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ABOUT

Work done with Denis Bernard and Michel Bauer.

The objective is to understand the emergence of quantum jumps
from a finer study of continuous measurements. See quantum
jumps as the limit of some more detailed evolution. Possibly
discover new phenomena.
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OUTLINE

1. Continous measurements
2. Jumps
3. Spikes




REPEATED INTERACTIONS

How do you make a continuous measurement?
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REPEATED INTERACTIONS

How do you make a continuous measurement?

detector
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There are other ways of deriving the same results: weak coupling with infinite bosonic

bath + unravelling, quantum noises, modified path integrals...
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REPEATED INTERACTIONS

Ideal situations of application

- Discrete situations “a la ‘i“’?ri:,\o o
Haroche”, with actual repeated ‘// Ty

interactions

=

- “True” continuous measurement !
settings (homodyne detection in
quantum optics) A\
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REPEATED INTERACTIONS

Other applications

- Any progressive measurement
(e.g. quantum point contacts)
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- Dynamical reduction models in
foundations* (not today)




REPEATED INTERACTIONS

Other applications

- Any progressive measurement
(e.g. quantum point contacts)
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- Dynamical reduction models in
foundations* (not toda —
’ 34
} ;/~'A

* actually they can always be formally written as the continuous measurement of
something R
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MODEL

System Hilbert space Hs, “probe” Hilbert space 7, = €. The full
density matrix is initially in a product state: p = ps @ |-+) (-]

One weak measurement consists in:
1- Unitary evolution entangling the system and the probe:
p—BypsBL @ +) (+] + B_psBL @) (-]

~ to taking a picture of the particle but not looking at it yet.

Unitarity only implies: BZB+ +BIB_ =




MODEL

2- Measurement of the probe

BipsBl @ [4) (+]
tr(BipsBTi)

and result £ 1

~ to reading the picture and updating the probability




MODEL

3- Forgetting about the probe and taking a new one |+) (+| for the
next iteration




CONTINUOUS LIMIT

Scaling

Develop B, and B_ in the vicinity of 1/4/2 with the constraint:

BIB, +B'B_=1
Particular solution

1 € .
B :——pi eN — SNTN + 02
o= 5 [1= van - SN+ o)

where N is just any matrix.




CONTINUOUS LIMIT

Next steps

- Compute dp(t) = p(t + dt) — p(t) with dt = € explicitly (expand
everything up to order dt).
- Separate the random part coming from the measurement in

[average] + [noise with zero average] (Doob martingale
decomposition)

- Notice that [noise with zero average] becomes white noise in
the continuous limit
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WHAT YOU GET

New equation:

[dp = Z(p) dt + yDNI(pr) dt + A HIN(p) AW ()
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WHAT YOU GET

New equation:

[dp = Z(p) dt + yDNI(pr) dt + A HIN(p) AW ()

- Z(p) your favorite evolution in the absence of measurement:

2(p) = —ilH, 9]

“thermal”

Z(p) =T4 (U+p07 - %{Uffmp}) +I («me - %{maﬂp})

- DIN](pr) the dissipation induced by measurement:

DINJ(p) = NoN' — (NN, }

- H[N](p) the stochastic innovation given by measurement

HIN](p) = Np + pN" — t[(N + N)p]p



HISTORY

This is not new
This kind of equations is known since the late eighties:
- in mathematical physics — Barchielli ‘82, Belavkin ‘89

- foundations — Diosi '88, Pearle, Gisin

- in quantum optics + feedback — Milburn & Wiseman '94




INTERMEDIARY STOP

Summary of continuous measurements

- It is possible to talk about “continuous measurements” without
contradiction with the Zeno effect.
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INTERMEDIARY STOP

Summary of continuous measurements

- It is possible to talk about “continuous measurements” without
contradiction with the Zeno effect.

- It is possible to talk about the strength/intensity/rate of a
measurement,

- Continuous measurements can model an actual measurement
situation or some elusive fundamental dynamical collapse.
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INTERMEDIARY STOP

Summary of continuous measurements

- It is possible to talk about “continuous measurements” without
contradiction with the Zeno effect.

- It is possible to talk about the strength/intensity/rate of a
measurement.

