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We gave a precise meaning to Langevin equations:

Ẋt = µ(Xt, t) + σ(Xt, t) ηt
white noise

which reads:
dXt = µ(Xt, t) dt + σ(Xt, t)dWt

which is compact a notation for:

Xt =

∫ t
µ(Xt, t) dt +

∫ t
σ(Xt, t)dWt

Itô integral
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the story so far

Main finding:

We discovered that differentiation was vicious.

Itô’s lemma

Let f ∈ C2 and Xt an Itô process s.t.:

dXt = µ(Xt, t)dt + σ(Xt, t) dWt,

then:
df (Xt, t) =

∂f
∂t dt + ∂f

∂X dXt︸ ︷︷ ︸
trivial

+
1
2
∂2f
∂X2 σ(Xt, t)2 dt︸ ︷︷ ︸

Itô correction
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the story so far

We did so by:

1. Introducing the concept of Martingale (a random process with
unforeseeable increments)

2. Construct the Brownian motion in 1D (Wiener process)
3. Construct an integral with respect to the Brownian motion
4. Show that it extends to all continuous random processes
5. Show that differentiation rules are changed
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what happened before

A reference for last time:

Very nice and easy
book to learn Itô
calculus →

Bernt Øksendal



why do we need stochastic calculus at all

It is now possible to sequentially or continuously measure the same
quantum system and implement a feedback depending on the
results.

Discrete situation: experiment of the group of Serge
Haroche, Gleyzes et al. Nature 446, 297-300 (2007)

Continuous situation: experiment of the group of Benjamin Huard,
Campagne-Ibarcq et al. Phys. Rev. Lett. 112, 180402 (2014)

Master equations ∂tρt = L (ρt) are not enough, the state itself is
random ⇒ ∂tρt = L (ρt) + noise (+feedback)



continuous measurement



repeated interaction schemes



repeated interaction schemes

Implementation:

Experimental setup of the group of Irfan Siddiqi at Berkeley, Nature 502, 211 (2013)

−→
idealization



repeated interactions

Situation considered
· System, |ψ⟩ ∈ Hs
· Probe, Hp = C2

· Unitary interaction
· Measurement of σz on
the probe

|ψ⟩n ⊗ |+⟩x
interaction−−−−−−→ Ω̂+ |ψ⟩n ⊗ |+⟩z + Ω̂− |ψ⟩n ⊗ |−⟩z

mesurement−−−−−−−→ |ψ⟩n+1 =
Ω± |ψ⟩n√

⟨ψ|Ω†
±Ω± |ψ⟩n

with the only constraint:

Ω†
+Ω+ +Ω†

−Ω− = 1
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repeated interactions

Discrete quantum trajectories

A sequence |ψ⟩n or ρn (random) and the
corresponding measurement results δn = ±1.

⇒ Make the interactions soft and frequent:

Ω± =
1√
2
(
1±O ε+# ε2 + · · ·

)
Continuous quantum trajectories

A continuous process |ψ⟩t or ρt (random) and the
corresponding measurement signal yt:

yt ∝
√
∆t

t/∆t∑
n=1

δn
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result

Stochastic master equation (∼ 1987)

State (density matrix or pure state):

dρt = L (ρt) dt + γD[O](ρt)dt +√
γH[O](ρt)dWt

Signal:

dyt =
√
γ tr

[
(O +O†) ρt

]
dt + dWt

with:
∙ D[O](ρ) = OρO† − 1

2
(
O†Oρ+ ρO†O

)
«decoherence and dissipation»

∙ H[O](ρ) = Oρ+ ρO† − tr
[
(O +O†) ρ

]
ρ

«aquisition of information»
∙ dWt

dt white noise

V. Belavkin

A. Barchielli

L. Diósi



comment

Real trajectories, different (in spirit) from Dalibard-Castin-Mølmer
used for Monte Carlo with jumps

or from Gisin-Percival used for diffusive Monte Carlo



example

Situation considered
“Pure” continuous measurement of a qubit

Qubit ⇒ H = C2 so ρt =

(
pt ut
u∗

t 1 − pt

)
Continuous energy measurement, i.e.
O = σz ∝ H

Equation for the population

dpt =
√
γ pt(1 − pt)dWt

Equation for the phase

dut = −γ8 ut dt +
√
γ

2 (2pt − 1) dWt
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born rule

How do we see that the Born rule works from

dpt =
√
γ pt(1 − pt)dWt?

⇒ pt is a martingale ⇒ E[p∞] = E[pt] = p0

but E[p∞] = P[pt → 1] · 1 + P[pt → 0] · 0 = P[pt → 1]

so finally:

P[pt → 1] = p0



born rule

How do we see that the Born rule works from

dpt =
√
γ pt(1 − pt)dWt?

