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introduction

Pourquoi s’intéresser à la mesure ?

“We know that the moon is demonstrably
not there when nobody looks”

David Mermin 1981
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introduction

«Opération mathématiquement triviale»

Postulat de la mesure
Pour un système décrit par |ψ⟩ ∈ H et une mesure
de projecteurs Πi tels que

∑
i Πi = 1 on a :

Règle de Born :

Résultat “ i ” avec probabilité P[i ] = ⟨ψ|Πi |ψ⟩

Collapse :
|ψ⟩ −→ Πi |ψ⟩√

P[i ]

Max Born 1926

John von Neumann
1932
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introduction

«Opération physiquement subtile»

∙ Qu’est ce qu’une mesure ?

∙ Comment la mesure peut-elle être un concept
«primitif» ?

∙ De quoi est constitué un résultat ?

∙ Le postulat de la mesure se déduit-il des autres
postulats ?

Physics World, Against Measurement

Albert Einstein 1935

John S. Bell 1989
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Problèmes théoriques/fondamentaux «Problème de la mesure»

→ De quoi le monde est-il constitué ?

→ Comment la mesure émerge-t-elle des constituants ?

Everett 1957 Bohm 1952 Ghirardi 1986
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introduction

Problèmes pratiques “For all practical purposes”

→ Comment comprendre les situations limites où le postulat
fondamental est trop grossier ?

→ Peut-on arrondir les angles du formalisme en utilisant le
formalisme lui même ?

→ Peut-on voir la brutalité du collapse comme la limite de quelque
chose de plus fin ?



introduction

Coupure de Heisenberg

Délimitation entre le système, qui obéit à l’équation de Schrödinger
et l’observateur qui peut appliquer le postulat de la mesure.

Eugene Wigner
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introduction

Coupure de Heisenberg

Délimitation entre le système, qui obéit à l’équation de Schrödinger
et l’observateur qui peut appliquer le postulat de la mesure.

Eugene Wigner

→ retarder le moment où l’on utilise le postulat de la mesure



plan

1– Introduction au formalisme des mesures continues

2– Mesures continues fortes

∙ Sauts quantiques
∙ Échardes quantiques

3– Application du formalisme à la gravité



ce dont on ne parlera pas

1– Optimisation de l’extraction d’information

2– Marches quantiques ouvertes

3– Contrôle par la mesure

4– Lien avec les modèles de Markov caché



introduction aux mesures continues



interactions répétées

Situation considérée
· Système, |ψ⟩ ∈ Hs
· Sonde, Hp = C2

· Interaction unitaire
· Mesure σz sur la sonde

|ψ⟩n ⊗ |+⟩x
interaction−−−−−−→ Ω̂+ |ψ⟩n ⊗ |+⟩z + Ω̂− |ψ⟩n ⊗ |−⟩z

mesure−−−−→ |ψ⟩n+1 =
Ω± |ψ⟩n√

⟨ψ|Ω†±Ω± |ψ⟩n

avec pour seule contrainte :

Ω†+Ω+ +Ω†−Ω− = 1
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interactions répétées

Trajectoires quantiques discrètes

La donnée d’une suite |ψ⟩n ou ρn (aléatoire) et des
δn = ±1, résultats de mesure correspondants.

⇒ Interactions douces et fréquentes :

Ω± =
1√
2
(
1±O ε+# ε2 + · · ·

)

Trajectoires quantiques continues

La donnée d’un processus continu |ψ⟩t ou ρt
(aléatoire) et du signal de mesure yt correspondant.
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résultat

Équation maîtresse stochastique (∼ 1987)

Matrice densité :

dρt = L (ρt) dt + γD[O](ρt)dt +√
γH[O](ρt)dWt

Signal :

dyt =
√
γ tr

[
(O +O†) ρt

]
dt + dWt

avec :
∙ D[O](ρ) = OρO† − 1

2
(
O†Oρ+ ρO†O

)
«décohérence et dissipation»

∙ H[O](ρ) = Oρ+ ρO† − tr
[
(O +O†) ρ

]
ρ

«aquisition d’information»
∙ dWt

dt bruit blanc

V. Belavkin

A. Barchielli

L. Diósi



commentaire

Trajectoires réelles, différent de Dalibard Castin Mølmer qui est
utilisé pour le Monte Carlo (dans une limite de saut)



mesure continue via les interactions répétées

Situations idéales d’application

∙ Situations «à la Haroche», avec
de vraies interactions répétées.

