamma_{\uparrow} \left(\sigma_{+} \rho \sigma_{-} - \frac{1}{2} \{ \sigma_{-} \sigma_{+}, \rho \} \right) + \Gamma_{\downarrow} \left(\sigma_{-} \rho \sigma_{+} - \frac{1}{2} \{ \sigma_{+} \sigma_{-}, \rho \} \right)$$

- $\mathcal{D}[N](\rho_t)$ the **dissipation** induced by measurement:

$$\mathcal{D}[N](\rho) = N \rho N^{\dagger} - \frac{1}{2} \{ N^{\dagger} N, \rho \}$$

WHAT YOU GET

New equation:

$$d\rho_t = \mathcal{L}(\rho_t) dt + \gamma \mathcal{D}[N](\rho_t) dt + \sqrt{\gamma} \mathcal{H}[N](\rho_t) dW_t \quad (1)$$

- $\mathcal{L}(\rho_t)$ your favorite **evolution** in the absence of measurement:

“unitary”

$$\mathcal{L}(\rho) = -i[H, \rho]$$

“thermal”

$$\mathcal{L}(\rho) = \Gamma_{\uparrow} \left(\sigma_{+} \rho \sigma_{-} - \frac{1}{2} \{ \sigma_{-} \sigma_{+}, \rho \} \right) + \Gamma_{\downarrow} \left(\sigma_{-} \rho \sigma_{+} - \frac{1}{2} \{ \sigma_{+} \sigma_{-}, \rho \} \right)$$

- $\mathcal{D}[N](\rho_t)$ the **dissipation** induced by measurement:

$$\mathcal{D}[N](\rho) = N \rho N^{\dagger} - \frac{1}{2} \{ N^{\dagger} N, \rho \}$$

- $\mathcal{H}[N](\rho_t)$ the stochastic **innovation** given by measurement

$$\mathcal{H}[N](\rho) = N \rho + \rho N^{\dagger} - \text{tr}[(N + N^{\dagger}) \rho] \rho$$

This is not new

This kind of equations is known since the late eighties:

- in mathematical physics – Barchielli '82, Belavkin '89
- foundations – Diosi '88, Pearle, Gisin
- in quantum optics + feedback – Milburn & Wiseman '94

Summary of continuous measurements

- It is possible to talk about “continuous measurements” without contradiction with the **Zeno effect**.

Summary of continuous measurements

- It is possible to talk about “continuous measurements” without contradiction with the **Zeno effect**.
- It is possible to talk about the strength/intensity/rate of a measurement.

Summary of continuous measurements

- It is possible to talk about “continuous measurements” without contradiction with the **Zeno effect**.
- It is possible to talk about the strength/intensity/rate of a measurement.
- Continuous measurements can model an actual measurement situation or some elusive fundamental dynamical collapse.

Summary of continuous measurements

- It is possible to talk about “continuous measurements” without contradiction with the **Zeno effect**.
- It is possible to talk about the strength/intensity/rate of a measurement.
- Continuous measurements can model an actual measurement situation or some elusive fundamental dynamical collapse.
- Gives you new equations (like Schrödinger or Lindblad) to play with.

FUNDAMENTAL QUESTION

What happens when measurement dominates the evolution ?

[typically when $\gamma \gg \Gamma_{\uparrow/\downarrow}$]

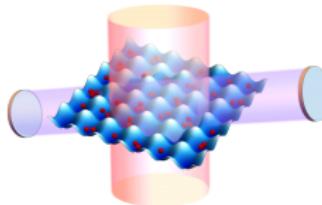
FUNDAMENTAL QUESTION

What happens when measurement dominates the evolution ?

[typically when $\gamma \gg \Gamma_{\uparrow/\downarrow}$]

Question which has recently attracted some interest:

- Quasi-Zeno dynamics in condensed matter –Elliott & Vedral [1601.06624](#),
Kozlowski et al. [1510.04857](#)–



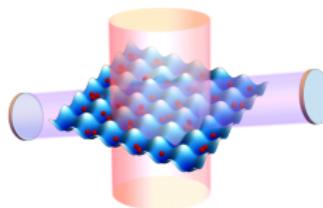
FUNDAMENTAL QUESTION

What happens when measurement dominates the evolution ?

[typically when $\gamma \gg \Gamma_{\uparrow/\downarrow}$]

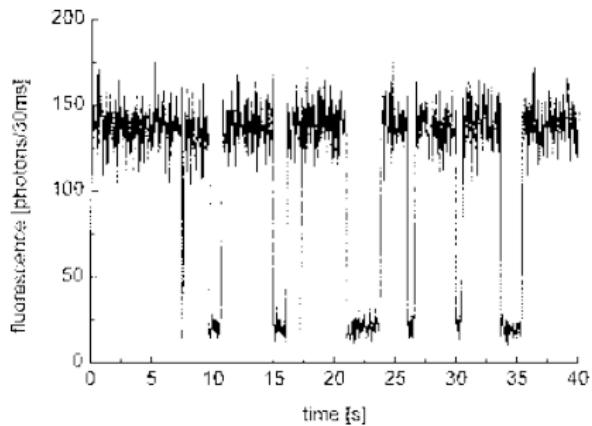
Question which has recently attracted some interest:

- Quasi-Zeno dynamics in condensed matter –Elliott & Vedral [1601.06624](#),
Kozlowski et al. [1510.04857](#)–



- Analysis of quantum jumps in simple situations with least action principle –Jordan & co, Sidiqqi & co [1305.5201](#), [1403.4992](#)–

We imagine that the system state will collapse on measurement eigenvectors and possibly jump between them

