Stochastic calculus tools for quantum optics
PART II: Quantum trajectories and feedback
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THE STORY SO FAR

We gave a precise meaning to Langevin equations:

Xt = M(Xt7 t) + U(Xt7 t) Nt

white noise

which reads:
dXt = ,U/(Xt., t) dt+ 0'()(157 t) th

which is compact a notation for:

t t
th/ ,U,(Xt,t)dt—F/ O'(Xt,t)th

[to integral
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Main finding:

We discovered that differentiation was vicious.

Itd’s lemma

Let f € C? and X; an Itd process s.t.:

dXt = /L(Xt, t) dt+ O'(Xt, t) th,

then: )
of of 1 0°f
5t dt+ aXdXt+ 592

trivial Itd correction

df (X, t) = o(Xy, 1) dt
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THE STORY SO FAR

We did so by:

1.

S & BN

Introducing the concept of Martingale (a random process with
unforeseeable increments)

Construct the Brownian motion in 1D (Wiener process)
Construct an integral with respect to the Brownian motion
Show that it extends to all continuous random processes
Show that differentiation rules are changed



WHAT HAPPENED BEFORE

A reference for last time:

Ve ry n I Ce a n d easy Bernt Oksendal
book to learn It6 Stochastic
Differential
calculus — £ Equations !
5 dcton with Applications a -

Bernt @ksendal

&) Springer



WHY DO WE NEED STOCHASTIC CALCULUS AT ALL

It is now possible to sequentially or continuously measure the same
quantum system and implement a feedback depending on the
results.

preparation

Continuous situation: experiment of the group of Benjamin Huard,
Campagne-Ibarcq et al. Phys. Rev. Lett. 112, 180402 (2014)

Discrete situation: experiment of the group of Serge

Haroche, Gleyzes et al. Nature 446, 297-300 (2007)

Master equations dyp; = £ (p¢) are not enough, the state itself is
random = 9;p; = £ (p;) + noise (+feedback)



CONTINUOUS MEASUREMENT
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REPEATED INTERACTION SCHEMES

Implementation:
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Experimental setup of the group of Irfan Siddigi at Berkeley, Nature 502, 211 (2013)
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REPEATED INTERACTIONS

détecteur
Situation considered S0 — pa bt
- System, |[¢) € 7, 5
- Probe, 74, = C?
- Unitary interaction
- Measurement of o, on

the probe OBOLOD

sondes

Interaction

), ® [+), QW) ® [4),+ Q- [¥), ®|-),
Q
Wiy = il

W10 v),,

mesurement

with the only constraint:

oo, +olo =1
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REPEATED INTERACTIONS

Discrete quantum trajectories

A sequence |¢),, or p, (random) and the
corresponding measurement results §,, = £1.

= Make the interactions soft and frequent:

1
Qr=—=(1+0e+#e2 4
£= 75 7 )
Continuous quantum trajectories

A continuous process i), or p; (random) and the
corresponding measurement signal y;:

t/At

Yt X \/Efz On
n=1



RESULT

Stochastic master equation (~ 1987)
State (density matrix or pure state):
dp; = ZL(pt) At + v D[O](ps) dt + /v H[O](pe) d Wy

Signal:

dy; = At [(O+ O p,] dt+d W,

with:

- D[O)(p) = OpOt — 3 (O1Op + pO1O)
«decoherence and dissipation»

- H[O)(p) = Op + pOT —tr [(O+ OT) p] p
«aquisition of information»

- 4% white noise

L. Diosi




COMMENT

Real trajectories, different (in spirit) from Dalibard-Castin-Mglmer
used for Monte Carlo with jumps

VOLUME 68, NUMBER § PHYSICAL REVIEW LETTERS 3 FERRUARY 1992

Wave-Function Approach to Dissip in Quantum Optics

Jean Dalibard

pars CEDEX 05, Frace

or from Gisin-Percival used for diffusive Monte Carlo

£ A Mk Gen 35 (09 5760 P 0 UK

model applied
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EXAMPLE

Situation considered

“Pure” continuous measurement of a qubit

Qubit;»ffc%om(pt t )

*

up 1 —py
Continuous energy measurement, i.e.
O=0,xH

Equation for the population

dp: = v pe(1 — pr) d Wy

Equation for the phase

d’LLt = —%Utdt+ g(2pt — l)th



EXAMPLE

“Pure” continuous measurement of a qubit
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EXAMPLE

“Pure” continuous measurement of a qubit
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BORN RULE

How do we see that the Born rule works from
dp; = /vy pe(1 — pg) dWy?

