
understanding jumps and spikes in
continuous quantum trajectories

Antoine Tilloy, with Denis Bernard and Michel Bauer

Laboratoire de Physique théorique, École Normale Supérieure Paris

MPQ theory seminar, February 2016



about



about

Work done with Denis Bernard and Michel Bauer.

The objective is to understand the emergence of quantum jumps

from a finer study of continuous measurements. See quantum

jumps as the limit of some more detailed evolution. Possibly

discover new phenomena.



outline

1. Continous measurements

2. Jumps

3. Spikes



repeated interactions

How do you make a continuous measurement?

There are other ways of deriving the same results: weak coupling with infinite bosonic

bath + unravelling, quantum noises, modified path integrals...
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repeated interactions

Ideal situations of application

∙ Discrete situations “a la

Haroche”, with actual repeated

interactions

∙ “True” continuous measurement

settings (homodyne detection in

quantum optics)
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Other applications

∙ Any progressive measurement

(e.g. quantum point contacts)

∙ Dynamical reduction models in

foundations∗ (not today)

* actually they can always be formally written as the continuous measurement of

something
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model

System Hilbert space Hs, “probe” Hilbert space Hp = C2. The full

density matrix is initially in a product state: ρ = ρs ⊗ |+〉 〈+|

One weak measurement consists in:

1– Unitary evolution entangling the system and the probe:

ρ → B+ρsB
†
+ ⊗ |+〉 〈+| + B−ρsB

†
− ⊗ |−〉 〈−|

∼ to taking a picture of the particle but not looking at it yet.

Unitarity only implies: B
†
+B+ + B

†
−B− = 1



model

2– Measurement of the probe

ρ →
B±ρsB

†
± ⊗ |±〉 〈±|

tr(B±ρsB
†
±)

and result ± 1

∼ to reading the picture and updating the probability



model

3– Forgetting about the probe and taking a new one |+〉 〈+| for the
next iteration



continuous limit

Scaling

Develop B+ and B− in the vicinity of 1/
√
2 with the constraint:

B
†
+B+ + B

†
−B− = 1

Particular solution

B± =
1√
2

[
1±

√
εN− ε

2
N†N+O(ε3/2)

]
where N is just any matrix.



continuous limit

Next steps

∙ Compute dρ(t) = ρ(t+ dt)− ρ(t) with dt = ε explicitly (expand

everything up to order dt).

∙ Separate the random part coming from the measurement in

[average] + [noise with zero average] (Doob martingale

decomposition)

∙ Notice that [noise with zero average] becomes white noise in

the continuous limit



what you get

New equation:

dρt = L (ρt)dt + γD[N](ρt)dt +
√
γH[N](ρt)dWt (1)

∙ L (ρt) your favorite evolution in the absence of measurement:

“unitary”

L (ρ) = −i[H, ρ]

“thermal”

L (ρ) = Γ↑

(
σ+ρσ− − 1

2
{σ−σ+, ρ}

)
+ Γ↓

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)

∙ D[N](ρt) the dissipation induced by measurement:

D[N](ρ) = NρN† − 1

2
{N†

N, ρ}

∙ H[N](ρt) the stochastic innovation given by measurement

H[N](ρ) = Nρ+ ρN† − tr[(N+ N
†)ρ]ρ
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history

This is not new

This kind of equations is known since the late eighties:

∙ in mathematical physics – Barchielli ’82, Belavkin ’89

∙ foundations – Diosi ’88, Pearle, Gisin

∙ in quantum optics + feedback – Milburn & Wiseman ’94



intermediary stop

Summary of continuous measurements

∙ It is possible to talk about “continuous measurements” without

contradiction with the Zeno effect.

∙ It is possible to talk about the strength/intensity/rate of a

measurement.

∙ Continuous measurements can model an actual measurement

situation or some elusive fundamental dynamical collapse.

∙ Gives you new equations (like Schrödinger or Lindblad) to play

with.
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fundamental question

What happens when measurement dominates the evolution ?

[typically when γ � Γ↑/↓]

Question which has recently attracted some interest:

∙ Quasi-Zeno dynamics in condensed matter –Elliott & Vedral 1601.06624,

Kozlowski et al. 1510.04857–

∙ Analysis of quantum jumps in simple situations with least

action principle –Jordan & co, Sidiqqi & co 1305.5201, 1403.4992–
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intuition

We imagine that the system state will collapse on measurement

eigenvectors and possibly jump between them



example

Coupling to a bath + energy measurement

→ L (ρ) = Γ↑

(
σ+ρσ− − 1

2
{σ−σ+, ρ}

)
+ Γ↓

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)
→ N = σz

What follow is generic and can be obtained for L (ρ) = −i[H, ρ], i.e. for a fully

coherent evolution preserving pure states.



example

Equation after simplifications

Let us write Qt = 〈0| ρt |0〉. The equation dρt = ... gives :

dQt = [−Γ↑Qt + Γ↓(1− Qt)]
thermalbath

dt+
√
γQt(1− Qt)
mesurement

dWt

For simulations I fix Γ↑ = Γ↓ = 1, that is T = +∞ but the results are generic.