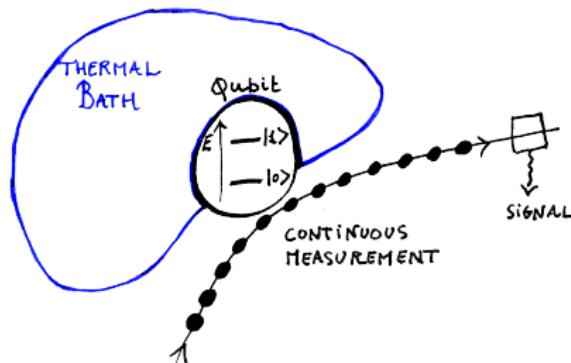


EXAMPLE

Coupling to a bath + energy measurement

$$\rightarrow \mathcal{L}(\rho) = \Gamma_{\uparrow} \left(\sigma_{+} \rho \sigma_{-} - \frac{1}{2} \{ \sigma_{-} \sigma_{+}, \rho \} \right) + \Gamma_{\downarrow} \left(\sigma_{-} \rho \sigma_{+} - \frac{1}{2} \{ \sigma_{+} \sigma_{-}, \rho \} \right)$$

$$\rightarrow N = \sigma_z$$



What follows is generic and can be obtained for $\mathcal{L}(\rho) = -i[H, \rho]$, i.e. for a fully coherent evolution preserving **pure states**.

EXAMPLE

Equation after simplifications

Let us write $Q_t = \langle 0 | \rho_t | 0 \rangle$. The equation $d\rho_t = \dots$ gives :

$$dQ_t = [-\Gamma_{\uparrow}Q_t + \Gamma_{\downarrow}(1 - Q_t)]dt + \sqrt{\gamma}Q_t(1 - Q_t)dW_t$$

thermal bath mesurement

EXAMPLE

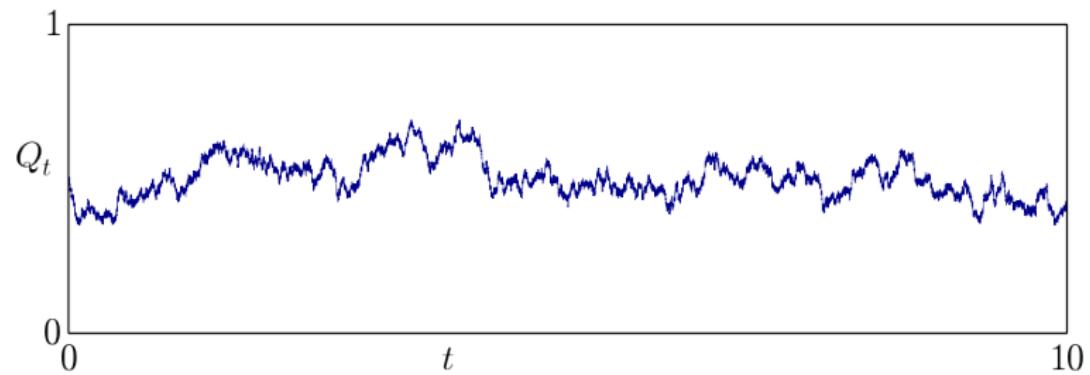
Equation after simplifications

Let us write $Q_t = \langle 0 | \rho_t | 0 \rangle$. The equation $d\rho_t = \dots$ gives :

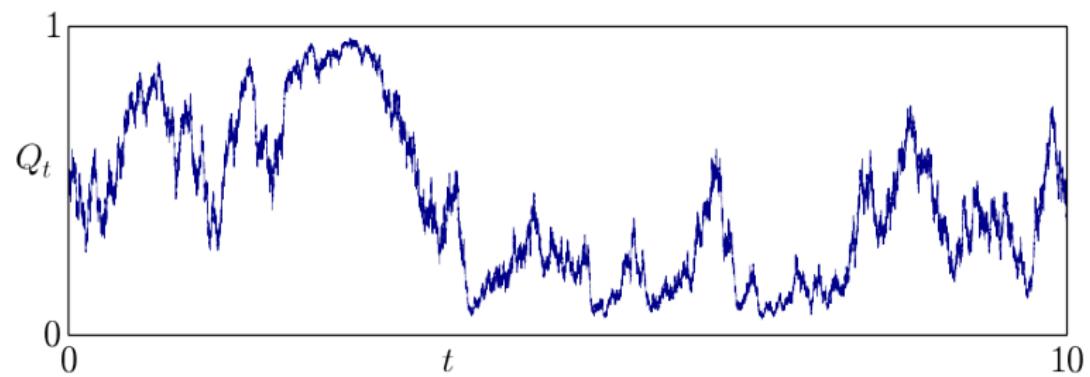
$$dQ_t = [-\Gamma_{\uparrow}Q_t + \Gamma_{\downarrow}(1 - Q_t)]dt + \sqrt{\gamma}Q_t(1 - Q_t)dW_t$$

For simulations I fix $\Gamma_\uparrow = \Gamma_\downarrow = 1$, that is $T = +\infty$ but the results are generic. In the absence of measurements $Q \rightarrow 1/2$.