∙ Cas de mesures «réellement»
continues (détection homodyne
en optique quantique)



mesure continue via les interactions répétées

Autres applications

∙ N’importe quelle mesure
progressive (ex : points
quantiques)

∙ Problèmes fondamentaux,
constructions de nouvelles
théories



exemple

Situation considérée
Mesure continue «pure» d’un qubit

Qubit ⇒ H = C2 donc ρt =

(
pt ut
u∗t 1 − pt

)
Mesure continue de l’énergie, i.e. O = σz ∝ H

Équation pour la probabilité

dpt =
√
γ pt(1 − pt)dWt

Équation pour la phase

dut = −γ8 ut dt +
√
γ

2 (2pt − 1) dWt
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conclusion locale

→ Collapse désormais progressif sur un temps γ−1

→ Règle de Born conservée

→ Seule équation “raisonnable” donnant lieu à du collapse [Bassi,
Dürr, Hinrichs, 2013]

→ Lien avec le problème fondamental de la mesure :

“Continuous spontaneous localization” (CSL)
phénoménologique −→ fondamental

Philip Pearle 1987
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limite de mesure forte



questions de motivation

Deux types de situations intéressantes avec le nouveau formalisme :

Mesures fortes γ ≫ ωi

∙ Effet Zénon
∙ Sauts quantiques

Mesures faibles γ ∼ ωi

∙ Optimisation
∙ Contrôle



exemple 1

Qubit couplé à un bain thermique

Système considéré

· Qubit H = C2

· Mesure continue de O ∝ H ∝ σz
· Bain thermique markovien
· Population du fondamental pt

Équation maîtresse stochastique autonome :

dpt = λ(peq − pt)dt
relaxation thermique

+
√
γ pt(1 − pt)dWt
mesure continue
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exemple 1 : résultats

Pas de mesure continue, γ = 0λ
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exemple 2

Qubit et mesure «orthogonale à l’énergie»

Système considéré

· Qubit H = C2

· Mesure continue de O ∝ σz ⊥ H
· Système fermé
· Population de l’état |+⟩z → pt



exemple 2 : résultats

Pas de mesure continue, γ = 0ω
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exemple 2 : résultats

Mesure moyenne, γ = ω



exemple 2 : résultats

Mesure un peu forte, γ = 10ω



exemple 2 : résultats

Mesure forte, γ = 30ω



exemple 2 : résultats
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exemple 2 : résultats

Mesure très très forte, γ = 300ω



exemple 2 : résultats

Mesure très très très forte, γ = 1000ω



proposition

Évolution libre markovienne
∂tρt = L (ρt)− i [H, ρt]

Mesure continue de O
O =

∑
k λk |k⟩ ⟨k|

Sauts quantiques

ρ converge vers une chaîne de Markov de matrice de transition M

Mi←j =

contribution «incohérente»︷︸︸︷
Lii

jj +
1

4γ

∣∣∣∣ Hij
λi − λj

∣∣∣∣2︸ ︷︷ ︸
contribution «cohérente»
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commentaires

1– Les valeurs propres λi de l’opérateur mesuré ont un impact sur la
dynamique limite.

2– Deux types de transitions :

∙ Transitions cohérentes : Effet Zénon
∙ Transitions incohérentes : pas d’effet Zénon

→ application au contrôle

3– Compréhension pratique des sauts quantiques sans préjugé sur
la résolution du problème «fort» de la mesure.



idée de preuve

– Calcul perturbatif autour de la solution mesure pure

– Problème de bruit fort ( ̸= point col, Kramers)



échardes quantiques



retour sur les exemples
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retour sur les exemples

Échardes quantiques



premiers commentaires

– Pas de contradiction avec le résultat sur les sauts. On a bien la
convergence en loi vers le processus de Markov :

E[f(ρt1 , ρt2 , · · · , ρtn)] −→
γ→+∞

E[f(ρMt1 , ρ
M
t2 , · · · , ρ

M
tn)]

mais pas plus !

– Pas de cas général, seulement deux cas particuliers dont

dpt = λ(peq − pt)dt
relaxation thermique

+
√
γ pt(1 − pt)dWt
mesure continue
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proposition

Statistique des échardes

Le nombre de pics partant de 0 et finissant dans le domaine D du
plan (t, p) est un processus de Poisson d’intensité µ :

µ =

∫
D

dν avec dν =
λ

p2 dp dt



proposition

Statistique des échardes

Le nombre de pics partant de 0 et finissant dans le domaine D du
plan (t, p) est un processus de Poisson d’intensité µ :

µ =

∫
D

dν avec dν =
λ

p2 dp dt



conclusion locale

On a désingularisé le postulat de la mesure et les sauts quantiques.

✓ On retrouve approximativement le postulat de la mesure et les
sauts quantiques

✓ Plus de finesse quantitative (dépendance en λ, Zénon et non
Zénon)

✓ Plus de finesse qualitative (échardes, statistiques anormales)



application à la gravité



quel est le problème ?

Construire une théorie englobant mécanique quantique et gravité
est difficile. Il s’agit pour le moment d’un problème ouvert.

