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INTRODUCTION

Inspired by a series of articles by Josh Combes and coauthors:

- arXiv:0712.3620
- arXiv:1105.0961
- arXiv:1410.8203

to which | made a modest contribution.

Side project corresponding to section 2.3 from my thesis (in french)
and arXiv:1511.06555.




IDEA

In a nutshell

With continuous measurements, measurements take time, so there
is potential room for optimization via control.
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REPEATED INTERACTIONS

How do you make a continuous measurement?
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There are other ways of deriving the same results: weak coupling with infinite bosonic

bath + unravelling, quantum noises, modified path integrals...
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REPEATED INTERACTIONS

Ideal situations of application

- Discrete situations “a la ‘i“’?ri:,\o o
Haroche”, with actual repeated ‘// Ty

interactions

=

- “True” continuous measurement !
settings (homodyne detection in
quantum optics) A\
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REPEATED INTERACTIONS

Other applications

- Any progressive measurement
(e.g. quantum point contacts)

- Dynamical reduction models in
quantum foundations




PROBLEM

Continuous measurement equations

Continuous measurement of the operator O [Barchielli, Belavkin,
Caves, Diosi, Milburn, Wiseman,...l:

dpr = —i[H, pi] dt + D[O](pr) dt + H[O](pr) dW: (1)
with
e D[O](p) = OpOT — %{OTO,p} usual Lindblad dissipator

o H[O](p) = Op + pOt — ptr[(O + ON)p] “stochastic innovation”
e Wi Wiener process i.e. for the lazy physicist “dWdW = dt”




SIMPLE CASE

Continuous measurement of a qubit

Take # = 2, O x V7 0z and write py = ( p{t : Etpt ) One gets in
components:
- For the probability
dpr = /7Pt (1= pr) dW;
- For the phase
duy = —%Utdt-i- g(Zpt — 1) dW;
v




SIMPLE CASE

Probability

dpt = /Pt (1 — pr) dWy — “collapse” towards the noise fixed points
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SIMPLE CASE

Probability

dpt = /Pt (1 — pr) dWy — “collapse” towards the noise fixed points




SIMPLE CASE

Phase

dug = —Fugdt+ 4 (2pt—1)th

= Ehh]::e*%

exponentially fast “dephasing”




TEACHINGS

This is generic

A continuous measurement always induces (in the measurement
basis):

- Progressive collapse of the probabilities independently of the
phases. Fully classical (same equation for Hidden Markov
Models) = Bayesian updating

- Progressive dephasing, this is the essentially quantum part




CONTINUOUS MEASUREMENT

With weak continuous measurements, new —previously
meaningless— questions can be asked:

- How long does it take to reach some target entropy / purity /
infidelity?

- Alternatively, what is the average entropy / purity / infidelity
after some time T?

- Can this characteristic time be improved for given detector
resources by toying with the system?




CONTROL PROBLEM

Initial formulation

dpr = —i[H(1), pi] dt + D[O](pt) dt + H[O](pr) dW;

Play with the control Hamiltonian H(t) ~with O fixed- to minimize
some information metric e.g.:

- S(pr) = —tr(pr log pr) for some final T — global optimization
- E[dS.(pt)|F] with Sy (p) = 1 —tr(p?) — local optimization




CONTROL PROBLEM

Other formulation

As we have no constraint on the norm of H(t), changing H is
equivalent to applying any unitary U(t) on the system in real time so
we have equivalently:

dpe = DIU(HOUT (1)](pe) dt + H[UDOU' (1)](pr) dWe

Rotating the system is the same thing as rotating the detectors.
Point of view often taken in the literature.




TWO PROBLEMS

“Optimal” Purification

No constraint, everything is allowed. You can exploit the full
guantumness of the state.

“Optimal” Measurement

The whole procedure needs to stay a measurement = the only
control operations allowed are permutation of vectors of the
measurement basis. Fully classical if one looks only at the
probabilities.




OPTIMAL PURIFICATION



CASE OF A QUBIT

Closed loop

The objective is to find v knowing u such that E[dS, |F] is minimal.




CASE OF A QUBIT

Closed loop
A straightforward application of 1td’s formula gives:

E[dS|F] = —2y(1—u-v)(1 = (u-v)?)dt (2)
= Optimality is reached foru L v [Jacobs 2003]

Comments
In that case, S/ (t) = e~*"" is deterministic!

Real time control needed!




CASE OF A QUBIT

Careful

It has been shown that this locally optimal scheme is also globally
optimal. But some subtlety, with the optimal scheme:

- The average log-impurity at a given time decreases twice faster.

- One reaches a given log-impurity target twice slower on average.