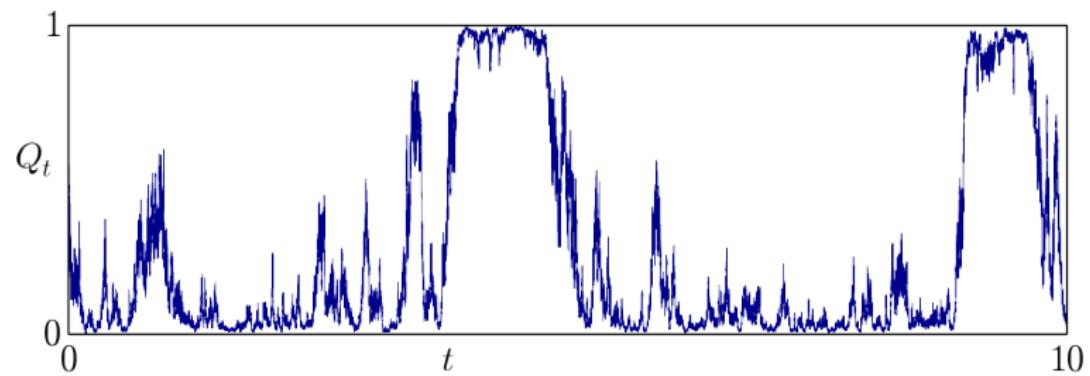
NUMERIC



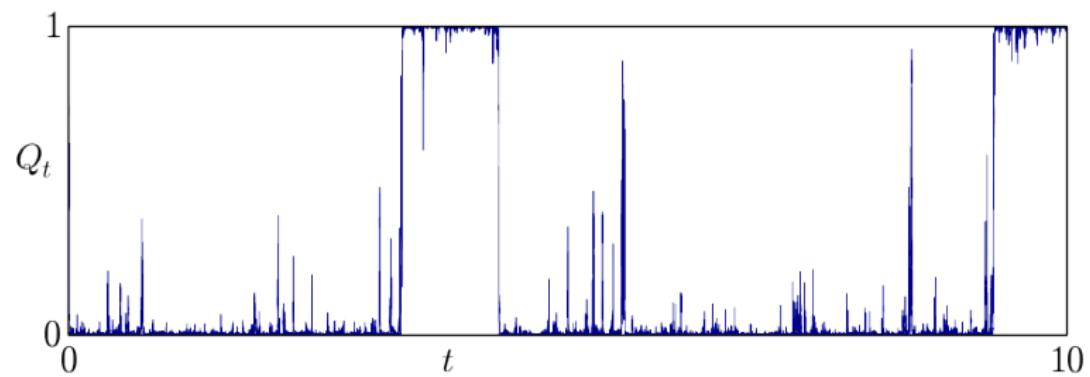
$$\gamma = 0.1$$



$$\gamma = 1.0$$



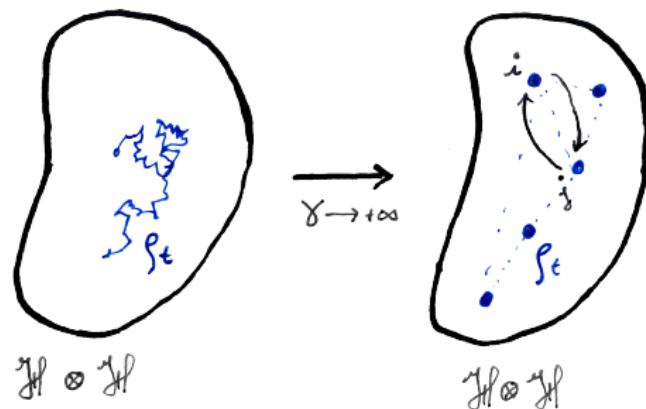
$$\gamma = 10$$



$$\gamma = +\infty$$

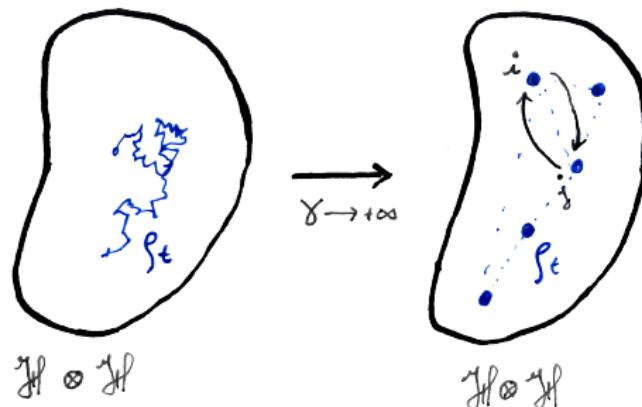
“JUMP THEOREM”

Qualitatively



“JUMP THEOREM”

Qualitatively



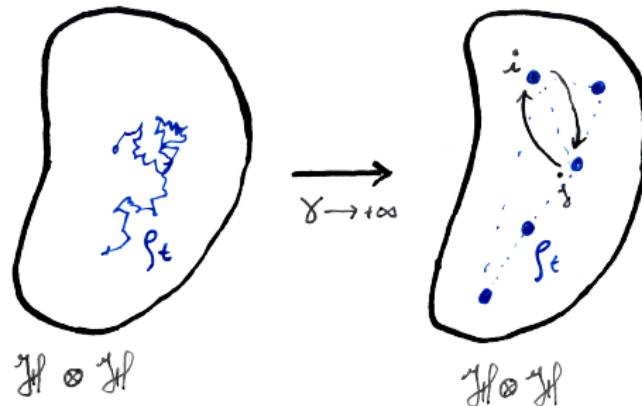
Quantitatively

$$m_{i \rightarrow j} \propto \frac{[\text{coeffs. of } H]^2}{\gamma [\text{coeffs. of } N]^2} + [\text{Coeffs. dissipative part of evol.}]_{\text{no Zeno}}$$

Zeno-renormalized

“JUMP THEOREM”

Qualitatively



Quantitatively

$$m_{i \rightarrow j} \propto \frac{[\text{coeffs. of } H]^2}{\gamma [\text{coeffs. of } N]^2} + [\text{Coeffs. dissipative part of evol.}]_{\text{no Zeno}} \\ \text{Zeno-renormalized}$$

Notably, the **eigenvalues** of the measured operator matter!

