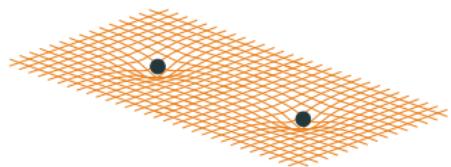


Does gravity have to be quantized?

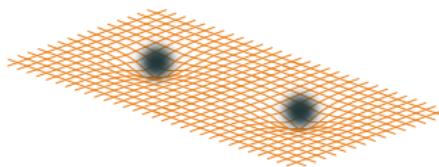
Antoine Tilloy

Max Planck Institute of Quantum Optics, Garching, Germany

Colloquium


Max Planck Institute of Quantum Optics
May 8th, 2018

Alexander von Humboldt
Stiftung / Foundation


Prolegomena

Classical gravity

- ▶ **Matter** is classical
- ▶ **Spacetime** is classical

Semiclassical gravity

- ▶ **Matter** is quantum
- ▶ **Spacetime** is classical

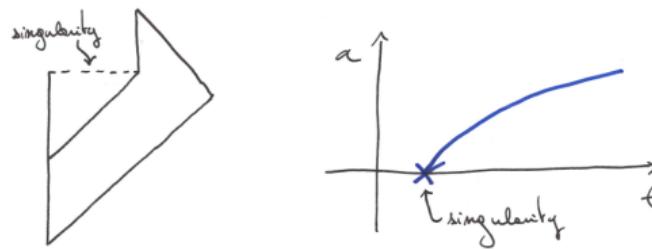
Fully quantum gravity

- ▶ **Matter** is quantum
- ▶ **Spacetime** is quantum

Main problem

No experimental evidence for the quantization of gravity
but
Romantic and counterintuitive consequences.

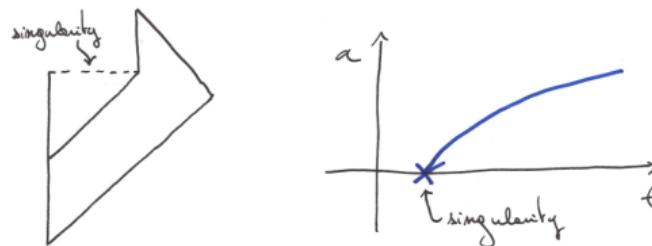
Main problem

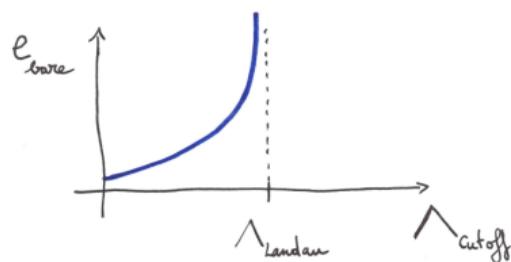

No experimental evidence for the quantization of gravity
but
Romantic and counterintuitive consequences.

- ▶ Is semi-classical gravity really impossible?
- ▶ Can we construct simple toy models clarifying the alleged problems?

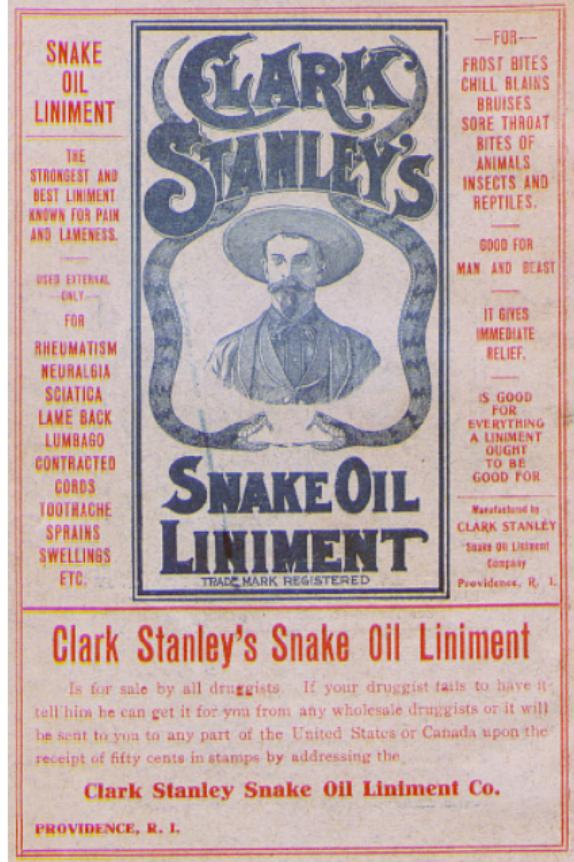
The shaky case for quantization I: smoothing out nastiness

