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introduction

Why is there a problem?

“We know that the moon is demonstrably
not there when nobody looks”

David Mermin 1981

The only connexion between the formalism of quantum theory and
Nature is through the measurement postulate.



introduction

“A mathematically trivial operation”

Measurement postulate

For a system “described” by |ψ⟩ ∈ H and a
measurement of orthogonal projectors Πi s. t.∑

i Πi = 1 one has:
Born rule :

Result “ i ” with probability P[i ] = ⟨ψ|Πi |ψ⟩

Collapse :
|ψ⟩ −→ Πi |ψ⟩√

P[i ]

Max Born 1926

John von Neumann
1932



introduction

“A physically subtle endeavour”

∙ What is a measurement?

∙ How can measurement be a primitive concept?

∙ What is a measurement result made of?

∙ Can one deduce the measurement postulate from
unitary evolution? (answer: NO, hint: decoherence
does not help)

Physics World, Against Measurement

Albert Einstein 1935

John S. Bell 1989



introduction

The curse of linearity in a “measurement” situation

Initial state:

|Ψ⟩0 =
1√
2

(
|↑⟩+ |↓⟩

)
⊗ |♠⟩ ∈ C2 ⊗ C21023

After evolution:

|Ψ⟩t =
1√
2
|↑⟩ ⊗ |♢⟩+ 1√

2
|↓⟩ ⊗ |♡⟩

→ typically |♣⟩ ⊥ |♡⟩: decoherence

→ but no collapse because of linearity



introduction

Reformulations of quantum theory are needed

Everett 1957 Bohm 1952 Ghirardi 1986



outline

∙ The pre-Genesis of collapse models
∙ Repeated and continuous orthodox measurements
∙ The parallel with stochastic filtering
∙ Back to collapse
∙ Open problems



pre-genesis



genesis of collapse models

Objective

Find a modification of the Schrödinger equation that:

∙ Does almost nothing to microscopic dynamics
∙ Collapses macroscopic superpositions
∙ Does so according to the Born rule



main lesson

To avoid faster than light signaling, the evolution needs to be linear
at the master equation level

Defining ρ̄t = E[ρt] one needs to have:

ρ̄t = Φt · ρ̄0

with Φt Completely Positive Trace Preserving
Asking for Markovianity → Lindblad form

Gisin

Diósi



repeated and continuous measurements



repeated interaction schemes



repeated interactions

Situation considered
· System, |ψ⟩ ∈ Hs
· Probe, Hp = C2

· Unitary interaction
· Measurement of σz on
the probe

|ψ⟩n ⊗ |+⟩x
interaction−−−−−−→ Ω̂+ |ψ⟩n ⊗ |+⟩z + Ω̂− |ψ⟩n ⊗ |−⟩z

mesurement−−−−−−−→ |ψ⟩n+1 =
Ω± |ψ⟩n√

⟨ψ|Ω†
±Ω± |ψ⟩n

with the only constraint:

Ω†
+Ω+ +Ω†

−Ω− = 1
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repeated interactions

Discrete quantum trajectories

A sequence |ψ⟩n or ρn (random) and the
corresponding measurement results δn = ±1.

⇒ Make the interactions soft and frequent:

Ω± =
1√
2
(
1±O ε+# ε2 + · · ·

)
Continuous quantum trajectories

A continuous process |ψ⟩t or ρt (random) and the
corresponding measurement signal yt:

yt ∝
√
∆t

t/∆t∑
n=1

δn
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result

Stochastic master equation (∼ 1987)

State (density matrix or pure state):

dρt = L (ρt)dt + γD[O](ρt)dt +√
γH[O](ρt)dWt

Signal:

dyt =
√
γ tr

[
(O +O†) ρt

]
dt + dWt

with:
∙ D[O](ρ) = OρO† − 1

2
(
O†Oρ+ ρO†O

)
«decoherence and dissipation»

∙ H[O](ρ) = Oρ+ ρO† − tr
[
(O +O†) ρ

]
ρ

«aquisition of information»
∙ dWt

dt white noise

V. Belavkin

A. Barchielli

L. Diósi



example

Situation considered
“Pure” continuous measurement of a qubit

Qubit ⇒ H = C2 so ρt =

(
pt ut
u∗

t 1 − pt

)
Continuous energy measurement, i.e.
O = σz ∝ H

Equation for the population

dpt =
√
γ pt(1 − pt)dWt

Equation for the phase

dut = −γ8 ut dt +
√
γ

2 (2pt − 1)dWt
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born rule

How do we see that the Born rule works from

dpt =
√
γ pt(1 − pt)dWt?