Crude idea of the proof

Not completely standard because strong noise limit \rightarrow “perturb” around the pure measurement situation

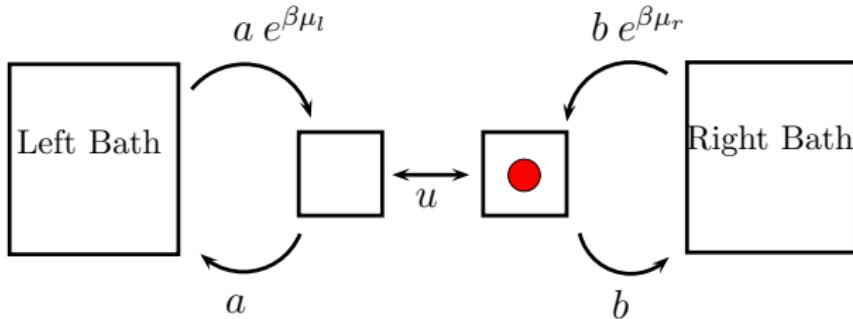
- Consider the probability kernel $K_t(\rho_0, d\rho)$ to go from a given density matrix ρ_0 to another density matrix ρ , up to $d\rho$, after a time t .
- Write its Kolmogorov equation $\partial_t K = K \mathfrak{D}$ where \mathfrak{D} can be expanded in:

$$\mathfrak{D} = \gamma \mathfrak{D}_2 + \mathfrak{D}_0$$

- Compute the eigenvectors of \mathfrak{D}_2 (invariant measures) and perturbatively expand $K_t = e^{t\gamma \mathfrak{D}_2 + t\mathfrak{D}_0}$

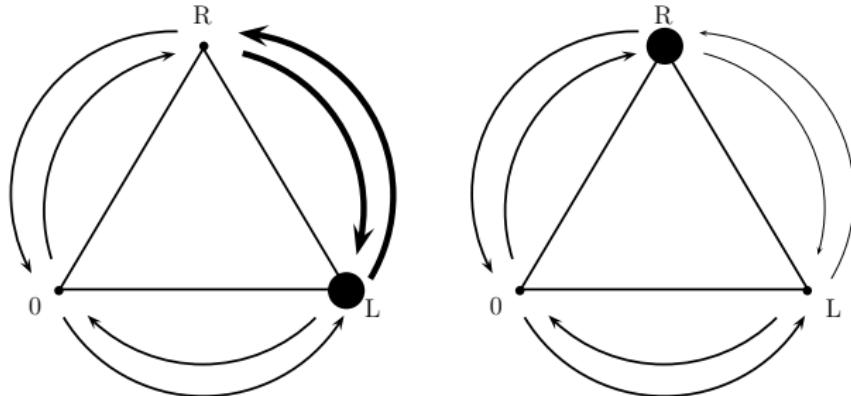
Control

Exploit the different behavior of unitary quantum jumps and thermal quantum jumps with respect to the Zeno effect to control systems



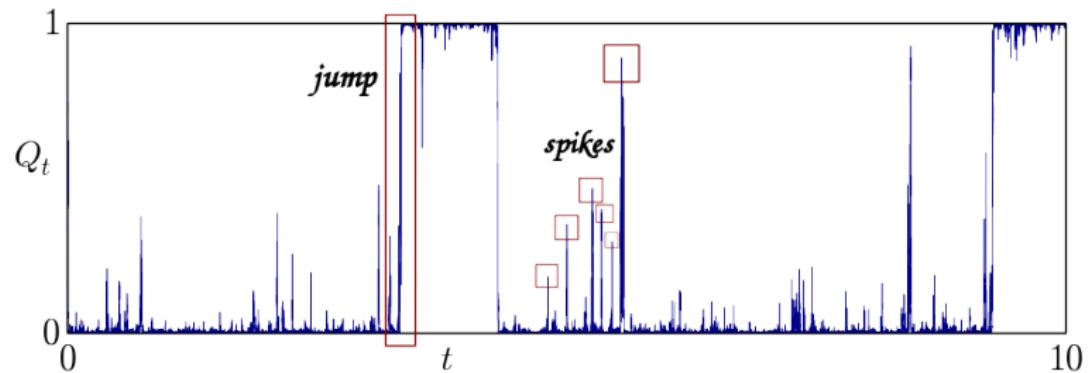
3 states : $|L\rangle$, $|R\rangle$, $|0\rangle$. Unitary coupling (tunneling) between L and R, dissipative between 0 and L and 0 and R.

Control



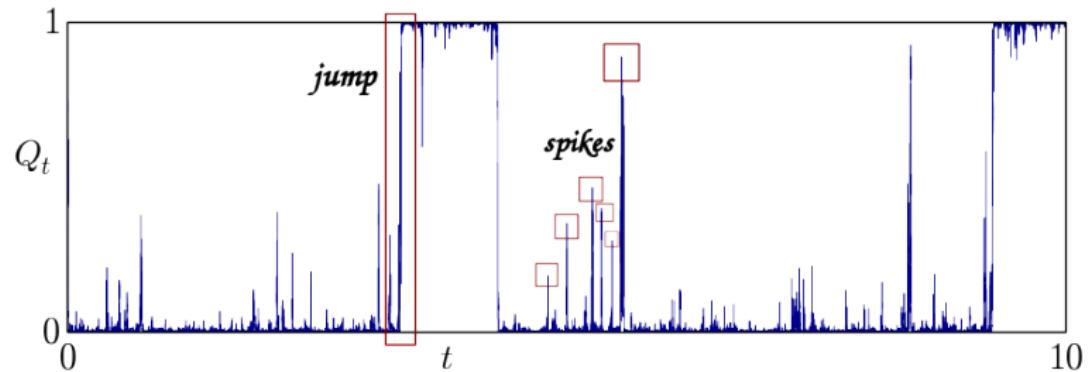
Maxwell Daemon using only the measurement strength!