Problematic divergences in known theories:

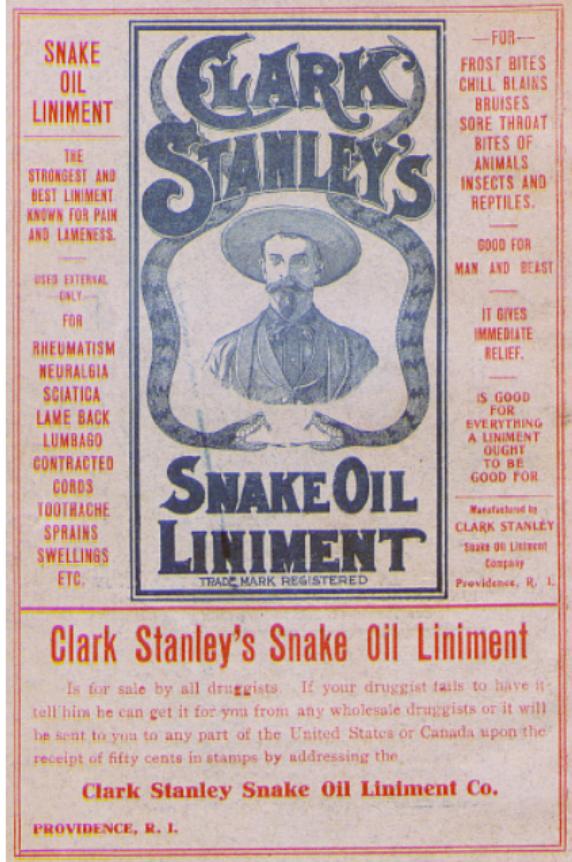

- ▶ Singularities in **General Relativity** (black-holes, Big-Bang) $R \rightarrow +\infty$ or $a \rightarrow 0^+$


The shaky case for quantization I: smoothing out nastiness

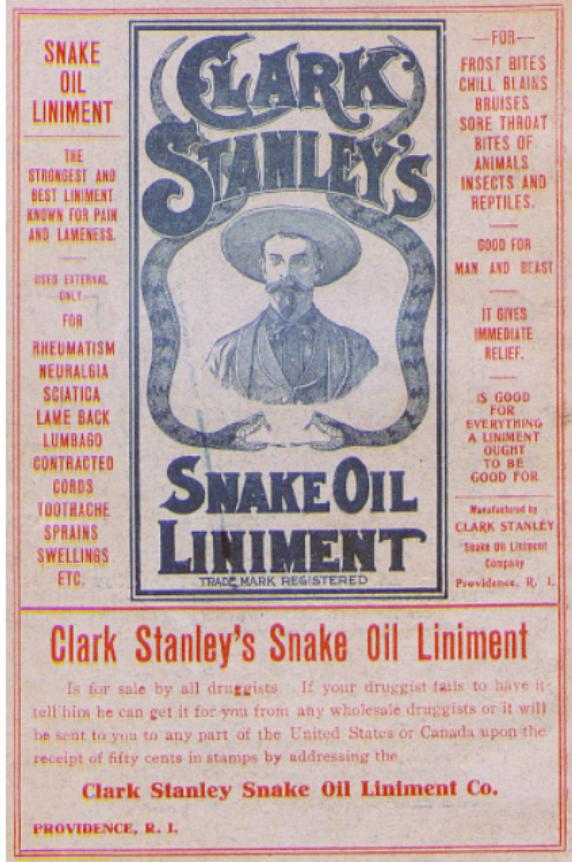
Problematic divergences in known theories:


- ▶ Singularities in **General Relativity** (black-holes, Big-Bang) $R \rightarrow +\infty$ or $a \rightarrow 0^+$