Une possibilité d’unificiation est de «quantifier» la gravité. C’est
difficile. Je n’y connais pas grand chose.

Questions

Est-il nécessaire de quantifier la gravité ?

Peut-on coupler la matière quantique à un espace-temps
fondamentalement classique ?
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gravité classique

L’espace-temps contraint la dynamique de la matière.

∂µ −→ Dµ

La matière courbe l’espace-temps.

Rµν − 1
2gµνR ∝ Tµν



gravité fondamentalement semi-classique

L’espace-temps contraint la dynamique de la matière quantique ✓

∂µ −→ Dµ

La matière quantique courbe l’espace-temps ×

Rµν − 1
2gµνR ??∝ T̂µν

opérateur



approche canonique de møller et rosenfeld

Proposition de Møller et Rosenfeld

Transformer l’opérateur en nombre en prenant une
valeur moyenne :

T̂µν −→ ⟨Ψ| T̂µν |Ψ⟩

À la limite newtonienne, pour une unique particule,
champ gravitationnel généré par une densité de
masse ∝ |ψ(x)|2 (équation de Schrödinger-Newton)

C. Møller 1963

L. Rosenfeld 1963



mauvaise idée

Inéligible au statut de théorie fondamentale

Pseudo-théorème de Gisin
Toute non-linéarité dans l’équation maîtresse permet
de transmettre de l’information plus vite que la
lumière en utilisant des états EPR. Nicolas Gisin 1990

∙ Le résultat est valable même si la non-linéarité se «propage» à
une vitesse v ≪ c.

∙ Le résultat est valable même si la théorie est stochastique.
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le signal

Problème

Il faut être capable d’associer une distribution de masse classique
tangible à de la matière quantique.

Pourquoi pas le signal correspondant à une mesure continue de la
densité de masse ?

La gravité devient formellement un problème de feedback
quantique.
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équations

Modèle de collapse continu (CSL) ou «mesure continue de la densité de masse»

Matrice densité :

dρ
dt = −i[H, ρ]− γ

4

∫
R3

dxD[M̂σ(x)](ρ)
décohérence

+

√
γ

2

∫
R3

dxH[M̂σ(x)](ρ)w(x)
collapse

Signal :
SM(x) = tr[M̂σ(x)] +

1
√
γ

w(x)

Secteur gravitationnel :

∇2φ = 4πG SM «Le signal source le champ» – nouveau

V̂ =

∫
R3

dxφ(x)M̂σ(x) «Le champ modifie la dynamique» – standard
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heuristique



résultats

Équation finale

dρ
dt =− i[H, ρ]− γ

4

∫
R3
dxD[M̂σ(x)](ρ)

décohérence «intrinsèque»

+

√
γ

2

∫
R3
dxH[M̂σ(x)](ρ)w(x)

collapse «intrinsèque»

− i
[
V̂p, ρ

]
+

1
γ

∫
R3
dxD[Φ̂(x)](ρ)

décohérence «gravitationnelle»

+
1
√
γ

∫
R3
dxH[i Φ̂(x)](ρ)w(x)

collapse «gravitationnel»

avec le potentiel de paire standard :

V̂p = −1
2G
∫
R3

dx M̂σ(x)M̂σ(y)
|x − y|

et l’opérateur :

Φ̂(x) = −G
∫
R3

dy M̂σ(y)
|x − y|



résultats

✓ Pas d’auto-interaction pour une particule unique

✓ Potentiel de paire effectif classique

✓ Décohérence additionnelle d’origine gravitationnelle

✓ Règle de Born valide

✓ Pas de transmission d’information plus vite que la lumière

✓ Entièrement explicite à la limite newtonnienne

✓ Rend les modèles de collapse falsifiables

× Extension relativiste difficile

× Extension à la théorie quantique des champs difficile

× Le rôle des régulateurs n’est pas évident



conclusion



conclusion

La théorie de la mesure continue possède un large champ
d’applications

Pratique : application directe aux expériences

[intérêt historique, contrôle quantique]

Semi-fondamentale : meilleure compréhension de la mesure

[sauts quantiques, échardes]

Fondamentale : construction de nouvelles théories ou objets

[gravité, couplage semi-classique général, marches quantiques ouvertes]



et après...

Sur la technique

– Extension des résultats aux interactions répétées

– Extension au régime non Markovien

– Extension aux systèmes étendus

– Extension à l’estimation a posteriori

– Explorer la thermodynamique stochastique

Sur l’application à la gravité

– Construire un modèle de collapse relativiste gérable

– Étudier des modèles non newtoniens simples (cosmologiques ?)

– Appliquer le modèle existant aux différentes expériences planifiées



smbc-comics.com



slides bonus



intuition sur les spikes

Avec une redéfinition locale du temps, la trajectoire quantique
devient un mouvement Brownien réfléchi : t → τ avec dτ = (dpt)

2
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