GO BACK TO THE NUMERICS



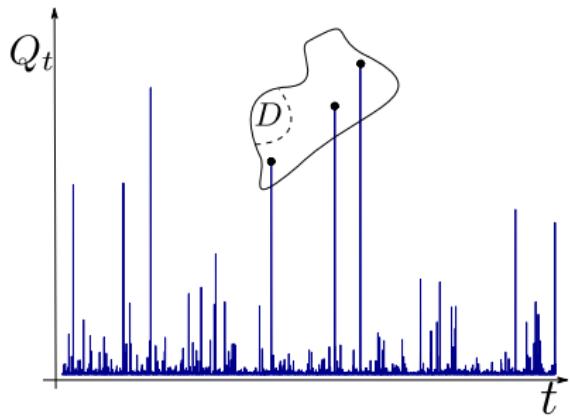
$$\gamma = +\infty$$

GO BACK TO THE NUMERICS



$$\gamma = +\infty$$

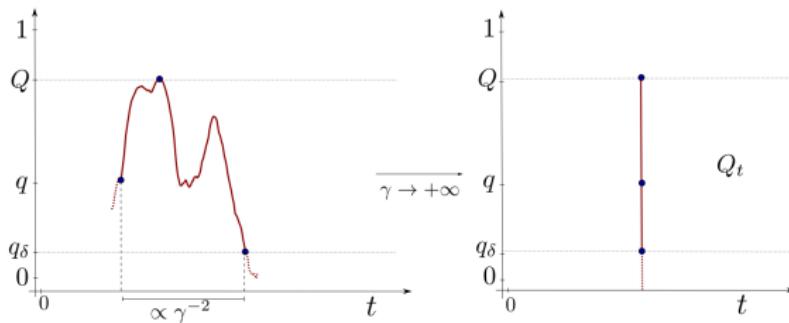
For the **spikes** I expect what I say to be generic but can only prove it in 2d.



The number n of spikes in the domain D is a Poisson process of intensity $\mu = \int_D d\nu$ with :

$$d\nu = \frac{\Gamma_\uparrow}{Q^2} dQ dt$$

Crude idea of the proof



- Out of the boundary: almost pure measurement, probabilities can be computed from the martingale property.
- Compute the probability of the max of an excursion.

CONCLUSION

Summary

- Continuous measurement $\underset{\gamma \rightarrow +\infty}{\sim}$ Repeated projective measurements
→ quantum jumps

Summary

- Continuous measurement $\underset{\gamma \rightarrow +\infty}{\sim}$ Repeated projective measurements
→ quantum jumps
- Continuous measurement $\underset{\gamma \rightarrow +\infty}{\neq}$ Repeated projective measurements
→ Jump rates depend on the eigenvalues of the measured operator
→ Spikes do not vanish in the limit

What next

Directly related questions:

- Measure operators with continuous spectrum [explored in a special case by Bassi & Dürr '07 in foundations]
- Describe spikes in higher dimension
- Prove that the results hold for repeated weak measurements (not necessarily continuous)

CONCLUSION

What next

More broadly:

- Apply to systems with topological properties (robustness, reading the state)
- Explore the phase transitions in continuously monitored extended quantum systems (say spin chains)
- Study stochastic thermodynamics in the quantum regime
- Study optimal information extraction in finite time
- Study optimal control with finite information flow

SELF PROMOTION

- for a pedestrian derivation of the formalism **1312.1600**
- for jumps **1410.7231**
- for spikes **1510.01232** & **1512.02861**
- for an application to control **1404.7391**
- for an application in foundations **1509.08705**
- for an application to quantum info **1511.06555**

General solution

$$B_{\pm} = \frac{1}{\sqrt{2}} \left[1 \pm \sqrt{\epsilon} N_{\pm} - \epsilon \left(\pm M_{\pm} + \frac{1}{2} N_{\pm}^{\dagger} N_{\pm} \right) + \mathcal{O}(\epsilon^{3/2}) \right]$$

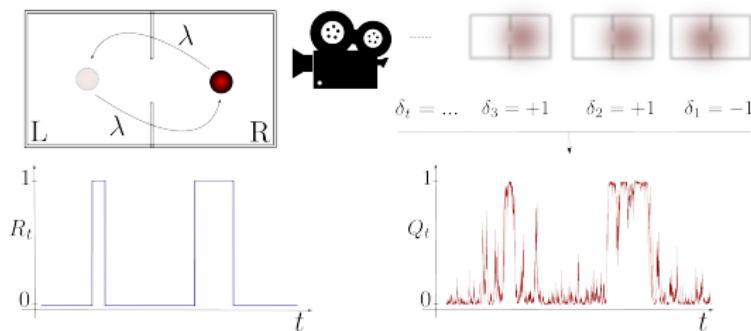
with $\Re(N_+) = \Re(N_-)$ and $\Re(M_+) = \Re(M_-)$

See e.g. [arXiv:1303.6658](https://arxiv.org/abs/1303.6658) or [arXiv:1312.1600](https://arxiv.org/abs/1312.1600)

ARE SPIKES «REAL», ARE SPIKES «QUANTUM»?

→ Subtle question a bit related to foundations and which depends on what we mean by real and quantum

- It is possible to build a purely classical model with spikes (hidden markov model)



ARE SPIKES «REAL», ARE SPIKES «QUANTUM»?

- Spikes disappear with forward backward filtering (Past Quantum State)

ARE SPIKES «REAL», ARE SPIKES «QUANTUM»?

- Spikes disappear with forward backward filtering (Past Quantum State)
- Spikes operationally exist in the sense that when using the quantum state to do feedback, spikes modify naive expectations.

OTHER CHARACTERIZATION OF SPIKES

Spikes can be seen/understood with a time reparametrisation \rightarrow new effective time τ .

In the discrete case:

$$\Delta\tau_n = \text{tr} [(\rho_{n+1} - \rho_n)^2] \Delta t_n$$

OTHER CHARACTERIZATION OF SPIKES

Spikes can be seen/understood with a time reparametrisation \rightarrow new effective time τ .