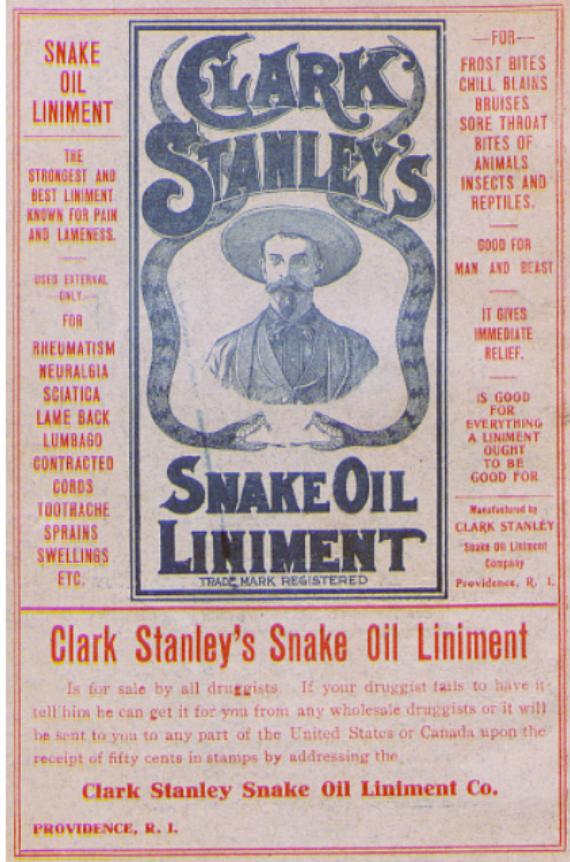
- ▶ Landau Pole in $U(1)$ sector of the **Standard Model** $\Lambda_{\text{cutoff}} \leq \Lambda_{\text{Landau}}$



BUT: Quantization is not snake oil


► quantization did not save EM

BUT: Quantization is not snake oil


- ▶ quantization did not save EM
- ▶ not even clear what singularities **mean** in QG

BUT: Quantization is not snake oil

- ▶ quantization did not save EM
- ▶ not even clear what singularities **mean** in QG
- ▶ many other ways to solve these problems

BUT: Quantization is not snake oil

- ▶ quantization did not save EM
- ▶ not even clear what singularities **mean** in QG
- ▶ many other ways to solve these problems
- ▶ what happens when there is nothing left to “quantize”?

The shaky case for quantization II: aesthetics

Quantum theory as a **meta theory**, as a procedure to transform the “old fashioned” into the “modern”:

- ▶ “Everything should be quantized”
- ▶ “Gravity is just like the other forces”
- ▶ “People tried to have the EM field classical and it turned out they were wrong”

The shaky case for quantization II: aesthetics

Quantum theory as a **meta theory**, as a procedure to transform the “old fashioned” into the “modern”:

- ▶ “Everything should be quantized”
- ▶ “Gravity is just like the other forces”
- ▶ “People tried to have the EM field classical and it turned out they were wrong”

Instance of **non-empirical confirmation** à la Dawid

BUT: Quantization is not a sausage machine

- ▶ gravity is **not** just a spin 2 Gauge field

BUT: Quantization is not a sausage machine

- ▶ gravity is **not** just a spin 2 Gauge field
- ▶ approaches that look universal are sometimes not:
 - ▶ geometrization of electrodynamics via Kaluza-Klein theories failed
 - ▶ $SU(5)$ and other GUT failed

BUT: Quantization is not a sausage machine

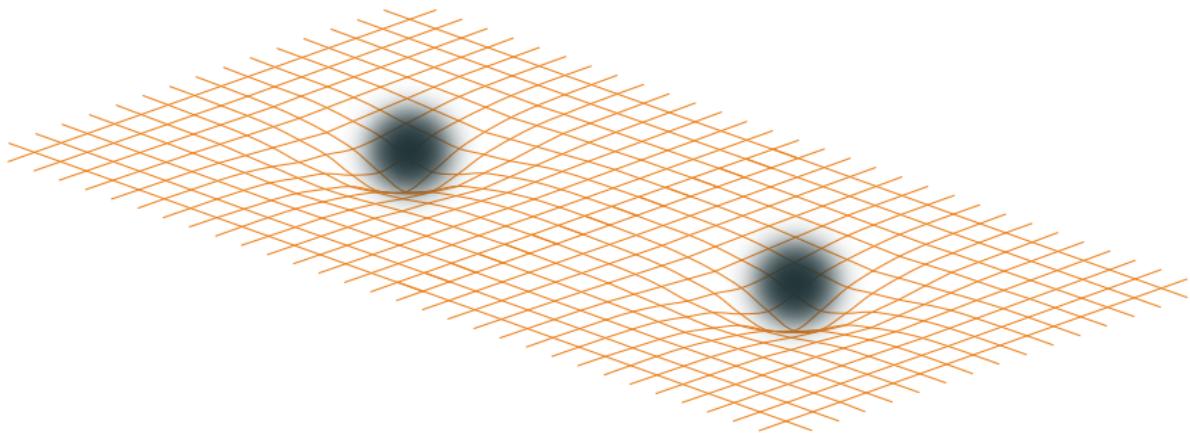
- ▶ gravity is **not** just a spin 2 Gauge field
- ▶ approaches that look universal are sometimes not:
 - ▶ geometrization of electrodynamics via Kaluza-Klein theories failed
 - ▶ $SU(5)$ and other GUT failed
- ▶ maybe gravity is just different (and it does look different)