= pis a martingale = E[ps] = E[p:] = po
but E[peo] = P[p; — 1] - 1 + P[p; — 0] - 0 = P[p; — 1]

so finally:

Plp; — 1] = po



LOCAL CONCLUSION

— Collapse now has a timescale y~—!
— The Born rule stays valid

— The trajectory is real

H
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FIG. 3 Qu trajectories. a,b Individual traces obtained for with 7 = 0.4. The top

panel display:
indicates the
value within the blue matching window are used to tomog:
different measurement traces that contribute to
The lower insets indicate the distribution of measurement val i
trajectories obtained from analysis of the measurement signal are shown as dashed lines in the lowes
the tomographically reconstructed quantum trajectory based on the ensemble of measurements that are within the matching
window of the origin arement signal. ¢ Individual measurement traces and associated quantum trajectory obtained for
& ¢-measurement with 7 = 0.4,

as a green line, with the inset displaying the instantancous measurement voltage. The gray region
ndard deviation of the distribution of measurement values. Measurement traces that converge to an integrated

Quantum trajectories from the group of Irfan Siddiqi at Berkeley, Nature 502, 211 (2013)
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ONE EXAMPLE OF ITO WITHOUT FEEDBACK

How fast do we purify?

Look at A; = +/det(pr) = \/p:(1 — ps) and compute dA,

" 1
dA; = — SAdt + 5 VA1 — 2py) AW,
\té(correction

Let us look at the average A; = E[A]

=l = A=A



OTHER WAYS?

dP[p: = plpo] = Qﬂ’yzl:?l = — |: (W (hl {17311] —In [1*01/0]) B ﬁt/2) ‘| dp

2(1_ ) % In %p — In lﬁop +ﬂt/2 2
+ \/271"7’6;0(;;70— p P [_ (\f ( [1 } 2£ OD ) 1 -

Plalao]




USING THE MEASUREMENT RESULTS



GENERAL FEEDBACK

General feedback
State:
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GENERAL FEEDBACK

General feedback
State:
dpe = —i[ ;] At + v D[O)(pe) di + /7 H[O](pe) d W

Signal:
dy; = At [(O+ O1) py] dt+dW;

- Typically, one cannot get a closed form Master equation from
this



EXAMPLES

State stabilisation:

Gleyzes et al. Nature 446, 297-300
(2007)

n,=2 photons

3 photons

Detection

AR L PR B

Figure 2 | Individual quantum feedback trajectories. Two feedback runs
lasting 164 ms (2,000 loop iterations) stabilizing |, = 2) (left column) and
[17¢= 3) (right colum). The phase-shift per photon, ¢, = 0256, allows
controller K to discriminate n values between 0 and 7. For n, = 2, the Ramsey
phase is ¢, = —0.41ad, corresponding to nearly equal e and g detection
probabilities when 1 = 2. For n, = 3, two Ramsey phases ¢, = —0.4 rad and
2 = —1.24 rad are alternatively used, corresponding to equal ¢ and g

probabilities when 1 =2 and 1 = 3, respectively. a, Sequences of qubit

74 | NATURE | VOL 477 | 1 SEPTEMBER 2011

W L A A DN
60 20 40 60 | 80 100 120 140 160

Julls,
\\me‘ t(ms)

and red upward bars for e. Two-atom detections in the same state appear as
double-length bars. b, Estimated distance between the target and the actual
tat lied 2 |]).d, Photon
number probabilites estimated by K: P(n = ) is in green, P(n < n,) in red,
Pl > n) in blue. e, Field density operators p in the Fock-state basis estimated
by K at four different times marked by arrows.




OTHER EXAMPLES

- Faster purification
e.g. K. Jacobs, Phys. Rev. A 67, 030301(R) 2003

- Faster measurement

- Continuous quantum error correction
e.g. C. Ahn, A. C. Doherty, and A. ). Landahl Phys. Rev. A 65, 042301
2002
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MARKOVIAN FEEDBACK

Take the control proportional to the instantaneous signal:

dye

H( t) [43 = 7 dt

The feedback can act only infinitesimally after the measurement:

p+ dptotal = Un, (,0 + dpmeas) U}Lb

_ 6—'L'Cdy,, (P 4 dpmeas) 6'1$Cdy,,

And we take the last line as a mathematical definition of Markovian
feedback.



REMINDER

Physicist’s cookbook

One can work with Itd processes by using only a few rules:
AWy ~ Vi
- E[dW|F] =0
- dW,d W, =dt ~ Itd’s lemma



MARKOVIAN FEEDBACK

o+ dptotal _ esz'dyt ( iC'dy,

P+ dpmeas) €

dt

= (]1 — Z@dyt — C;dyf) (P = dpmeas) (11 + ZACdyt - C:dy%>
dt



MARKOVIAN FEEDBACK

i@dyt

P + dptotal - eiiCdyt (

P+ dpmeas) €

Final form

After using the physicist version of 1td’s formula one gets:

dps =y D[O](pe) dt + 7 H[O](pe) d Wy

— i[C, p] AW, + D ]dt+—¢ﬁ[20pt+pto* dt
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Markovian feedback master equation

dp: =y D[O](p:) dt
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MARKOVIAN FEEDBACK

Markovian feedback master equation

dp: =y D[O](p:) dt
+D[O]dt+ —iy/A A,opt+ptof] dt

- Can be putinto the Linblad form

- Has dissipation



SUMMARY

- One can construct a theory of continuous monitoring
- Itis possible to feedback the measurement results
- A large number of applications

- In general one needs to work with the stochastic equations (no
closed form equation for the average).
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