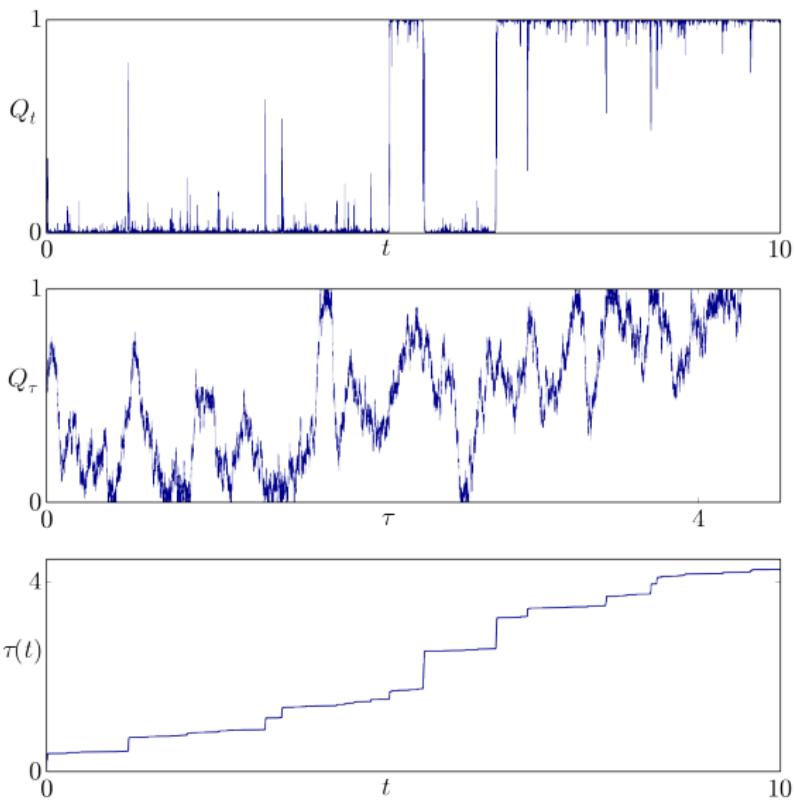
In the discrete case:

$$\Delta\tau_n = \text{tr} [(\rho_{n+1} - \rho_n)^2] \Delta t_n$$

In the continuum:

$$d\tau = \text{tr} [(d\rho_t)^2]$$

NUMERICS



RESULT

Theorem

When $\gamma \rightarrow +\infty$, Q_τ becomes a **Brownian motion** reflected in 0 and in 1.

RESULT

Theorem

When $\gamma \rightarrow +\infty$, Q_τ becomes a **Brownian motion** reflected in 0 and in 1.

- **jumps** correspond to transitions $0 \rightarrow 1$ and $1 \rightarrow 0$.
- **spikes** correspond to transitions $0 \rightarrow 0$ et $1 \rightarrow 1$.

Qubit in an external field

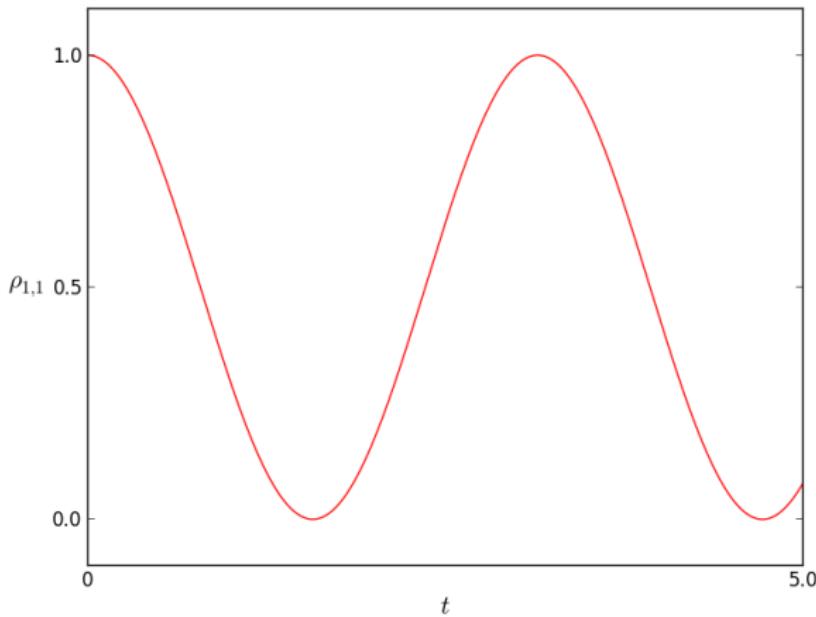
Consider a two level system (a qubit) with Hamiltonian $H = \frac{\omega}{2}\sigma_x$ with σ_z continuously monitored at a rate γ .

The evolution is given by the stochastic master equation:

$$d\rho_t = -i\frac{\omega}{2}[\sigma_x, \rho_t]dt + \underbrace{\gamma L_{\sigma_z}(\rho_t)dt + \sqrt{\gamma}D_{\sigma_z}(\rho_t)dW_t}_{\text{same measurement as before}}$$