- Continuous measurements can model an actual measurement
situation or some elusive fundamental dynamical collapse.

- Gives you new equations (like Schrodinger or Lindblad) to play
with.
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FUNDAMENTAL QUESTION

What happens when measurement dominates the evolution ?

[typically when > T4 /,]




FUNDAMENTAL QUESTION

What happens when measurement dominates the evolution ?

[typically when > T4 /,]

Question which has recently attracted some interest:

- Quasi-Zeno dynamics in condensed matter -Elliott & Vedral 1601.06624,

S

Kozlowski et al. 1510.04857—
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FUNDAMENTAL QUESTION

What happens when measurement dominates the evolution ?

[typically when > T4 /,]

Question which has recently attracted some interest:

- Quasi-Zeno dynamics in condensed matter -Elliott & Vedral 1601.06624,

CSaF

- Analysis of quantum jumps in simple situations with least
action principle -jordan & co, Sidiqqi & co 13055201, 1403 4992~

Kozlowski et al. 1510.04857—
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INTUITION

We imagine that the system state will collapse on measurement
eigenvectors and possibly jump between them
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EXAMPLE

Coupling to a bath + energy measurement

1 1
= Z(p)=T1 (0+P07 - 5{070+7P}) +r (Ufpfﬂ - E{U#L»P})

— N =o0,
v
SiGNAL
CoNTiNvovS
HEASUREMENT
What follow is generic and can be obtained for .Z(p) = —i[H, p], i.e. for a fully @'"‘:Iz, ;?n"yi«”a“”‘
u o‘:w malg

coherent evolution preserving pure states. Sptriee



EXAMPLE

Equation after simplifications

Let us write Q; = (0] p¢|0). The equation dp; = ... gives::

dQr = [-F4Qc + T (1= Qu)ldt + /Qe(T — Qr)dWy

thermalbath mesurement




EXAMPLE

Equation after simplifications

Let us write Q; = (0] p¢|0). The equation dp; = ... gives::

dQr = [-F4Qc + T (1= Qu)ldt + /Qe(T — Qr)dWy

thermalbath mesurement

For simulations | fix '+ =T, =1, that is T = 400 but the results are generic.
In the absence of measurements Q — 1/2.




NUMERIC
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“JUMP THEOREM”

Qualitatively




“JUMP THEOREM”

Qualitatively

Yol

Quantitatively

2
Mi_yj o [coeffs. of H] + [Coeffs. dissipative part of evol ]

v [coeffs. of NJ? 0 Zeno

Zeno—renormalized




“JUMP THEOREM”

Qualitatively

We

Quantitatively

[coeffs. of H]? o
~ [coeffs. of NI + [Coeffs. d|5$|p\§t;>/’§} part of evol.]

Zeno—renormalized

mj_j

Notably, the eigenvalues of the measured operator matter!



“JUMP THEOREM”

Crude idea of the proof

Not completely standard because strong noise limit — “perturb”
around the pure measurement situation

- Consider the probability kernel Ki(po, dp) to go from a given
density matrix pg to another density matrix p, up to dp, after a
time t.

- Write its Kolmogorov equation 9;K = KD where D can be
expanded in:
D =79, + Do

- Compute the eigenvectors of D, (invariant measures) and
perturbatively expand K; = e"®z+to
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APPLICATIONS

Control

Exploit the different behavior of unitary quantum jumps and thermal
quantum jumps with respect to the Zeno effect to control systems

a eBr b eBur
Left Bath Right Bath]
—| @
u
\—/ \_/
a b

3 states :|L), |R), |0). Unitary coupling (tunneling) between L and R,
dissipative between 0 and L and 0 and R.




Control

Maxwell Daemon using only the measurement strength!




GO BACK TO THE NUMERICS

1 AT
Jump | i i
Q ks
OhJML.M.MJJi.mhu uhﬁJim.uJLmu.JWLle Juad
0 ik 10
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GO BACK TO THE NUMERICS

1 Tl laka)
Jump | n ™
Q spikes
0 lu,lJﬁju " m]i.“ m bl ﬁi J adh b J.m. L.JLI Jilm I
0 Tt 10

7 = +00

For the spikes | expect what | say to be generic but can only prove it in 2d.

it's something %/




QUANTITATIVELY

Q4

H‘MJMM Ll

The number n of spikes in the domain D is a Poisson process of
intensity u = [ dv with:

_ N

dV—Q2

dQdt




SPIKES

Crude idea of the proof

1 1
Q| Q
q i ¥ = o0 q Qt
qs . q51
0 : i 0]
0 e t 0 t

- Out of the boundary: almost pure measurement, probabilities
can be computed from the martingale property.

