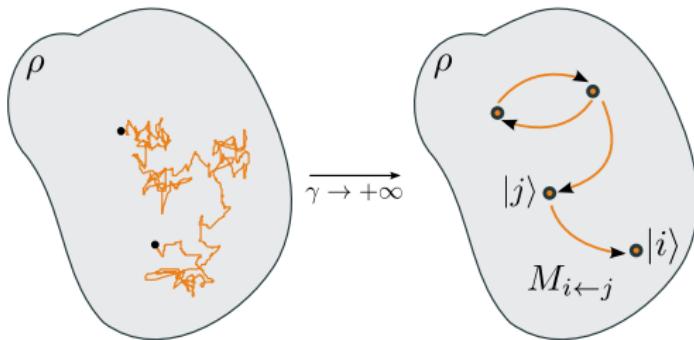


# Continuous measurement in the large $\gamma$ limit

Antoine Tilloy

Max Planck Institute of Quantum Optics, Garching, Germany



Theory seminar  
Griffith University  
March 26th, 2018

Alexander von Humboldt  
Stiftung / Foundation



# Genesis

Work done in Paris at ENS with

- ▶ Denis Bernard (ENS, Paris)
- ▶ Michel Bauer (CEA, Saclay)

Corresponds to my PhD **thesis** and:

1. *Computing the rate of measurement induced quantum jumps*  
arXiv:1410.7231
2. *Spikes in quantum trajectories*  
arXiv:1510.01232
3. *Zoomin in on quantum trajectories*  
arXiv:1512.02861

# Objective

Understand dynamics of the type:

$$\partial_t \rho_t = \mathcal{L}(\rho_t) + \gamma \mathcal{M}(\rho_t)$$

where:

- ▶  $\mathcal{L}$  is the **Liouvillian** in absence of measurement
- ▶  $\mathcal{M}$  encodes a **continuous measurement** process

when  $\gamma \rightarrow +\infty$

# Objective

Understand dynamics of the type:

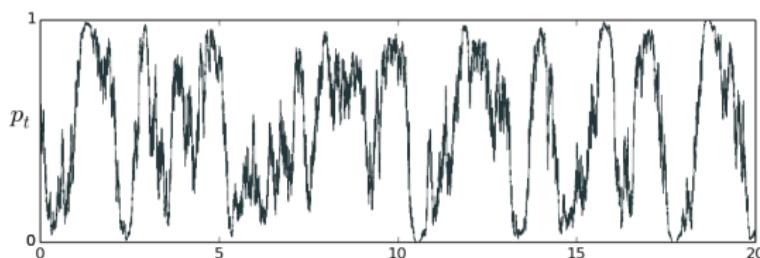
$$\partial_t \rho_t = \mathcal{L}(\rho_t) + \gamma \mathcal{M}(\rho_t)$$

where:

- ▶  $\mathcal{L}$  is the **Liouvillian** in absence of measurement
- ▶  $\mathcal{M}$  encodes a **continuous measurement** process

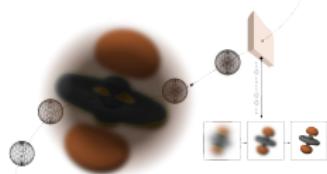
when  $\gamma \rightarrow +\infty$

Analysis at the **trajectory** level:

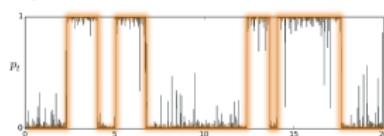


# Outline

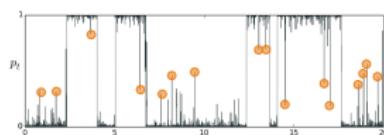
## 1. Introduction: continuous measurement



## 2. Jumps

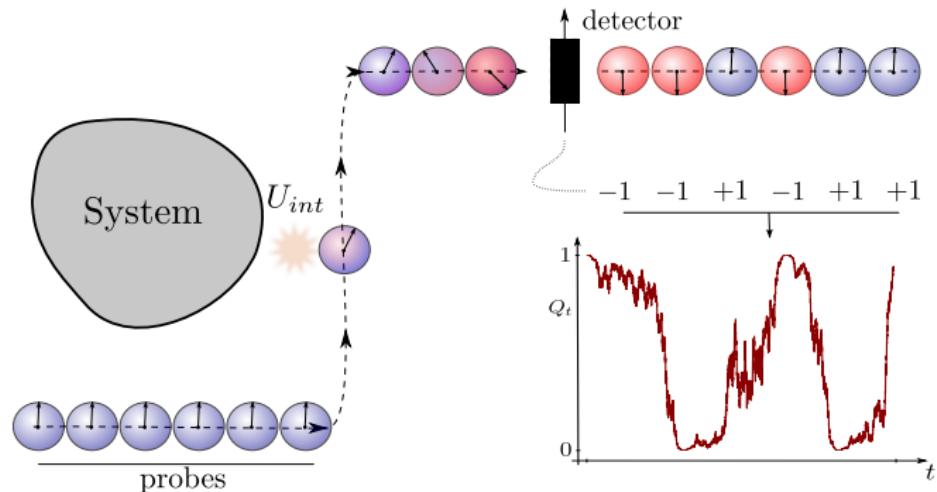


## 3. Spikes



## 4. Discussion

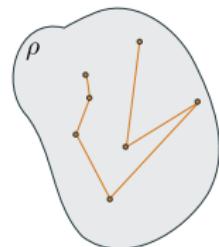
## Continuous measurement



# Repeated interactions

## Discrete quantum trajectories

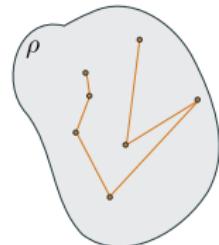
A sequence of  $|\psi_n\rangle$  or  $\rho_n$  (random) and the corresponding measurement results  $\delta_n = \pm 1$ .



# Repeated interactions

## Discrete quantum trajectories

A sequence of  $|\Psi_n\rangle$  or  $\rho_n$  (random) and the corresponding measurement results  $\delta_n = \pm 1$ .



- ▶ Make the interaction between system and probe smoother

$$U_{\text{int}} = \mathbb{1} + i\varepsilon \mathcal{O}_{\text{sys}} \otimes K_{\text{probe}}$$

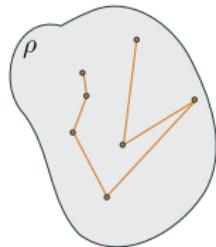
- ▶ Increase the frequency at which probes are sent:

$$\tau \propto \varepsilon$$

# Repeated interactions

## Discrete quantum trajectories

A sequence of  $|\Psi_n\rangle$  or  $\rho_n$  (random) and the corresponding measurement results  $\delta_n = \pm 1$ .



