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Genesis

Work done in Paris at ENS with
» Denis Bernard (ENS, Paris)
» Michel Bauer (CEA, Saclay)

Corresponds to my PhD thesis and:
1. Computing the rate of measurement induced quantum jumps
arXiv:1410.7231
2. Spikes in quantum trajectories
arXiv:1510.01232

3. Zoomin in on quantum trajectories
arXiv:1512.02861
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Objective

Understand dynamics of the type:

0¢pr = L(pe) +vMlpe)

where:
» [ is the Liouvillian in absence of measurement
» M encodes a continuous measurement process

when vy — 400
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Objective

Understand dynamics of the type:

0¢pr = L(pe) +vMlpe)

where:
» [ is the Liouvillian in absence of measurement
» M encodes a continuous measurement process

when vy — 400

Analysis at the trajectory level:
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Outline

1. Introduction: continuous measurement
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Continuous measurement
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Repeated interactions

Discrete quantum trajectories

A sequence of [{,,) or p, (random) and the corresponding
measurement results 6, = £1.
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Repeated interactions

Discrete quantum trajectories

A sequence of [{,,) or p, (random) and the corresponding
measurement results 6, = £1.

» Make the interaction between system and probe smoother

Uint =1+ ic Osys ® Kprobe

» Increase the frequency at which probes are sent:

TXE

6/26



Repeated interactions

Discrete quantum trajectories

A sequence of [{,,) or p, (random) and the corresponding
measurement results 6, = £1.

» Make the interaction between system and probe smoother

Uint =1+ ic Osys ® Kprobe

» Increase the frequency at which probes are sent:
TXE

Continuous quantum trajectories

A continuous map [;) or p; (random) and the
corresponding continuous measurement signal

Yr0<\/EZk5k

A\ Essentially a central limit theorem result A\
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In practice

» Discrete situations “a la Haroche”,
with actual repeated interactions

» Almost “true” continuous
measurement settings (homodyne
detection in quantum optics, quantum .
point contacts for quantum dots)

A source
drain
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Result

Stochastic Master Equation (~ 1987)

Density matrix:

dp. = L(pe) dt +v D(O](p) dt + /¥ H[O](p.) dW; V- Belavian

Signal:
dy, = ¥ tr [(0+07) pe] dt +dW,

with:
» DIO](p) = OpOT — 1 (0T0p + pOT0O)

> H[Ol(p) = Op + pOf —tr [(O+ OF) p] p
AW,

>dt

“white noise”

L. Di6si



Example 0

Situation considered

Pure continuous measurement of a qubit: U
» Qubit = 7 = C? e -
Pt Ut N
» Hence p; = \
Pt < u 1—p, > N

» Continuous energy measurement: O = 0, x H
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Example 0

Situation considered

Pure continuous measurement of a qubit:

» Qubit = # = C?

» Hence pt:< 5: litp >
t t

» Continuous energy measurement: O = 0, x H

Starting point:

dpe = v DIOI(p) dt + /¥ H[Ol(p:) dW;
= Equation for the probability:
dp: = Y p:(1 — p;) dW;
= Equation for the phase:

du, = —%utdt-i- §(2pt —1)dW,



Example 0

Pure continuous measurement of a qubit dp, = /vy p:(1 — p;) dW,
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Example 0

Pure continuous measurement of a qubit dp, = /vy p:(1 — p;) dW,
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Example 1

Qubit coupled to a thermal bath

System considered

» Qubit 7 = C?

» Continuous measurement of
O x Hx o,

» Markovian thermal bath

_ Pt ut
= pt_( ut 1—Pt)
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Example 1

Qubit coupled to a thermal bath

System considered

» Qubit 7 = C?
» Continuous measurement of /I
O x Hx o,
» Markovian thermal bath
_ Pt ut
- pt_( P )

Autonomous stochastic master equation for p;:

dp: = A(peq — pe) dt + /¥ p:(1 — pe) dW;

thermal relaxation continuous measurement

11 /26



Example 1

No measurement, y =0A
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Example 1

Weak measurement, y =0.1A
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Example 1

Decent measurement, y = A
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Example 1

Getting strong measurement, y = 10A
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Example 1

Pretty strong measurement, y = 100 A
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Strong measurement, y = 1000 A
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Very strong measurement, y = 10*A
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Example 1

Uber strong measurement, y = 10° A
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Example 1

Uber strong measurement, y = 10° A
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Example 2

Measurement non-commuting with the evolution

System considered

» Continuous measurement of /—H
Oxo, L H R

» Closed system 4.—’ (‘
u
> pp = ( Pt t > \

uf 1—p;
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Example 2

No measurement, y = 0w
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Example 2

Weak measurement, y = 0.1 w
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Decent measurement, y = w










Example 2

Strong measurement, y = 100 w
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Example 2

Very strong measurement, vy = 300 w
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Example 2

Uber strong measurement, y = 1000 w
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Theorem: jumps

Consider dp = £L(p) dt +yDI[O](p) dt + /¥ H[O](p) dW,
1. Markovian evolution £(p;) = L(p:) — i [H, p¢]
2. Continuous measurement of O = Y, Ailk) (k|
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Theorem: jumps

Consider dp = £L(p) dt +yDI[O](p) dt + /¥ H[O](p) dW,
1. Markovian evolution £(p;) = L(p:) — i [H, p¢]
2. Continuous measurement of O = Y, Ailk) (k|

Quantum jumps

When vy — +00, p; converges to a
Markov chain with transition matrix M:

“incoherent” contribution

S
4y

“incoherent™ contribution

2
Hj

=
Micj= L; + T
i =N
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Theorem: jumps

“incoherent” contribution
M, = 10 v L
i u 4'Y 7\,’ - )\j

2

“incoherent” contribution

Consequences:

» Gives a signature of the underlying process enabling the transitions:
coherent vs incoherent

16 / 26



Theorem: jumps

“incoherent” contribution

M= 10 L
i—j — i e

J u 4'Y 7\,’ - )\j

2

“incoherent” contribution

Consequences:

» Gives a signature of the underlying process enabling the transitions:
coherent vs incoherent

» Cannot be reproduced by projective measurements because:
[A; —Aj| # const Vi, j
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Theorem: jumps

“incoherent” contribution

ii J
Micj = Lj + E‘A,—Aj
| 2

“incoherent” contribution

Consequences:

» Gives a signature of the underlying process enabling the transitions:
coherent vs incoherent

» Cannot be reproduced by projective measurements because:
[A; —Aj| # const Vi, j

» Can be used for minimalist control using solely vy (arXiv:1404.7391)
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Theorem: jumps

“incoherent” contribution

ii J
Micj = Lj + E‘A,—Aj
| 2

“incoherent” contribution

Consequences:

» Gives a signature of the underlying process enabling the transitions:
coherent vs incoherent

» Cannot be reproduced by projective measurements because:
[A; —Aj| # const Vi, j

» Can be used for minimalist control using solely vy (arXiv:1404.7391)

Extensions

» Several commuting observables O,
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Theorem: jumps

“incoherent” contribution

M= 10 L
i—j — i e

J u 4'Y 7\,’ - )\j

2

“incoherent” contribution

Consequences:

» Gives a signature of the underlying process enabling the transitions:
coherent vs incoherent

» Cannot be reproduced by projective measurements because:
[A; —Aj| # const Vi, j

» Can be used for minimalist control using solely vy (arXiv:1404.7391)
Extensions

» Several commuting observables O,

» Repeated imperfect measurements instead of continuous

16 / 26



Jumps: proof

Standard small noise expansion techniques are useless in this context
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Jumps: proof

Standard small noise expansion techniques are useless in this context

Idea of the proof
Perturbation theory at the level of the Fokker-Planck equation for p;:

0:P(p) =D(p)

where D is a differential operator
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Jumps: proof

Standard small noise expansion techniques are useless in this context

Idea of the proof
Perturbation theory at the level of the Fokker-Planck equation for p;:

0:P(p) =D(p)

where D is a differential operator

Write ©® = yD; + Dy, hence P(p) = exp (tyD1 + tDy)

» To zeroth order, P(p) = exp(tyD;), = converges exponentially fast to
the kernel of ®, i.e. Dirac around pointer states

» To next order, exp t®D, gives the transition rates

17 / 26
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Theorem: spikes

Py
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Theorem: spikes

Py

Spike statistics

The number of spikes starting from 0 and ending in the domain Z of the
plane (t, p) is a Poisson process of intensity (D) :

u:J dv with dv:%dpdt
2 p
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Spikes: idea of the proof
Quickest way: do a p dependent time rescaling — arXiv:1512.02861

pi(1—p)*dt =dt

p- has a well defined limit when y — +o00:
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Spikes: idea of the proof
Quickest way: do a p dependent time rescaling — arXiv:1512.02861

pi(1—p)*dt =dt

p- has a well defined limit when y — +o00:
» Reflected Brownian Motion
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Spikes: idea of the

Quickest way: do a p dependent time rescaling — arXiv:1512.02861

proof

pi(1—p)*dt =dt

p- has a well defined limit when y — +o00:
» Reflected Brownian Motion
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Works only for qubits...

it's something i/

20/ 26



Are spikes real?

Introduce a classical hidden Markov model:
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Are spikes real?

Introduce a classical hidden Markov model:

@0
)

O = ... 03 =+1 dy = +1 6 =-1

Ry Q:

0 0
I

t ‘ t
Yields the same filtering equation as for thermal jumps:

dQ: = A(Qeq — Q) dt + /¥ Q:(1 — Q) dW,



Are spikes real?

v=0.1
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Are spikes real?

With (classical) smoothing, i.e. a posteriori estimation:
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Spikes: summary

“Ontologically”
Spikes are not an exclusively quantum phenomenon but can exist in genuinely
quantum settings:

1. Spikes with classical Hidden Markov Models
2. Spikes with states pure at all time
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Spikes: summary

“Ontologically”
Spikes are not an exclusively quantum phenomenon but can exist in genuinely

quantum settings:
1. Spikes with classical Hidden Markov Models

2. Spikes with states pure at all time

In practice
» Spikes can make control difficult
» Spikes are not (necessarily) coming from classical errors
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A few (possibly difficult) open questions

a0

Continuous measurement of observables with continuous spectra like X
Continuous measurement in the many-body context — phase transition?
Spikes in d > 3

Similar strong noise limits in other contexts:
scalar turbulence? avalanches? finance? e.g. Henkel arXiv:1609.05286
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General summary

Strong continuous measurement yields:

1. Jumps

LA

2. Spikes

PHLANSLY

1. Can be fully characterized

Jumps

2. Are Zeno frozen if coherent, not
frozen if incoherent

3. Quantitatively different from
projective measurement

Spikes
1. Can be characterized for qubits

2. Are power law distributed, with
infinitely many small ones

3. Are not exclusively quantum but
sometimes purely quantum
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