- Compute the probability of the max of an excursion.




CONCLUSION

Summary

- Continuous measurement ~ Repeated projective
y—+00

measurements
— quantum jumps
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CONCLUSION

Summary

- Continuous measurement ~ Repeated projective
y—+00

measurements
— quantum jumps
- Continuous measurement # Repeated projective

y—+o0
measurements

— Jump rates depend on the eigenvalues of the measured operator
— Spikes do not vanish in the limit




CONCLUSION

What next

Directly related questions:

- Measure operators with continuous spectrum [explored in a
special case by Bassi & Diirr '07 in foundations]

- Describe spikes in higher dimension

- Prove that the results hold for repeated weak measurements
(not necessarily continuous)




CONCLUSION

What next
More broadly:

- Apply to systems with topological properties (robustness,
reading the state)

- Explore the phase transitions in continuously monitored
extended quantum systems (say spin chains)

- Study stochastic thermodynamics in the quantum regime
- Study optimal information extraction in finite time
- Study optimal control with finite information flow




SELF PROMOTION

- for a pedestrian derivation of the formalism 1312.1600
- for jumps 1410.7231

- for spikes 1510.01232 & 1512.02861

- for an application to control 1404.7391

- for an application in foundations 1509.08705

- for an application to quantum info 1511.06555







SCALING

General solution

1 1
By — 7 {1 +/eNL — € (il\/\i + ZN;Ni) + 0(63/2)]

with ®e(N;) = Re(N_) and Re(M,) = Re(M_)

See e.g. arXiv:1303.6658 or arXiv:1312.1600




ARE SPIKES «REAL», ARE SPIKES «QUANTUM»?

— Subtle question a bit related to foundations and which depends
on what we mean by real and quantum

- It is possible to build a purely classical model with spikes
(hidden markov model)
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- Spikes disappear with forward backward filtering (Past Quantum
State)




ARE SPIKES «REAL», ARE SPIKES «QUANTUM»?

- Spikes disappear with forward backward filtering (Past Quantum
State)

- Spikes operationally exist in the sense that when using the
quantum state to do feedback, spikes modify naive expectations.




OTHER CHARACTERIZATION OF SPIKES

Spikes can be seen/understood with a time reparametrisation —
new effective time .

In the discrete case:
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OTHER CHARACTERIZATION OF SPIKES

Spikes can be seen/understood with a time reparametrisation —
new effective time .

In the discrete case:

ATn =tr I:(pn+] - pn)2] Atn

In the continuum:
dr = tr [(dpt)’]
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RESULT

Theorem

When v — 400, Q, becomes a Brownian motion reflected in 0 and in

1.
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RESULT

Theorem

When v — 400, Q, becomes a Brownian motion reflected in 0 and in
1.

- jumps correspond to transitions 0 — 1and 1 — 0.

- spikes correspond to transitions 0 — 0 et 1 — 1.




PURE QUANTUM CASE

Qubit in an external field

Consider a two level system (a qubit) with Hamiltonian H = %o, with
o, continuously monitored at a rate +.

The evolution is given by the stochastic master equation:

dpr = =i [0, pldt + Lo, ()L + V7D, (1) AW,

same measurement as before

We will look at (+| pt |[+),, I.e. at the probabilities in the eigenbasis of
the measurement.
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PURE QUANTUM CASE

Results
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Without measurement v = 0.0



PURE QUANTUM CASE

Results
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PURE QUANTUM CASE

Results
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PURE QUANTUM CASE

Results




PURE QUANTUM CASE

Results
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PURE QUANTUM CASE
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PURE QUANTUM CASE

Results
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PURE QUANTUM CASE

Results
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PURE QUANTUM CASE

Disclaimer

Actually, I had to cheat a bit and take w oc «y for the previous plots to
counter the Zeno effect.




	Bonus slides