- ▶ Make the interaction between system and probe smoother

$$U_{\text{int}} = \mathbb{1} + i\varepsilon \mathcal{O}_{\text{sys}} \otimes K_{\text{probe}}$$

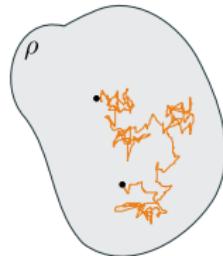
- ▶ Increase the frequency at which probes are sent:

$$\tau \propto \varepsilon$$

## Continuous quantum trajectories

A continuous map  $|\Psi_t\rangle$  or  $\rho_t$  (random) and the corresponding continuous measurement signal

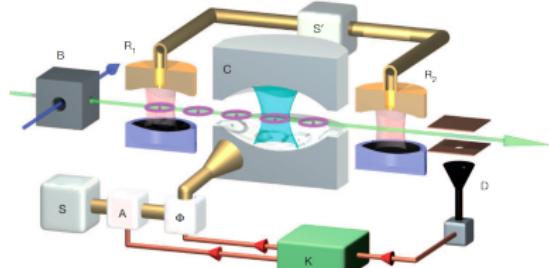
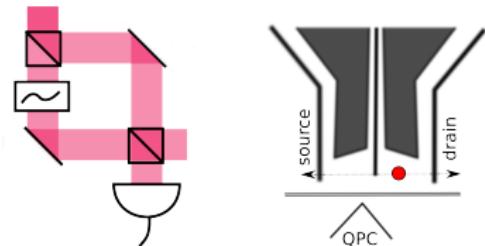
$$y_t \propto \sqrt{\varepsilon} \sum_k \delta_k$$



⚠ Essentially a central limit theorem result ⚠

## In practice

- ▶ Discrete situations “a la Haroche”, with **actual** repeated interactions
- ▶ Almost “true” continuous measurement settings (homodyne detection in quantum optics, quantum point contacts for quantum dots)



# Result

## Stochastic Master Equation ( $\sim 1987$ )

Density matrix:

$$d\rho_t = \mathcal{L}(\rho_t) dt + \gamma \mathcal{D}[\mathcal{O}](\rho_t) dt + \sqrt{\gamma} \mathcal{H}[\mathcal{O}](\rho_t) dW_t$$

Signal:

$$dy_t = \sqrt{\gamma} \operatorname{tr} [(\mathcal{O} + \mathcal{O}^\dagger) \rho_t] dt + dW_t$$

with:

- $\mathcal{D}[\mathcal{O}](\rho) = \mathcal{O}\rho\mathcal{O}^\dagger - \frac{1}{2} (\mathcal{O}^\dagger\mathcal{O}\rho + \rho\mathcal{O}^\dagger\mathcal{O})$
- $\mathcal{H}[\mathcal{O}](\rho) = \mathcal{O}\rho + \rho\mathcal{O}^\dagger - \operatorname{tr} [(\mathcal{O} + \mathcal{O}^\dagger) \rho] \rho$
- $\frac{dW_t}{dt}$  “white noise”



V. Belavkin



A. Barchielli



L. Diósi

## Example 0

### Situation considered

Pure continuous measurement of a qubit:

- ▶ Qubit  $\Rightarrow \mathcal{H} = \mathbb{C}^2$
- ▶ Hence  $\rho_t = \begin{pmatrix} p_t & u_t \\ u_t^* & 1 - p_t \end{pmatrix}$
- ▶ Continuous energy measurement:  $\mathcal{O} = \sigma_z \propto H$



## Example 0

### Situation considered

Pure continuous measurement of a qubit:

- Qubit  $\Rightarrow \mathcal{H} = \mathbb{C}^2$
- Hence  $\rho_t = \begin{pmatrix} p_t & u_t \\ u_t^* & 1 - p_t \end{pmatrix}$
- Continuous energy measurement:  $\mathcal{O} = \sigma_z \propto H$



Starting point:

$$d\rho_t = \gamma \mathcal{D}[\mathcal{O}](\rho_t) dt + \sqrt{\gamma} \mathcal{H}[\mathcal{O}](\rho_t) dW_t$$

⇒ Equation for the probability:

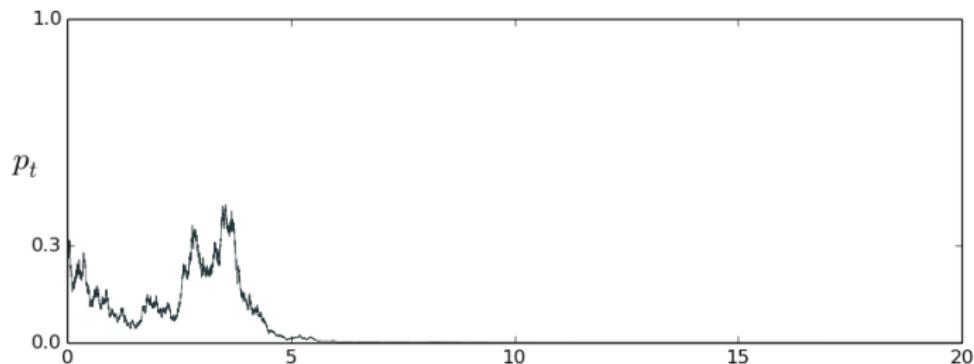
$$dp_t = \sqrt{\gamma} p_t (1 - p_t) dW_t$$

⇒ Equation for the phase:

$$du_t = -\frac{\gamma}{8} u_t dt + \frac{\sqrt{\gamma}}{2} (2p_t - 1) dW_t$$

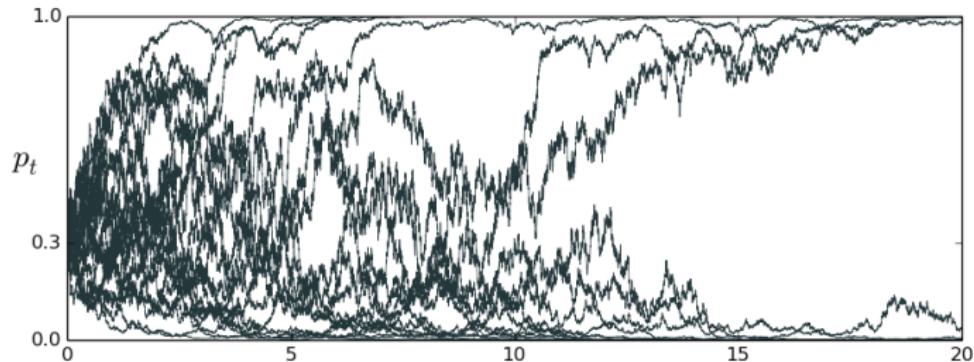
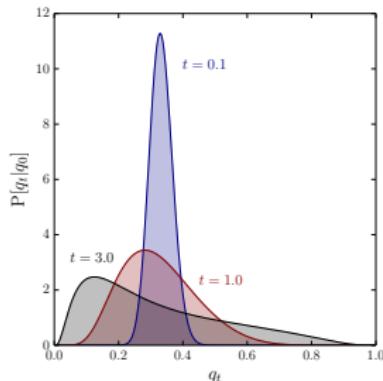
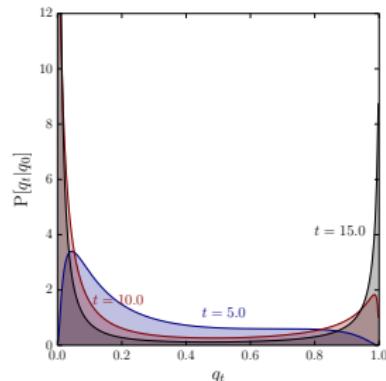
## Example 0