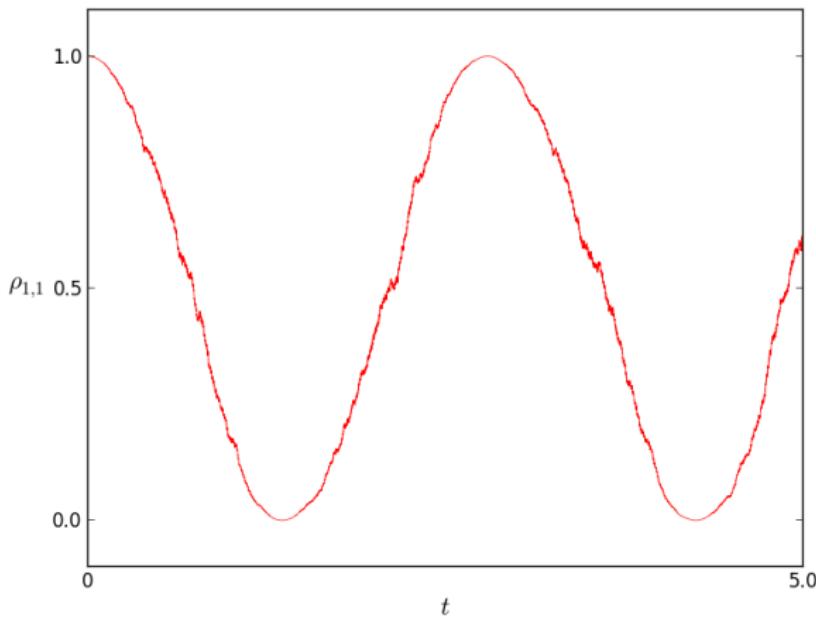
We will look at $\langle + | \rho_t | + \rangle_z$, i.e. at the probabilities in the eigenbasis of the measurement.