CASE OF A QUBIT

Open-loop purification

Try to be as orthogonal to the system as possible without knowing it.
One can think of two possibilities:

Alternate between 3 orthogonal vectors or average over the whole

Bloch sphere. T
R de'Physiaue
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GENERAL CASE

Closed-loop purification

In general, the locally optimal scheme is not known. In the case of
the linear entropy, one needs to find U(t) such that:

E[dS| 7] = tr [20D[U(OU! ()](pr) + HIUMOUHD](1)?] dt

is extremal.




GENERAL CASE

Closed-loop purification

The case where O has linearly spaced eigenvalues is the only one
that has been studied. It is known that:

- The speed-up is at least oc n? where n = dims?#

- Deterministic information extraction holds.

- Complementarity (~ orthogonality) is not enough and can lead
to a speed-up factor as low as 2.

- It seems that the part of the speed-up scaling up with
dimension is of classical origin as it is the same for optimal
measurement protocols.




GENERAL CASE

Open-loop purification

One can also choose the unitaries randomly (say uniformly with the
Haar measure):

E[dS.|F] :A at 20D[UOU](pr) + HIUOU](p1)?] dt

U(n

Seems to be the best open-loop one can do. (Proof?)




OPTIMAL MEASUREMENT



QUBIT REGISTER

Setup

A qubit is too trivial — consider a qubit register:

—-FEEEE

Signals p ; 7 Yt(5)

Detectors

“10010 with probability p”
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QUBIT REGISTER

Quantum mechanical writing

Consider N qubits, i.e. 5 = (€?)®". Measure simultaneously
o0=1® - 15,31Q ---Q1:

dpt = Z D{ } P dt+7'l{ }(Pt)dwjtv

with dw} de = ¢;; dt, i.e. independent measurements. Start for
simplicity with no mformatlon ie. po = lN




QUBIT REGISTER

Classical (equivalent!) picture

You have N classical bits with a well defined but unknown value. You
start measuring them progressively and independently (take blurry
pictures). Write:

pl = P[bit j = 1]all measurements before t]

Then: . . ‘ .
dpy = 4p}(1— p}) dW,




QUBIT REGISTER

Idea
Why is some speed-up expected?

Because the no-control measurement procedure is bad at
distinguishing the most probable configuration from the second
most probable one.

Indeed because of independence, these two states look like this:

1010000101110
1010010101110

The between the two is only 1.




QUBIT REGISTER

Idea

Only 1 out of the N detector is actually useful to discriminate
between two states with Hamming distance 1.

A good scheme should be able to use them all at once and provide a
speed-up o N.




QUBIT REGISTER

Locally optimal scheme

Reorder the pointer basis in real time, e.g.:

most probable  [1011101) —  [1111111)

2ne |0011107) — |0000000)
3 [1001101) —  [1000000)
4th [1011111) = |0100000)
last 10100010) —  [1111110)

Exact speed-up not known but > Y.




QUBIT REGISTER

Open-loop scheme

Do fast random permutations of the pointer basis:

open loop purification open loop measurement

l

fueu(n) du ZO’EG(ZN)

Similar speed-up oc N (actually = §).




QUBIT REGISTER

Problems

The previous schemes are impossible to implement —even only
numerically- on registers of size N > 10.

- Need 2N instead of N variables to store the probability.
- For open loop, need to sample (2V)! permutations.

Is it possible to solve these problems while keeping a linear
speed-up?




QUBIT REGISTER

New algorithm

One can try to implement a few frugality constraints:

- Use a smaller number of basis!
- Have the permutation map between the basis be simple.

- Ideally, have all states far away from each other on average with
respect to the Hamming distance.

Last constraint is too strong seems impossible to implement
(Singleton bound?)




QUBIT REGISTER

Protocol

The idea is to run the standard measurement procedure for a while
until a reasonable candidate is reached and construct a new basis
where it is bit flipped:

candidate [1011101) — |0100010)
bitwise flipped |0100010) —  |1011107)

rest [1000000) — |1000000)
|0100000) — |0100000)

{

Then measure in the original basis and the new alternatively.




QUBIT REGISTER

Protocol

candidate changed

' candidate

v

measure in #

measure in #

B B
10110~,~10110
0100101001

00000——00000
10000——10000
01000——01000

Infidelity target not reached

result

10110

with A < 1
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QUBIT REGISTER

Things you need to prove

- Prove that it is possible to reconstruct all the probabilities with
the 2N marginals and a small number of operations.

- Prove that the “guess” phase has no impact on the asymptotic
speed-up.
- Compute the asymptotic speed-up in the “check” phase

Actually OK and asymptotic speed-up = %




QUBIT REGISTER

Asymptotic speed-up

Asymptotic Speed-Up

Number of Qubits

&
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QUBIT REGISTER

Limitations

Practical speed-up much worth than asymptotic speed-up:

Scc(d)

0 20 40 60 S0 100 120
—log;p A

it's something %/ REt Département
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CONCLUSION

A few open questions

- What about global optimality?
- What about short time behavior?
- What about more generic systems?

- What is quantum and what is classical in optimal purification?
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