Pure continuous measurement of a qubit  $dp_t = \sqrt{\gamma} p_t (1 - p_t) dW_t$



## Example 0

Pure continuous measurement of a qubit  $dp_t = \sqrt{\gamma} p_t(1 - p_t) dW_t$

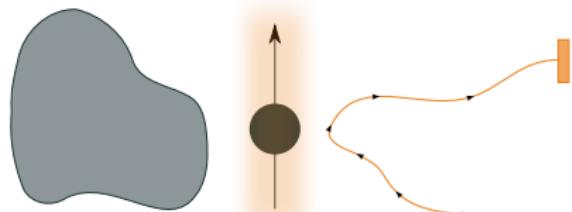


## Example 1

### Qubit coupled to a thermal bath

#### System considered

- ▶ Qubit  $\mathcal{H} = \mathbb{C}^2$
- ▶ Continuous measurement of  $\mathcal{O} \propto H \propto \sigma_z$
- ▶ Markovian thermal bath
- ▶  $\rho_t = \begin{pmatrix} p_t & u_t \\ u_t^* & 1 - p_t \end{pmatrix}$

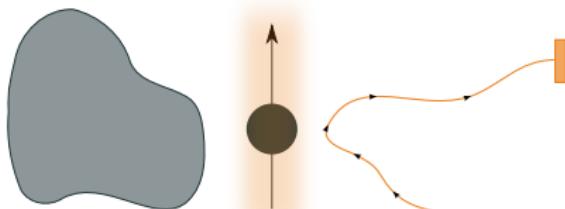


## Example 1

### Qubit coupled to a thermal bath

#### System considered

- ▶ Qubit  $\mathcal{H} = \mathbb{C}^2$
- ▶ Continuous measurement of  $\mathcal{O} \propto H \propto \sigma_z$
- ▶ Markovian thermal bath
- ▶  $\rho_t = \begin{pmatrix} p_t & u_t \\ u_t^* & 1 - p_t \end{pmatrix}$



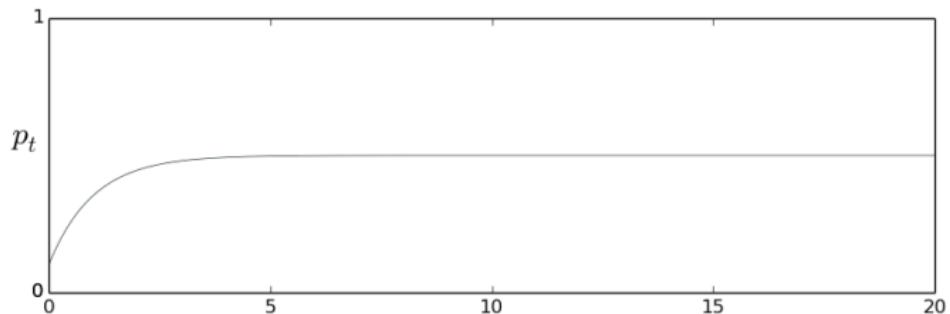
Autonomous stochastic master equation for  $p_t$ :