The shaky case for quantization III: impossibilities chimera

“Semi-classical theories are mathematically impossible.”

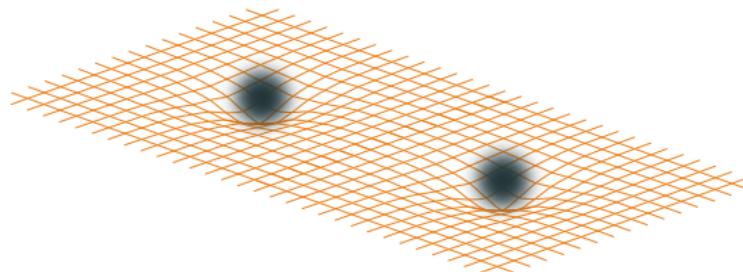
Chimera

The shaky case for quantization III: impossibilities chimera


“Semi-classical theories are mathematically impossible.”

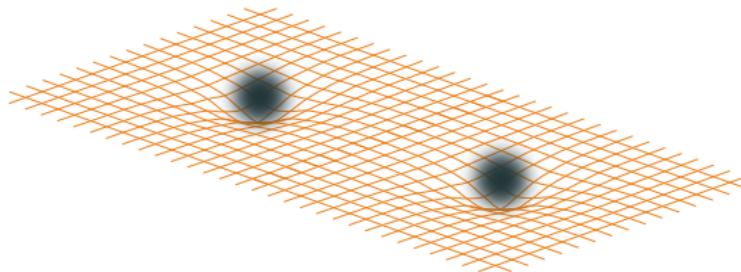
Chimera

If **true**, crippling argument \implies gravity needs to be quantized (or emerge from some purely quantum theory)


Standard semiclassical gravity

“Standard” semi-classical gravity

A semi-classical theory of gravity tells 2 stories:


1. Quantum matter moves in a curved classical space-time
2. The classical space time is curved by quantum matter

“Standard” semi-classical gravity

A semi-classical theory of gravity tells 2 stories:

1. Quantum matter moves in a curved classical space-time
2. The classical space time is curved by quantum matter

1 is known (QFTCST), **2** is not

The crucial question of semi-classical gravity is to know how quantum matter should source curvature.

Møller-Rosenfeld semi-classical gravity


The **CHOICE** of Møller and Rosenfeld it to take:

$$R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} = 8\pi G \langle \hat{T}_{\mu\nu} \rangle$$

→ source gravity via expectation values

There are:

- ▶ **technical relativistic** difficulties [renormalization of $\langle T_{\mu\nu} \rangle$]
- ▶ **conceptual non-relativistic** difficulties [Born rule, ...].

Christian Møller

Leon Rosenfeld

Schrödinger-Newton

1. Non-relativistic limit of the “sourcing” equation:

$$\nabla^2 \Phi(x, t) = 4\pi G \langle \psi_t | \hat{M}(x) | \psi_t \rangle$$

Schrödinger-Newton

1. Non-relativistic limit of the “sourcing” equation:

$$\nabla^2 \Phi(x, t) = 4\pi G \langle \psi_t | \hat{M}(x) | \psi_t \rangle$$

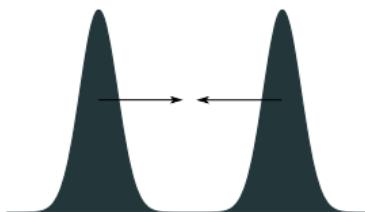
2. Non-relativistic limit of QFTCST (just external field)

$$\frac{d}{dt} |\psi\rangle = -i \left(H_0 + \int dx \Phi(x, t) \hat{M}(x) \right) |\psi_t\rangle,$$