⇒ pt is a martingale ⇒ E[p∞] = E[pt] = p0

but E[p∞] = P[pt → 1] · 1 + P[pt → 0] · 0 = P[pt → 1]

so finally:

P[pt → 1] = p0



born rule

How do we see that the Born rule works from

dpt =
√
γ pt(1 − pt)dWt?

⇒ pt is a martingale ⇒ E[p∞] = E[pt] = p0

but E[p∞] = P[pt → 1] · 1 + P[pt → 0] · 0 = P[pt → 1]

so finally:

P[pt → 1] = p0



born rule

How do we see that the Born rule works from

dpt =
√
γ pt(1 − pt)dWt?

⇒ pt is a martingale ⇒ E[p∞] = E[pt] = p0

but E[p∞] = P[pt → 1] · 1 + P[pt → 0] · 0 = P[pt → 1]

so finally:

P[pt → 1] = p0



local conclusion

→ Collapse now has a timescale γ−1

→ The Born rule stays valid

→ The trajectory is real

Quantum trajectories from the group of Irfan Siddiqi at Berkeley, Nature 502, 211 (2013)



one example of itô without feedback

How fast do we purify?

Look at ∆t =
√

det(ρt) =
√

pt(1 − pt) and compute d∆t

d∆t = − γ

8∆t dt
Itô correction

+
1
2
√
γ∆t(1 − 2pt)dWt

Let us look at the average ∆̄t = E[∆t]

d∆̄t
dt = −γ8 ∆̄t ⇒ ∆̄t = ∆̄0e−

t
8γ
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other ways?

dP[pt = p|p0] =
2p0√

2πγtp(1 − p)
exp

−

(
2√
γ

(
ln

[
p

1−p

]
− ln

[
p0

1−p0

])
− √

γt/2
)2

2t

 dp

+
2(1 − p0)√

2πγtp(1 − p)
exp

−

(
2√
γ

(
ln

[
p

1−p

]
− ln

[
p0

1−p0

])
+

√
γt/2

)2

2t

 dp
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using the measurement results



general feedback

General feedback

State:

dρt = −i [H(yu<t), ρt] dt + γD[O](ρt)dt +√
γH[O](ρt) dWt

Signal:
dyt =

√
γ tr

[
(O +O†) ρt

]
dt + dWt

∙ Typically, one cannot get a closed form Master equation from
this
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examples

State stabilisation:

Gleyzes et al. Nature 446, 297-300
(2007)



other examples

∙ Faster purification
e.g. K. Jacobs, Phys. Rev. A 67, 030301(R) 2003

∙ Faster measurement
∙ Continuous quantum error correction
e.g. C. Ahn, A. C. Doherty, and A. J. Landahl Phys. Rev. A 65, 042301
2002



markovian feedback

Take the control proportional to the instantaneous signal:

H(t) “ = ”
dyt
dt · Ĉ

The feedback can act only infinitesimally after the measurement:

ρ+ dρtotal = Ufb (ρ+ dρmeas)U†
fb

= e−iĈ dyt (ρ+ dρmeas) eiĈ dyt

And we take the last line as a mathematical definition of Markovian
feedback.



markovian feedback

Take the control proportional to the instantaneous signal:

H(t) “ = ”
dyt
dt · Ĉ
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reminder

Physicist’s cookbook

One can work with Itô processes by using only a few rules:

∙ |dWt| ∼
√

dt
∙ E[dWt|Ft] = 0
∙ dWt dWt = dt ≃ Itô’s lemma



markovian feedback

ρ+ dρtotal = e−iĈ dyt (ρ+ dρmeas) eiĈ dyt

=

(
1− iĈ dyt −

Ĉ2

2 dy2
t

dt

)
(ρ+ dρmeas)

(
1+ iĈ dyt −

Ĉ2

2 dy2
t

dt

)
= · · ·

Final form

After using the physicist version of Itô’s formula one gets:

dρt =γD[O](ρt) dt +√
γH[O](ρt) dWt

− i[Ĉ, ρt] dWt +D[Ĉ ]dt +−i√γ
[
Ĉ,Oρt + ρtO†

]
dt
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ρ+ dρtotal = e−iĈ dyt (ρ+ dρmeas) eiĈ dyt
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markovian feedback

Markovian feedback master equation

dρt =γD[O](ρt) dt

+D[Ĉ ]dt +−i√γ
[
Ĉ,Oρt + ρtO†

]
dt

∙ Can be put into the Linblad form
∙ Has dissipation
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summary

∙ One can construct a theory of continuous monitoring
∙ It is possible to feedback the measurement results
∙ A large number of applications
∙ In general one needs to work with the stochastic equations (no
closed form equation for the average).
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