$$dp_t = \lambda(p_{\text{eq}} - p_t) dt + \sqrt{\gamma} p_t (1 - p_t) dW_t$$

thermal relaxation      continuous measurement

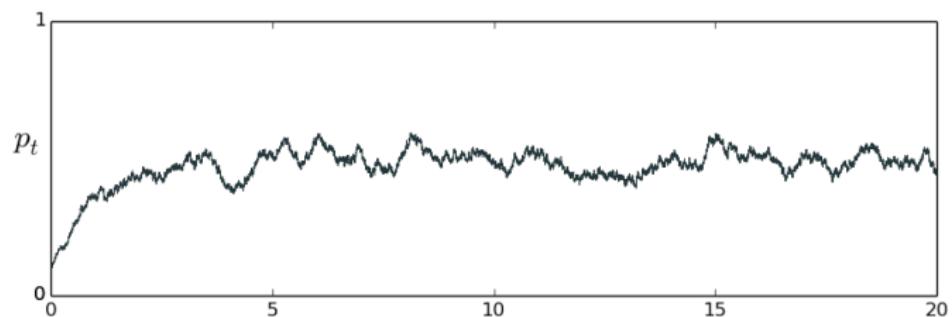
## Example 1

No measurement,  $\gamma = 0\lambda$



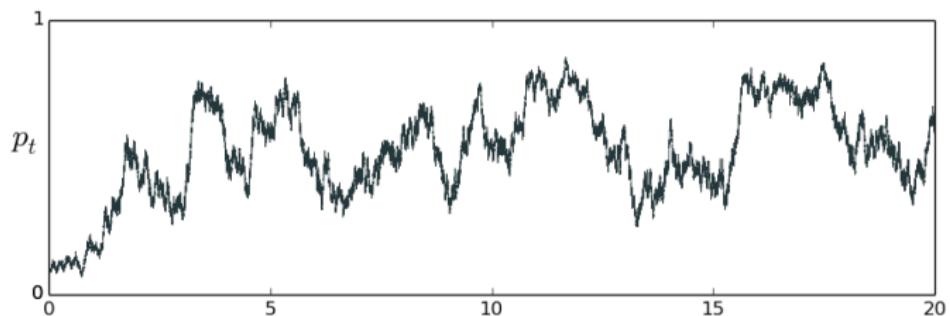
## Example 1

Weak measurement,  $\gamma = 0.1\lambda$



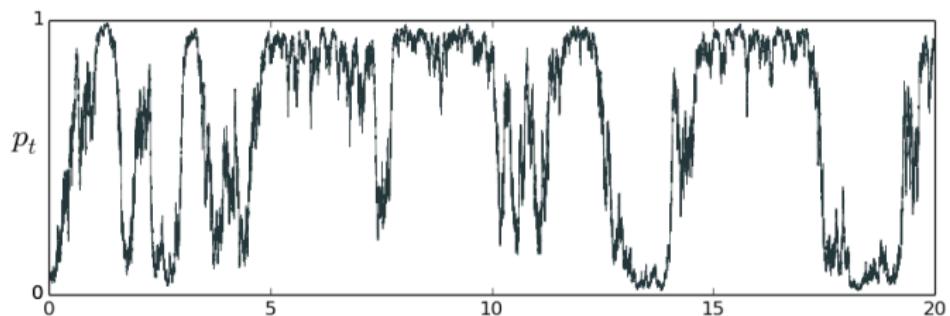
## Example 1

Decent measurement,  $\gamma = \lambda$



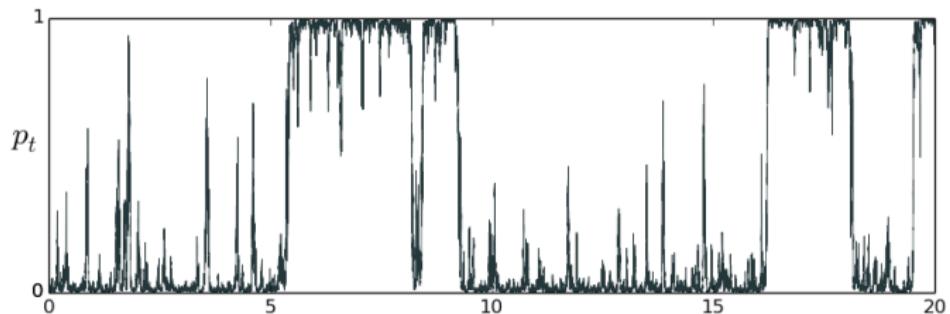
## Example 1

Getting strong measurement,  $\gamma = 10\lambda$



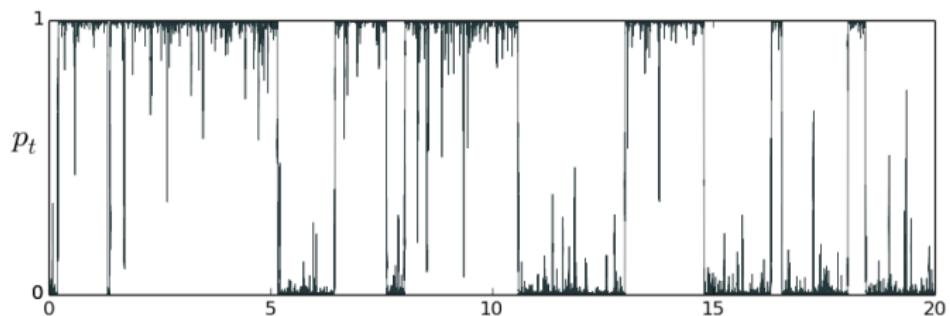
## Example 1

Pretty strong measurement,  $\gamma = 100\lambda$



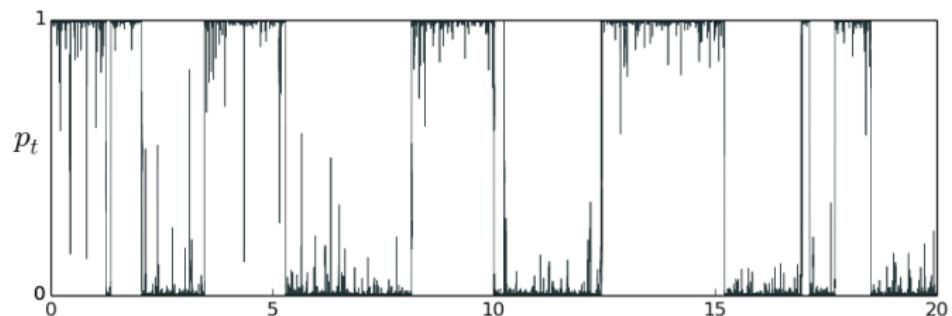
## Example 1

Strong measurement,  $\gamma = 1000\lambda$



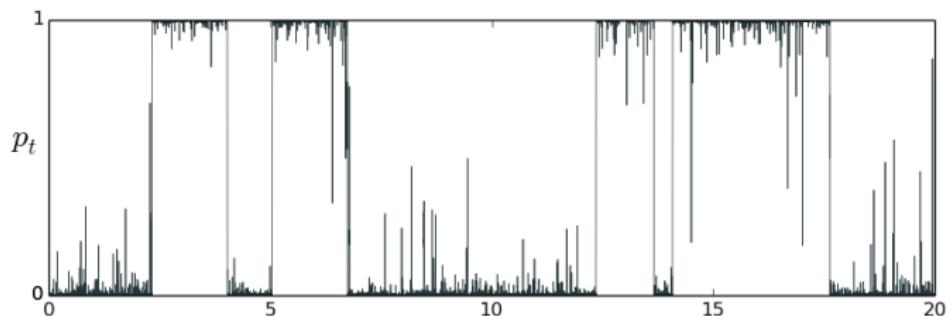
## Example 1

Very strong measurement,  $\gamma = 10^4 \lambda$



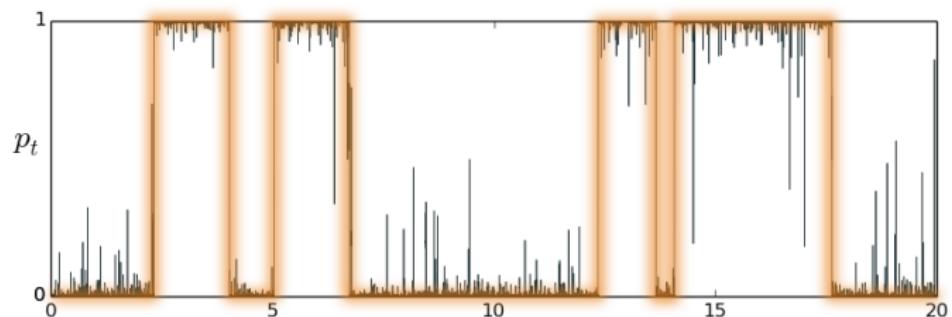
## Example 1

Über strong measurement,  $\gamma = 10^5 \lambda$



## Example 1

Über strong measurement,  $\gamma = 10^5 \lambda$

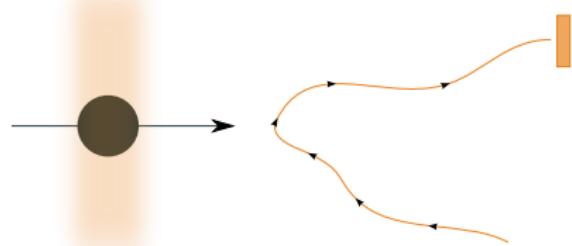


## Example 2

### Measurement non-commuting with the evolution

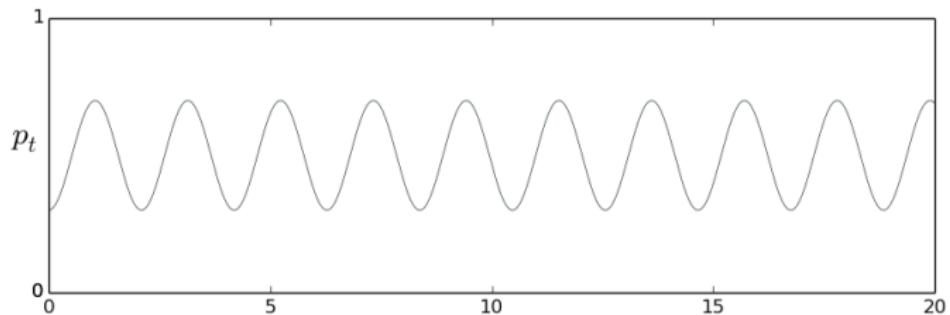
#### System considered

- ▶ Continuous measurement of  
 $\mathcal{O} \propto \sigma_z \perp H$
- ▶ Closed system
- ▶  $\rho_t = \begin{pmatrix} p_t & u_t \\ u_t^* & 1 - p_t \end{pmatrix}$



