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Genesis

Work done in Paris at ENS with
I Denis Bernard (ENS, Paris)
I Michel Bauer (CEA, Saclay)

Corresponds to my PhD thesis and:
1. Computing the rate of measurement induced quantum jumps

arXiv:1410.7231

2. Spikes in quantum trajectories
arXiv:1510.01232

3. Zoomin in on quantum trajectories
arXiv:1512.02861
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Objective

Understand dynamics of the type:

∂tρt = L(ρt) + γM(ρt)

where:
I L is the Liouvillian in absence of measurement
I M encodes a continuous measurement process

when γ→ +∞

Analysis at the trajectory level:
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Outline

1. Introduction: continuous measurement

2. Jumps

3. Spikes

4. Discussion
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Continuous measurement
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Repeated interactions

Discrete quantum trajectories
A sequence of |ψn〉 or ρn (random) and the corresponding
measurement results δn = ±1.

I Make the interaction between system and probe smoother

Uint = 1+ iεOsys ⊗ Kprobe

I Increase the frequency at which probes are sent:

τ ∝ ε

Continuous quantum trajectories
A continuous map |ψt〉 or ρt (random) and the
corresponding continuous measurement signal
yt ∝

√
ε
∑

k δk

BEssentially a central limit theorem result B
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In practice

I Discrete situations “a la Haroche”,
with actual repeated interactions

I Almost “true” continuous
measurement settings (homodyne
detection in quantum optics, quantum
point contacts for quantum dots)
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Result

Stochastic Master Equation (∼ 1987)

Density matrix:

dρt = L(ρt) dt + γD[O](ρt) dt +√γH[O](ρt) dWt

Signal:
dyt =

√
γ tr

[
(O+ O†) ρt

]
dt + dWt

with:
I D[O](ρ) = OρO† − 1

2

(
O†Oρ+ ρO†O

)
I H[O](ρ) = Oρ+ ρO† − tr

[
(O+ O†) ρ

]
ρ

I dWt
dt “white noise”

V. Belavkin

A. Barchielli

L. Diósi
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Example 0
Situation considered
Pure continuous measurement of a qubit:

I Qubit ⇒H = C2

I Hence ρt =

(
pt ut
u∗t 1 − pt

)
I Continuous energy measurement: O = σz ∝ H

Starting point:

dρt = γD[O](ρt) dt +√γH[O](ρt) dWt

=⇒ Equation for the probability:

dpt =
√
γ pt(1 − pt) dWt

=⇒ Equation for the phase:

dut = −
γ

8 ut dt +
√
γ

2 (2pt − 1) dWt
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Example 1

Qubit coupled to a thermal bath

System considered

I Qubit H = C2

I Continuous measurement of
O ∝ H ∝ σz

I Markovian thermal bath

I ρt =

(
pt ut
u∗t 1 − pt

)

Autonomous stochastic master equation for pt :

dpt = λ(peq − pt) dt
thermal relaxation

+
√
γ pt(1 − pt) dWt

continuous measurement
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Example 1

No measurement, γ = 0 λ
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Example 1

Weak measurement, γ = 0.1 λ
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Example 1

Decent measurement, γ = λ
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Example 1

Getting strong measurement, γ = 10 λ
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Example 1

Pretty strong measurement, γ = 100 λ
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Example 1

Strong measurement, γ = 1000 λ
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Example 1

Very strong measurement, γ = 104 λ
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Example 1

Über strong measurement, γ = 105 λ
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Example 1

Über strong measurement, γ = 105 λ
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Example 2

Measurement non-commuting with the evolution

System considered

I Continuous measurement of
O ∝ σz ⊥ H

I Closed system

I ρt =

(
pt ut
u∗t 1 − pt

)
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Example 2

No measurement, γ = 0ω
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Example 2

Weak measurement, γ = 0.1ω
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Example 2

Decent measurement, γ = ω
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Example 2

Getting strong measurement, γ = 10ω
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Example 2

Pretty strong measurement, γ = 30ω

14 / 26



Example 2

Strong measurement, γ = 100ω
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Example 2

Very strong measurement, γ = 300ω
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Example 2

Über strong measurement, γ = 1000ω
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Theorem: jumps

Consider dρ = L(ρ) dt + γD[O](ρ) dt +√γH[O](ρ) dWt

1. Markovian evolution L(ρt) = L(ρt) − i [H, ρt ]

2. Continuous measurement of O =
∑

k λk |k〉〈k |

Quantum jumps
When γ→ +∞, ρt converges to a
Markov chain with transition matrix M:

Mi←j =

“incoherent” contribution︷︸︸︷
Lii

jj +
1

4γ

∣∣∣∣ Hij

λi − λj

∣∣∣∣2︸ ︷︷ ︸
“incoherent” contribution
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1

4γ

∣∣∣∣ Hij

λi − λj

∣∣∣∣2︸ ︷︷ ︸
“incoherent” contribution

Consequences:
I Gives a signature of the underlying process enabling the transitions:

coherent vs incoherent

I Cannot be reproduced by projective measurements because:
|λi − λj | 6= const ∀i , j

I Can be used for minimalist control using solely γ (arXiv:1404.7391)

Extensions
I Several commuting observables O`

I Repeated imperfect measurements instead of continuous
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Jumps: proof

Standard small noise expansion techniques are useless in this context

Idea of the proof
Perturbation theory at the level of the Fokker-Planck equation for ρt :

∂tP(ρ) = D(ρ)

where D is a differential operator

Write D = γD1 +D0, hence P(ρ) = exp (tγD1 + tD0)

I To zeroth order, P(ρ) = exp(tγD1), =⇒ converges exponentially fast to
the kernel of D1, i.e. Dirac around pointer states

I To next order, exp tD0 gives the transition rates
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Spikes
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Theorem: spikes

Spike statistics
The number of spikes starting from 0 and ending in the domain D of the
plane (t, p) is a Poisson process of intensity µ(D) :

µ =

∫
D

dν with dν =
λ

p2 dp dt
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Spikes: idea of the proof
Quickest way: do a ρ dependent time rescaling – arXiv:1512.02861

p2
t (1 − pt)

2 dt = dτ

pτ has a well defined limit when γ→ +∞:

I Reflected Brownian Motion

Works only for qubits...
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Are spikes real?

Introduce a classical hidden Markov model:

Yields the same filtering equation as for thermal jumps:

dQt = λ(Qeq − Qt) dt +√γQt(1 − Qt) dWt
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Are spikes real?
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Are spikes real?
With (classical) smoothing, i.e. a posteriori estimation:
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Spikes: summary

“Ontologically”
Spikes are not an exclusively quantum phenomenon but can exist in genuinely
quantum settings:

1. Spikes with classical Hidden Markov Models
2. Spikes with states pure at all time

In practice
I Spikes can make control difficult
I Spikes are not (necessarily) coming from classical errors
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A few (possibly difficult) open questions

1. Continuous measurement of observables with continuous spectra like X̂
2. Continuous measurement in the many-body context – phase transition?
3. Spikes in d > 3
4. Similar strong noise limits in other contexts:

scalar turbulence? avalanches? finance? e.g. Henkel arXiv:1609.05286
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General summary

Strong continuous measurement yields:
1. Jumps

2. Spikes

Jumps
1. Can be fully characterized
2. Are Zeno frozen if coherent, not

frozen if incoherent
3. Quantitatively different from

projective measurement

Spikes
1. Can be characterized for qubits
2. Are power law distributed, with

infinitely many small ones
3. Are not exclusively quantum but

sometimes purely quantum
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