⇒ pt is a martingale ⇒ E[p∞] = E[pt] = p0

but E[p∞] = P[pt → 1] · 1 + P[pt → 0] · 0 = P[pt → 1]

so finally:

P[pt → 1] = p0
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local conclusion

→ Collapse now has a timescale γ−1

→ The Born rule stays valid

→ The trajectory is real

Quantum trajectories from the group of Irfan Siddiqi at Berkeley, Nature 502, 211 (2013)



one example of itô without feedback

How fast do we purify?

Look at ∆t =
√

det(ρt) =
√

pt(1 − pt) and compute d∆t

d∆t = − γ

8∆t dt
Itô correction

+
1
2
√
γ∆t(1 − 2pt)dWt

Let us look at the average ∆̄t = E[∆t]

d∆̄t
dt = −γ8 ∆̄t ⇒ ∆̄t = ∆̄0e−

γt
8
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other ways?

dP[pt = p|p0] =
2p0√

2πγtp(1 − p)
exp

−

(
2√
γ

(
ln

[
p

1−p

]
− ln

[
p0

1−p0

])
− √

γt/2
)2

2t

 dp

+
2(1 − p0)√

2πγtp(1 − p)
exp

−

(
2√
γ

(
ln

[
p

1−p

]
− ln

[
p0

1−p0

])
+

√
γt/2

)2

2t

 dp
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experimental realizations

With discrete probes

Gleyzes et al. Nature 446, 297-300 (2007)



experimental realizations

With “continuous” probes

Experimental setup of the group of Irfan Siddiqi at Berkeley, Nature 502, 211 (2013)



the parallel with stochastic filtering



repeated blurry classical measurements

Bayesian updating of the probability for the particle to be in one
side of the box.



stochastic filtering

Kushner-Stratonovich filtering equation:

Diagonal probability matrix:

dρt = L (ρt)dt + γD[O](ρt)dt +√
γH[O](ρt)dWt

Signal:
dyt =

√
γ tr

[
(O +O†) ρt

]
dt + dWt

with:

∙ D[O](ρ) = OρO† − 1
2
(
O†Oρ+ ρO†O

)
∙ H[O](ρ) = Oρ+ ρO† − tr

[
(O +O†) ρ

]
ρ



back to collapse



the csl model

Very weakly measure the mass density of quantum matter
everywhere in space:

dρt = −i[H, ρ]dt − γ

4

∫
R3

dxD[M̂σ(x)](ρ)dt +
√
γ

2

∫
R3

dxH[M̂σ(x)](ρ)dWt(x)

Take this as a fundamental equation



general form

Theorem

All continuous Markovian collapse models can be written as the
continuous measurement of something



open problems



in the orthodox measurement context

∙ Construct a “real-time” continuous non-Markovian
measurement theory

∙ Make tractable models of non-Markovian feedback
∙ Find good equivalents of forward-backward estimation



in the collapse context

∙ Understand the behavior of nastier collapse models
∙ Use collapse models to solve gravity related difficulties
(cosmological fluctuations, back hole information paradox...)

∙ Make collapse models fully relativistic without breaking their
core features



a few things i studied

Measurement context:

∙ Competition between continuous measurement and evolution
→ emergence of quantum jumps and spikes

∙ Optimal information extraction problems
∙ Control via continuous measurement only
∙ Hidden variable models for quantum measurement

Collapse context:

∙ Newtonian quantum gravity in a collapse context
∙ Monte-Carlo method to plot the realizations of non-Markovian
collapse models

∙ Collapse models for Quantum Field Theory new!
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