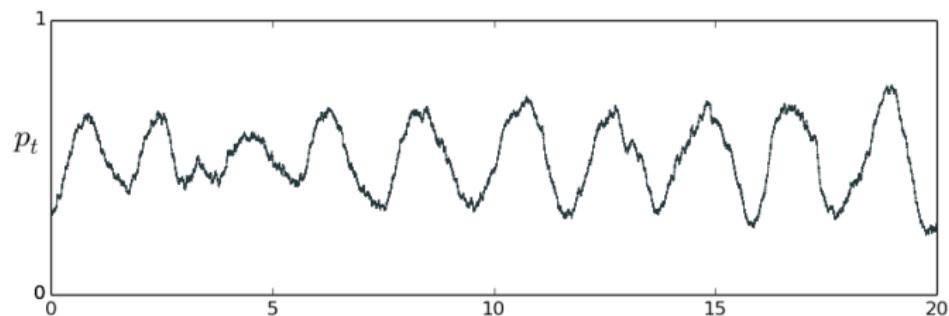
## Example 2

No measurement,  $\gamma = 0 \omega$



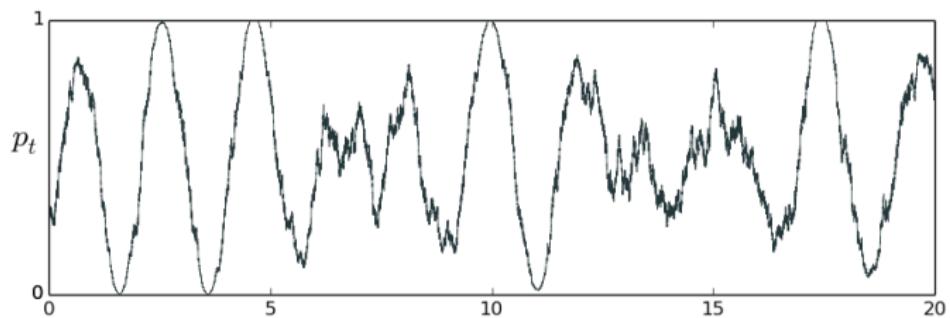
## Example 2

Weak measurement,  $\gamma = 0.1 \omega$



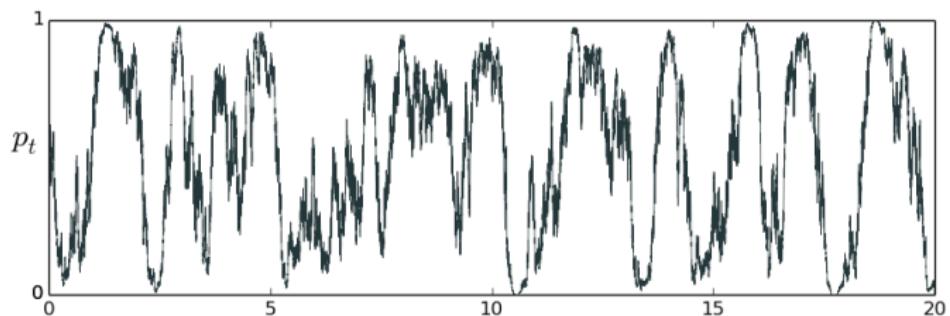
## Example 2

Decent measurement,  $\gamma = \omega$



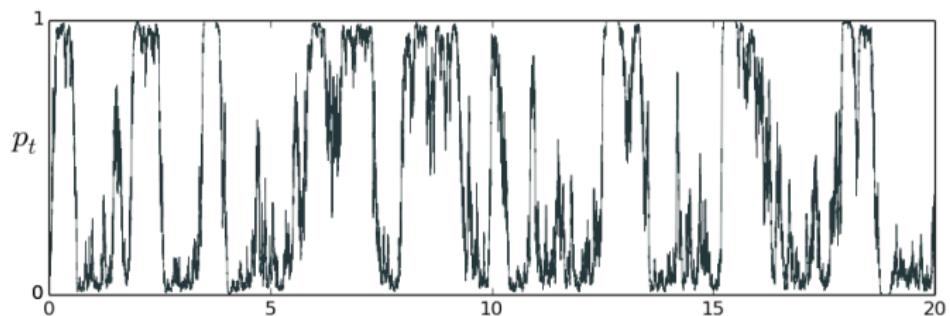
## Example 2

Getting strong measurement,  $\gamma = 10 \omega$



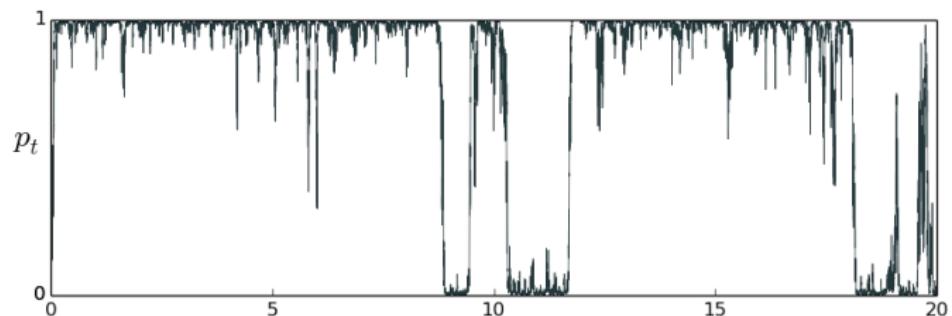
## Example 2

Pretty strong measurement,  $\gamma = 30 \omega$



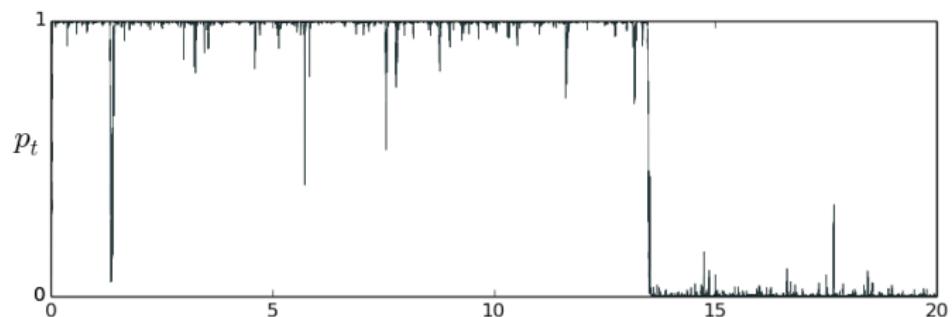
## Example 2

Strong measurement,  $\gamma = 100 \omega$



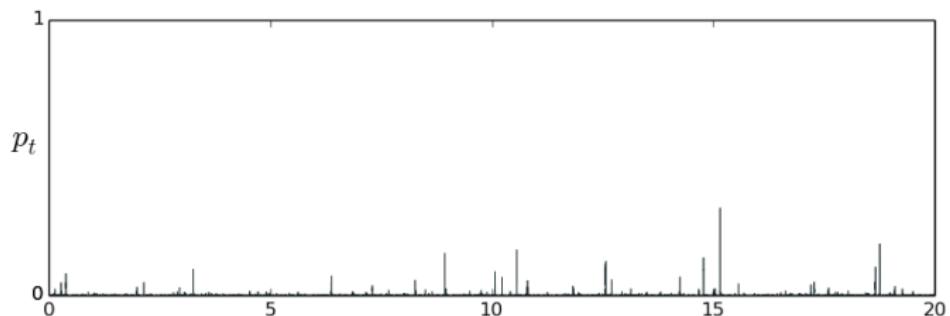
## Example 2

Very strong measurement,  $\gamma = 300 \omega$



## Example 2

Über strong measurement,  $\gamma = 1000 \omega$



## Theorem: jumps

Consider  $d\rho = \mathcal{L}(\rho) dt + \gamma \mathcal{D}[\mathcal{O}](\rho) dt + \sqrt{\gamma} \mathcal{H}[\mathcal{O}](\rho) dW_t$