Results



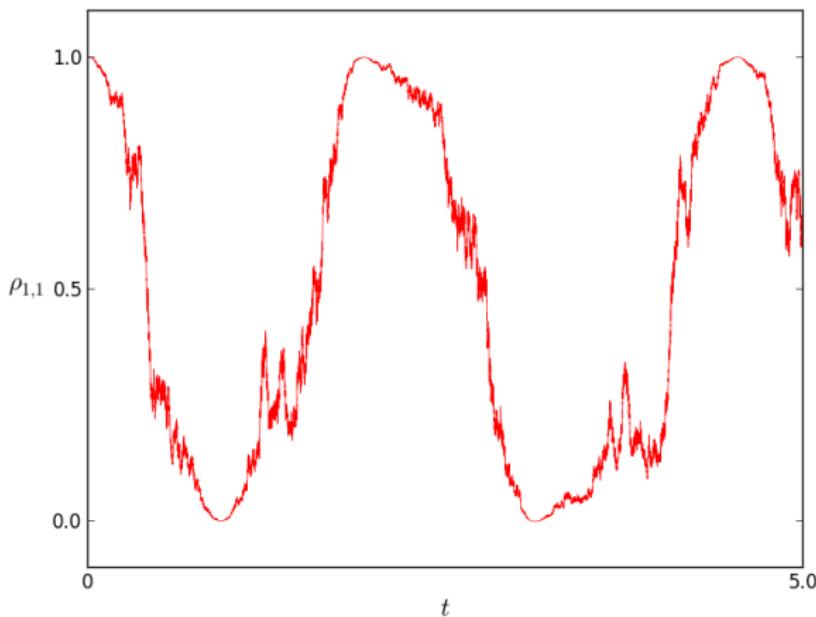
Without measurement $\gamma = 0.0$

Results



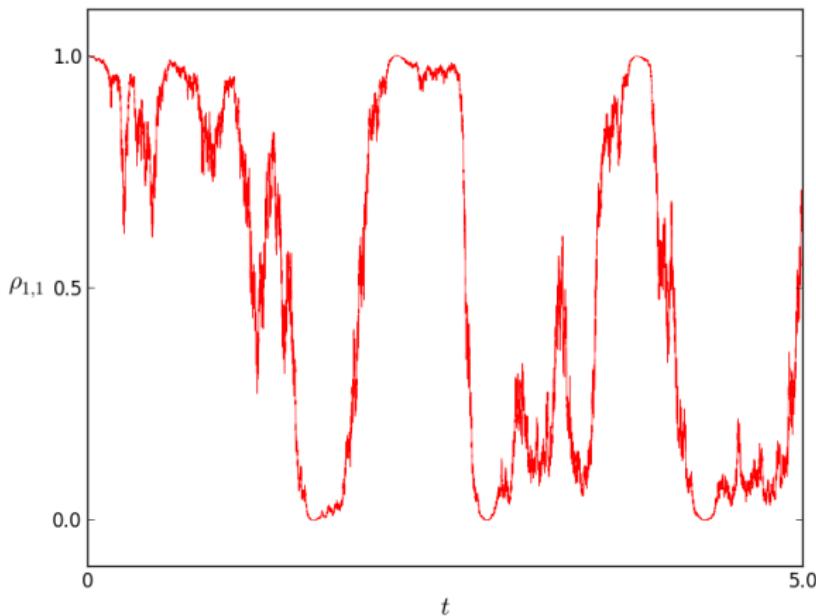
$$\gamma = 0.1$$

Results



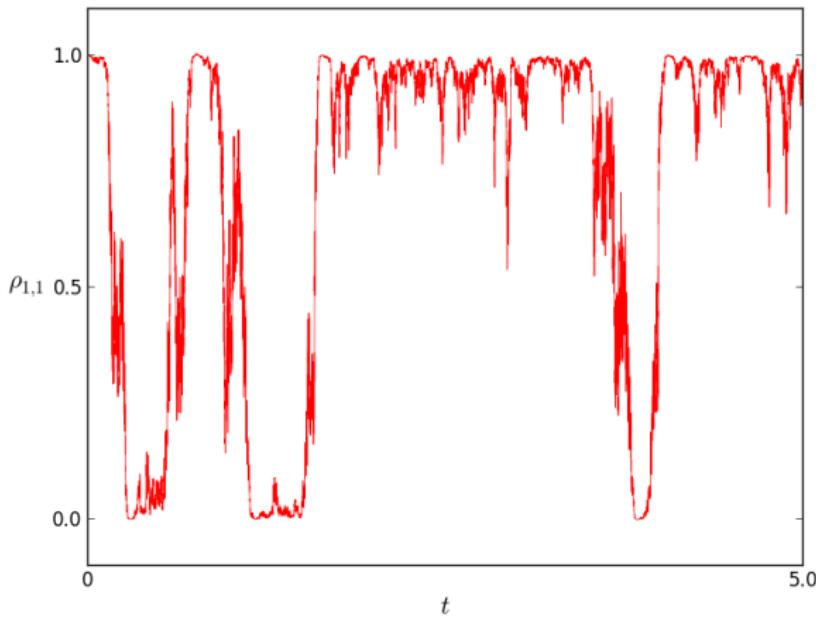
$$\gamma = 0.5$$

Results



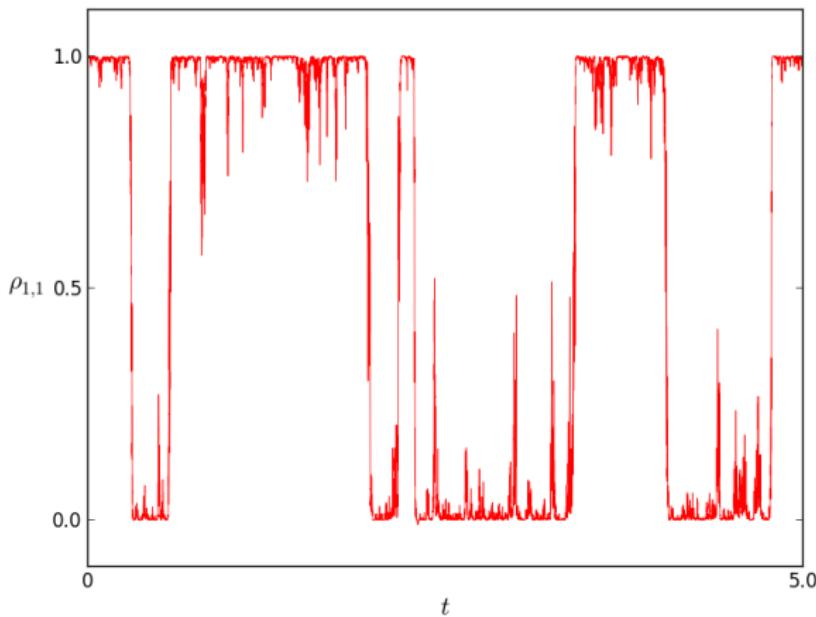
$$\gamma = 1.0$$

Results



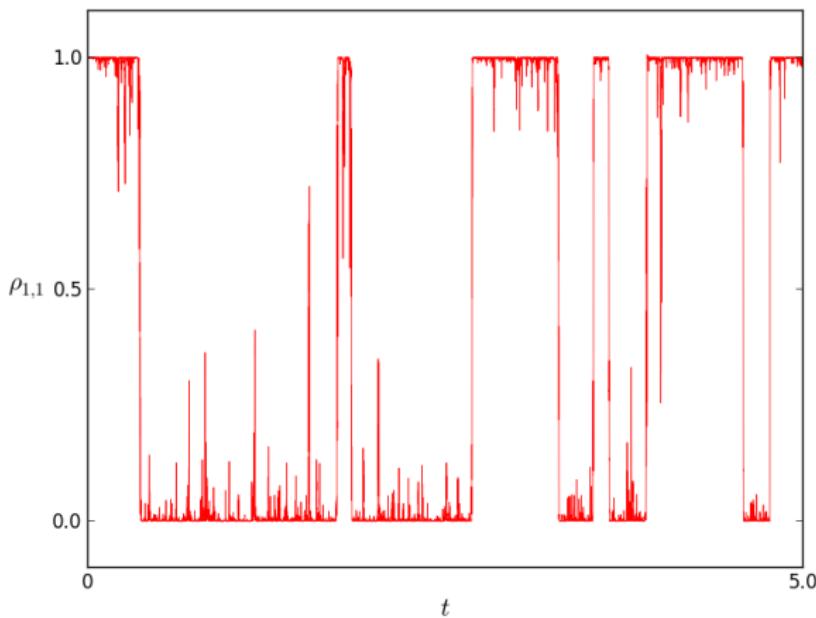
$$\gamma = 2.0$$

Results



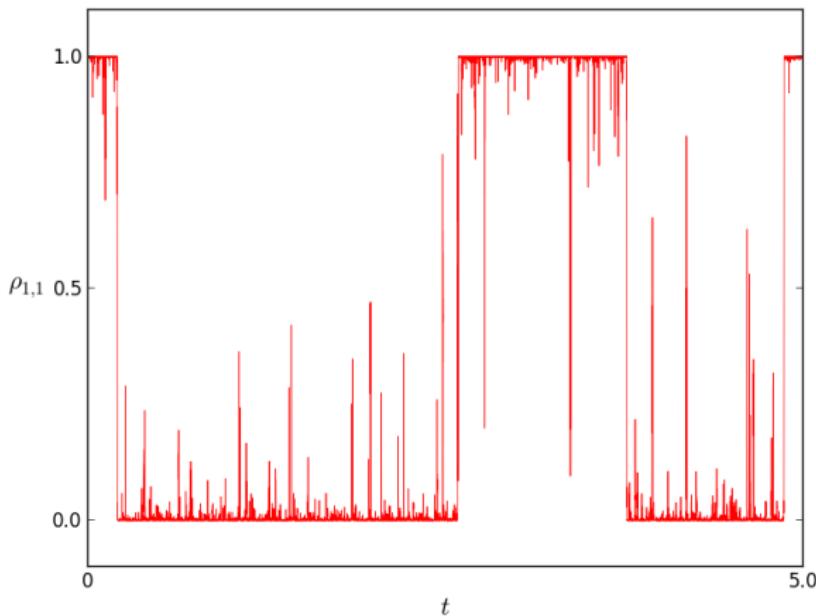
$$\gamma = 5.0$$

Results



$$\gamma = 10$$

Results



$$\gamma = 20$$

Disclaimer

Actually, I had to cheat a bit and take $\omega \propto \gamma$ for the previous plots to counter the **Zeno effect**.