In the absence of measurements Q → 1/2.
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numeric

γ = 0.1



numeric

γ = 1.0



numeric

γ = 10



numeric

γ = +∞



“jump theorem”

Qualitatively

Quantitatively

mi→j ∝
[coeffs. of H]2

γ [coeffs. of N]2
Zeno−renormalized

+ [Coeffs. dissipative part of evol.]
no Zeno

Notably, the eigenvalues of the measured operator matter!
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“jump theorem”

Crude idea of the proof

Not completely standard because strong noise limit −→ “perturb”

around the pure measurement situation

∙ Consider the probability kernel Kt(ρ0,dρ) to go from a given

density matrix ρ0 to another density matrix ρ, up to dρ, after a

time t.

∙ Write its Kolmogorov equation ∂tK = KD where D can be

expanded in:

D = γD2 +D0

∙ Compute the eigenvectors of D2 (invariant measures) and

perturbatively expand Kt = etγD2+tD0



applications

Control

Exploit the different behavior of unitary quantum jumps and thermal

quantum jumps with respect to the Zeno effect to control systems

a eβµl

a

u

b eβµr

b

Right BathLeft Bath

3 states :|L〉, |R〉, |0〉. Unitary coupling (tunneling) between L and R,

dissipative between 0 and L and 0 and R.



Control

b

b

b
0 L

R

b

b

b

0 L

R

Maxwell Daemon using only the measurement strength!



go back to the numerics

γ = +∞

For the spikes I expect what I say to be generic but can only prove it in 2d.
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quantitatively

The number n of spikes in the domain D is a Poisson process of

intensity µ =
∫
D
dν with :

dν =
Γ↑
Q2

dQdt



spikes

Crude idea of the proof

∙ Out of the boundary: almost pure measurement, probabilities

can be computed from the martingale property.

∙ Compute the probability of the max of an excursion.



conclusion

Summary

∙ Continuous measurement ∼
γ→+∞

Repeated projective

measurements

→ quantum jumps

∙ Continuous measurement 6=
γ→+∞

Repeated projective

measurements

→ Jump rates depend on the eigenvalues of the measured operator

→ Spikes do not vanish in the limit
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conclusion

What next

Directly related questions:

∙ Measure operators with continuous spectrum [explored in a

special case by Bassi & Dürr ’07 in foundations]

∙ Describe spikes in higher dimension

∙ Prove that the results hold for repeated weak measurements

(not necessarily continuous)



conclusion

What next

More broadly:

∙ Apply to systems with topological properties (robustness,

reading the state)

∙ Explore the phase transitions in continuously monitored

extended quantum systems (say spin chains)

∙ Study stochastic thermodynamics in the quantum regime

∙ Study optimal information extraction in finite time

∙ Study optimal control with finite information flow



self promotion

∙ for a pedestrian derivation of the formalism 1312.1600

∙ for jumps 1410.7231

∙ for spikes 1510.01232 & 1512.02861

∙ for an application to control 1404.7391

∙ for an application in foundations 1509.08705

∙ for an application to quantum info 1511.06555



bonus slides



scaling

General solution

B± =
1√
2

[
1±

√
εN± − ε

(
±M± +

1

2
N
†
±N±

)
+O(ε3/2)

]

with <e(N+) = <e(N−) and <e(M+) = <e(M−)

See e.g. arXiv:1303.6658 or arXiv:1312.1600



are spikes «real», are spikes «quantum»?

−→ Subtle question a bit related to foundations and which depends

on what we mean by real and quantum

∙ It is possible to build a purely classical model with spikes

(hidden markov model)



are spikes «real», are spikes «quantum»?

∙ Spikes disappear with forward backward filtering (Past Quantum

State)

∙ Spikes operationally exist in the sense that when using the

quantum state to do feedback, spikes modify naive expectations.
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other characterization of spikes

Spikes can be seen/understood with a time reparametrisation →
new effective time τ .

In the discrete case:

∆τn = tr
[
(ρn+1 − ρn)

2
]
∆tn

In the continuum:

dτ = tr
[
(dρt)

2
]
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numerics



result

Theorem

When γ → +∞, Qτ becomes a Brownian motion reflected in 0 and in

1.

∙ jumps correspond to transitions 0 → 1 and 1 → 0.

∙ spikes correspond to transitions 0 → 0 et 1 → 1.
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pure quantum case

Qubit in an external field

Consider a two level system (a qubit) with Hamiltonian H = ω
2
σx with

σz continuously monitored at a rate γ.

The evolution is given by the stochastic master equation:

dρt = −i
ω

2
[σx, ρt]dt+ γLσz

(ρt)dt+
√
γDσz

(ρt)dWt︸ ︷︷ ︸
same measurement as before

We will look at 〈+| ρt |+〉z, i.e. at the probabilities in the eigenbasis of

the measurement.



pure quantum case

Results

Without measurement γ = 0.0
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Results

γ = 1.0
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Results

γ = 2.0
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Results

γ = 5.0



pure quantum case

Results

γ = 10



pure quantum case

Results

γ = 20



pure quantum case

Disclaimer

Actually, I had to cheat a bit and take ω ∝ γ for the previous plots to

counter the Zeno effect.
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