1. Markovian evolution  $\mathcal{L}(\rho_t) = \mathcal{L}(\rho_t) - i[H, \rho_t]$
2. Continuous measurement of  $\mathcal{O} = \sum_k \lambda_k |k\rangle\langle k|$

# Theorem: jumps

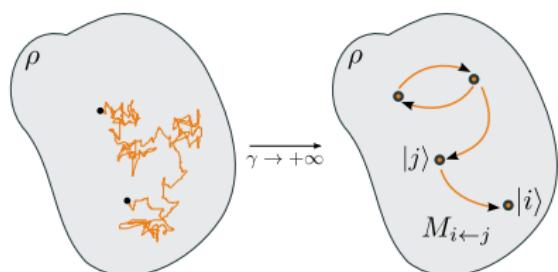
Consider  $d\rho = \mathcal{L}(\rho) dt + \gamma \mathcal{D}[\mathcal{O}](\rho) dt + \sqrt{\gamma} \mathcal{H}[\mathcal{O}](\rho) dW_t$

1. Markovian evolution  $\mathcal{L}(\rho_t) = \mathcal{L}(\rho_t) - i[H, \rho_t]$
2. Continuous measurement of  $\mathcal{O} = \sum_k \lambda_k |k\rangle \langle k|$

## Quantum jumps

When  $\gamma \rightarrow +\infty$ ,  $\rho_t$  converges to a **Markov chain** with transition matrix  $M$ :

$$M_{i \leftarrow j} = \underbrace{L_{jj}^{\text{ii}}}_{\text{"incoherent" contribution}} + \underbrace{\frac{1}{4\gamma} \left| \frac{H_{ij}}{\lambda_i - \lambda_j} \right|^2}_{\text{"incoherent" contribution}}$$



## Theorem: jumps

$$M_{i \leftarrow j} = \overbrace{L_{jj}^{ii}}^{\text{"incoherent" contribution}} + \underbrace{\frac{1}{4\gamma} \left| \frac{H_{ij}}{\lambda_i - \lambda_j} \right|^2}_{\text{"incoherent" contribution}}$$

### Consequences:

- ▶ Gives a signature of the underlying process enabling the transitions:  
**coherent vs incoherent**

## Theorem: jumps

$$M_{i \leftarrow j} = \overbrace{L_{jj}^{ii}}^{\text{"incoherent" contribution}} + \underbrace{\frac{1}{4\gamma} \left| \frac{H_{ij}}{\lambda_i - \lambda_j} \right|^2}_{\text{"incoherent" contribution}}$$

### Consequences:

- ▶ Gives a signature of the underlying process enabling the transitions: **coherent vs incoherent**
- ▶ Cannot be reproduced by projective measurements because:  
 $|\lambda_i - \lambda_j| \neq \text{const } \forall i, j$

## Theorem: jumps

$$M_{i \leftarrow j} = \overbrace{L_{jj}^{ii}}^{\text{"incoherent" contribution}} + \underbrace{\frac{1}{4\gamma} \left| \frac{H_{ij}}{\lambda_i - \lambda_j} \right|^2}_{\text{"incoherent" contribution}}$$

### Consequences:

- ▶ Gives a signature of the underlying process enabling the transitions: **coherent vs incoherent**
- ▶ Cannot be reproduced by projective measurements because:  $|\lambda_i - \lambda_j| \neq \text{const } \forall i, j$
- ▶ Can be used for minimalist control using solely  $\gamma$  (arXiv:1404.7391)

## Theorem: jumps

$$M_{i \leftarrow j} = \overbrace{L_{jj}^{ii}}^{\text{"incoherent" contribution}} + \underbrace{\frac{1}{4\gamma} \left| \frac{H_{ij}}{\lambda_i - \lambda_j} \right|^2}_{\text{"incoherent" contribution}}$$

### Consequences:

- ▶ Gives a signature of the underlying process enabling the transitions: **coherent vs incoherent**
- ▶ Cannot be reproduced by projective measurements because:  $|\lambda_i - \lambda_j| \neq \text{const } \forall i, j$
- ▶ Can be used for minimalist control using solely  $\gamma$  (arXiv:1404.7391)

### Extensions

- ▶ Several commuting observables  $\mathcal{O}_\ell$

## Theorem: jumps

$$M_{i \leftarrow j} = \overbrace{L_{jj}^{ii}}^{\text{"incoherent" contribution}} + \underbrace{\frac{1}{4\gamma} \left| \frac{H_{ij}}{\lambda_i - \lambda_j} \right|^2}_{\text{"incoherent" contribution}}$$

### Consequences:

- ▶ Gives a signature of the underlying process enabling the transitions: **coherent vs incoherent**
- ▶ Cannot be reproduced by projective measurements because:  $|\lambda_i - \lambda_j| \neq \text{const } \forall i, j$
- ▶ Can be used for minimalist control using solely  $\gamma$  (arXiv:1404.7391)

### Extensions

- ▶ Several commuting observables  $\mathcal{O}_\ell$
- ▶ Repeated imperfect measurements instead of continuous

## Jumps: proof

Standard small noise expansion techniques are useless in this context

## Jumps: proof

Standard small noise expansion techniques are useless in this context

### Idea of the proof

Perturbation theory at the level of the Fokker-Planck equation for  $\rho_t$ :

$$\partial_t \mathcal{P}(\rho) = \mathfrak{D}(\rho)$$

where  $\mathfrak{D}$  is a differential operator

## Jumps: proof

Standard small noise expansion techniques are useless in this context

### Idea of the proof

Perturbation theory at the level of the Fokker-Planck equation for  $\rho_t$ :

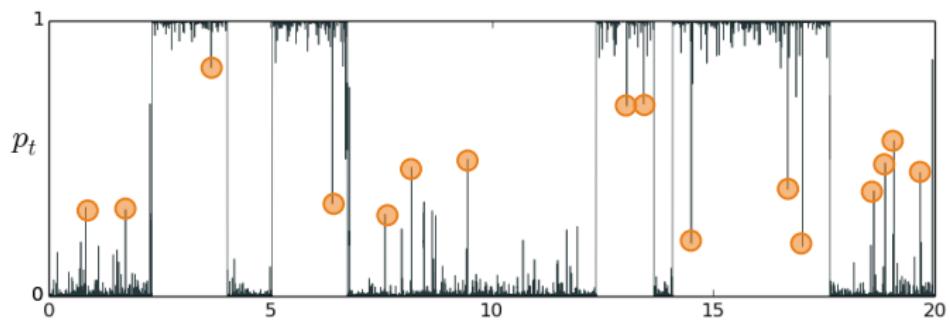
$$\partial_t \mathcal{P}(\rho) = \mathcal{D}(\rho)$$

where  $\mathcal{D}$  is a differential operator

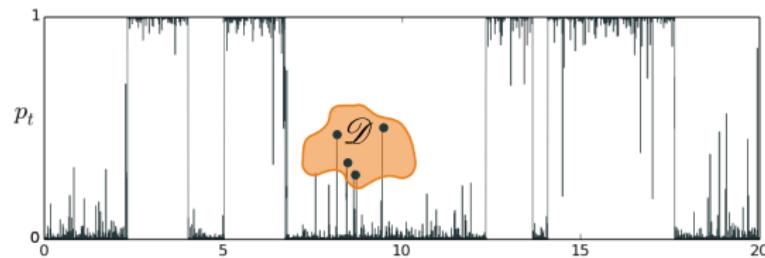
Write  $\mathcal{D} = \gamma \mathcal{D}_1 + \mathcal{D}_0$ , hence  $\mathcal{P}(\rho) = \exp(t\gamma \mathcal{D}_1 + t\mathcal{D}_0)$

- ▶ To zeroth order,  $\mathcal{P}(\rho) = \exp(t\gamma \mathcal{D}_1)$ ,  $\implies$  converges exponentially fast to the kernel of  $\mathcal{D}_1$ , i.e. Dirac around **pointer states**
- ▶ To next order,  $\exp t\mathcal{D}_0$  gives the transition rates

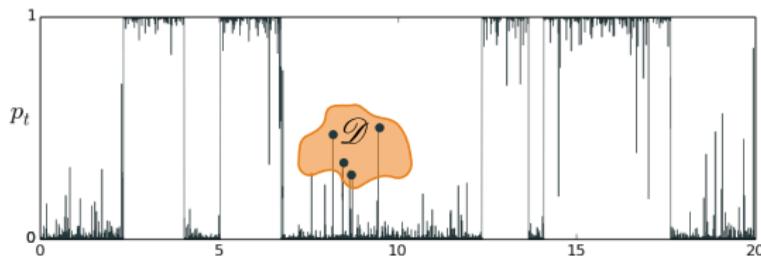
# Spikes



## Theorem: spikes



## Theorem: spikes



### Spike statistics

The number of spikes **starting from** 0 and ending in the domain  $\mathcal{D}$  of the plane  $(t, p)$  is a Poisson process of intensity  $\mu(D)$  :

$$\mu = \int_{\mathcal{D}} d\nu \quad \text{with} \quad d\nu = \frac{\lambda}{p^2} dp dt$$

## Spikes: idea of the proof

Quickest way: do a  $\rho$  dependent time rescaling – arXiv:1512.02861

$$p_t^2(1-p_t)^2 dt = d\tau$$

$p_\tau$  has a well defined limit when  $\gamma \rightarrow +\infty$ :

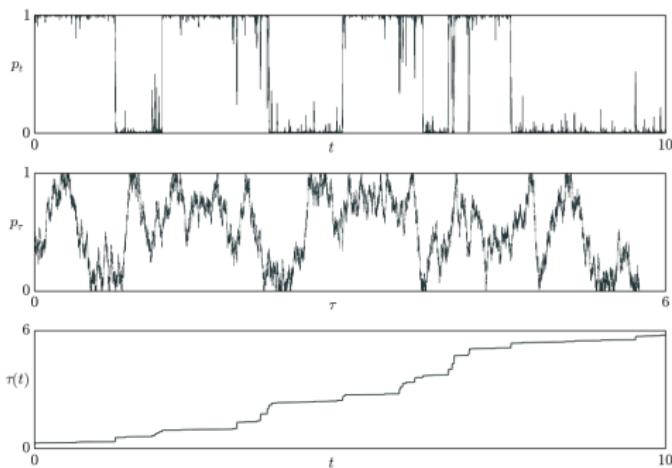
## Spikes: idea of the proof

Quickest way: do a  $\rho$  dependent time rescaling – arXiv:1512.02861

$$\rho_t^2(1 - \rho_t)^2 dt = d\tau$$

$\rho_\tau$  has a well defined limit when  $\gamma \rightarrow +\infty$ :

- **Reflected Brownian Motion**



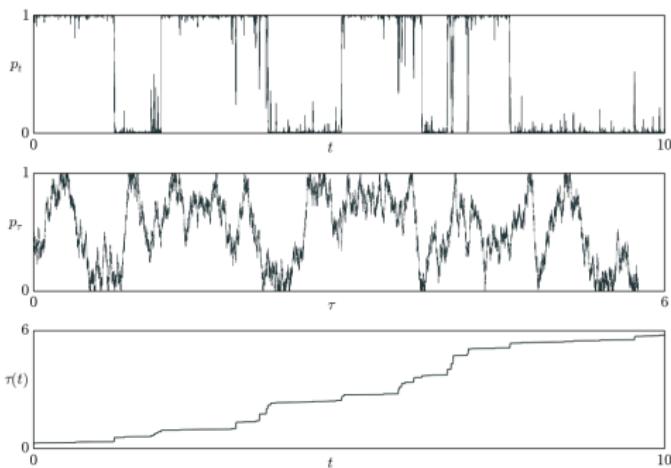
## Spikes: idea of the proof

Quickest way: do a  $\rho$  dependent time rescaling – arXiv:1512.02861

$$p_t^2(1-p_t)^2 dt = d\tau$$

$p_\tau$  has a well defined limit when  $\gamma \rightarrow +\infty$ :

- **Reflected Brownian Motion**

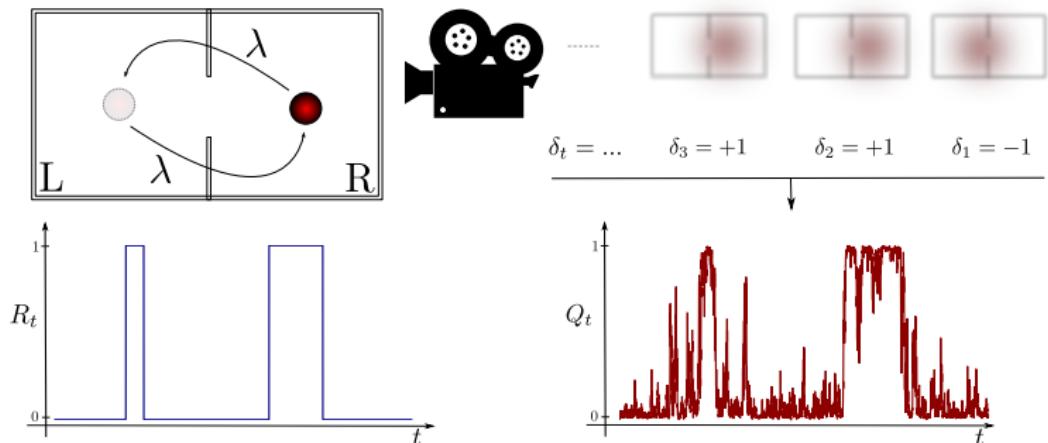


Works only for qubits...



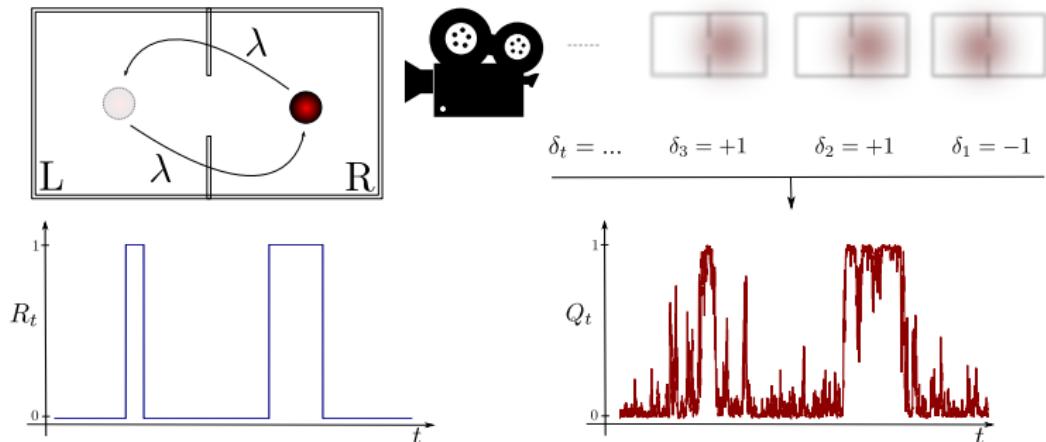
# Are spikes real?

Introduce a classical hidden Markov model:



# Are spikes real?

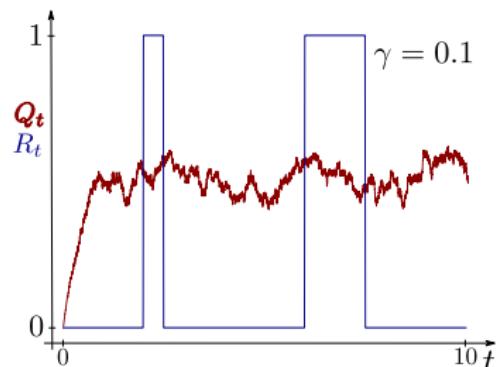
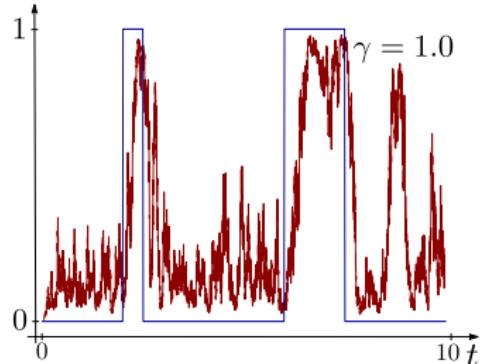
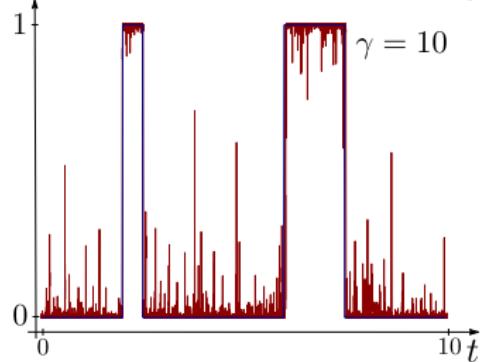
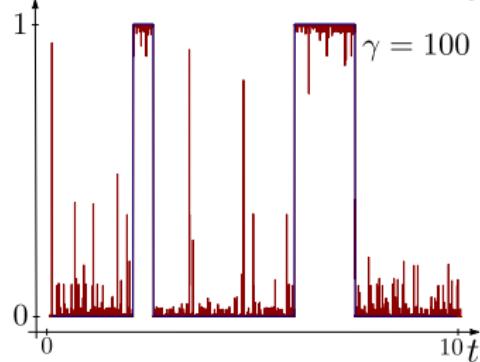
Introduce a classical hidden Markov model:



Yields the same filtering equation as for thermal jumps:

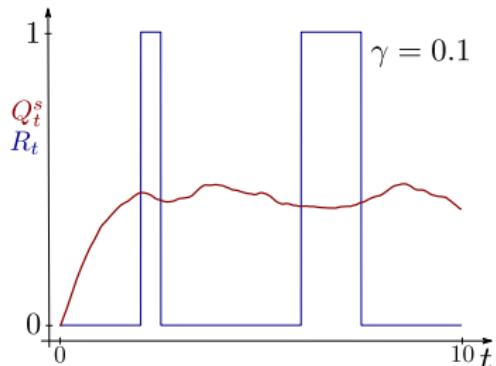
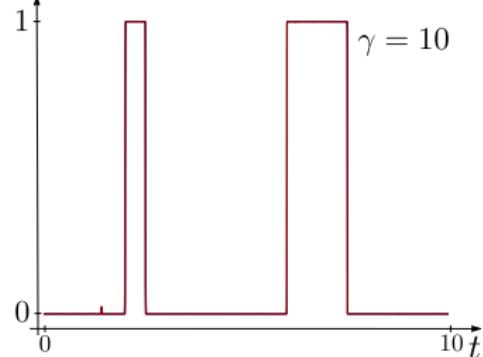
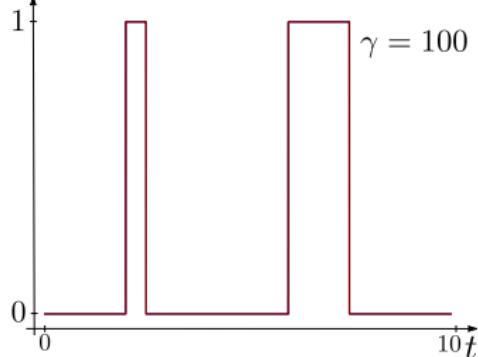
$$dQ_t = \lambda(Q_{\text{eq}} - Q_t) dt + \sqrt{\gamma} Q_t (1 - Q_t) dW_t$$

# Are spikes real?



# Are spikes real?

With (classical) smoothing, i.e. a posteriori estimation:



## Spikes: summary

### “Ontologically”

Spikes are not an exclusively quantum phenomenon but can exist in genuinely quantum settings:

1. Spikes with classical Hidden Markov Models
2. Spikes with states pure at all time

## Spikes: summary

### “Ontologically”

Spikes are not an exclusively quantum phenomenon but can exist in genuinely quantum settings:

1. Spikes with classical Hidden Markov Models
2. Spikes with states pure at all time

### In practice

- ▶ Spikes can make control difficult
- ▶ Spikes are not (necessarily) coming from classical errors

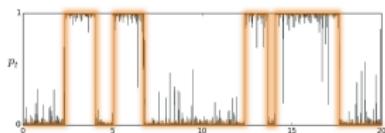
## A few (possibly difficult) open questions

1. Continuous measurement of observables with continuous spectra like  $\hat{X}$
2. Continuous measurement in the many-body context – phase transition?
3. Spikes in  $d \geq 3$
4. Similar strong noise limits in other contexts:  
**scalar turbulence?** avalanches? finance? e.g. Henkel arXiv:1609.05286

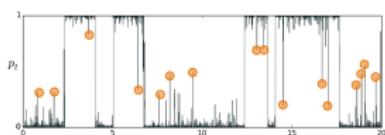
# General summary

Strong continuous measurement yields:

## 1. Jumps



## 2. Spikes



## Jumps

1. Can be fully characterized
2. Are Zeno frozen if coherent, not frozen if incoherent
3. Quantitatively different from projective measurement

## Spikes

1. Can be characterized for qubits
2. Are power law distributed, with infinitely many small ones
3. Are not exclusively quantum but sometimes purely quantum