Schrödinger-Newton

1. Non-relativistic limit of the “sourcing” equation:

$$\nabla^2 \Phi(x, t) = 4\pi G \langle \psi_t | \hat{M}(x) | \psi_t \rangle$$

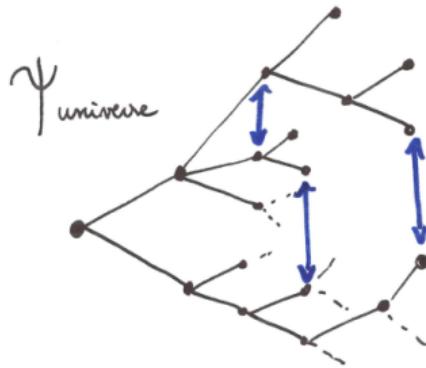

2. Non-relativistic limit of QFTCST (just external field)

$$\frac{d}{dt} |\psi\rangle = -i \left(H_0 + \int dx \Phi(x, t) \hat{M}(x) \right) |\psi_t\rangle,$$

Putting the two together:

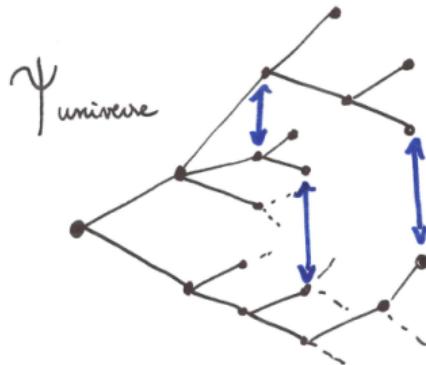
$$\frac{d}{dt} |\psi_t\rangle = -i H_0 |\psi_t\rangle + i G \int dx dy \frac{\langle \psi_t | \hat{M}(x) | \psi_t \rangle \hat{M}(y)}{|x - y|} |\psi_t\rangle.$$

The problems with Schrödinger-Newton



The SN equation is problematic for a fundamental theory because of its **deterministic non-linearity** (Gisin, Diósi, Polchinski)

- ▶ If there is **no fundamental collapse** [Many Worlds, Bohm, ...], super weird world unlike our own
- ▶ If there is **fundamental collapse** [Copenhagen, Collapse models]: break down of the statistical interpretation of states & instantaneous signaling

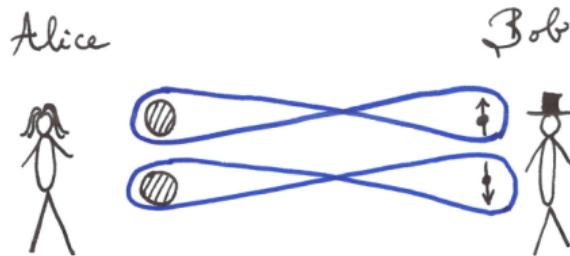

The problems with Schrödinger-Newton

Without collapse upon measurement (Bohm, Many Worlds, ...)

The problems with Schrödinger-Newton

Without collapse upon measurement (Bohm, Many Worlds, ...)

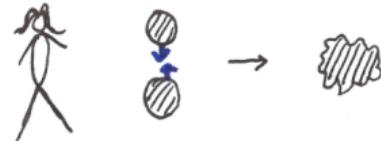
Decohered branches interact with each other \rightarrow empirically inadequate


The problems with Schrödinger-Newton

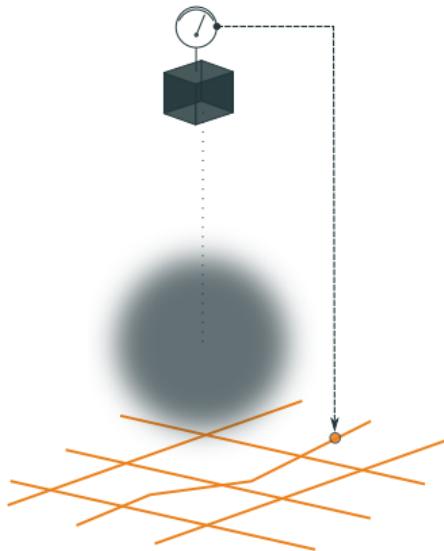
With collapse upon measurement (either from pure Copenhagen or collapse models).


Consider a mass entangled with a spin far away:

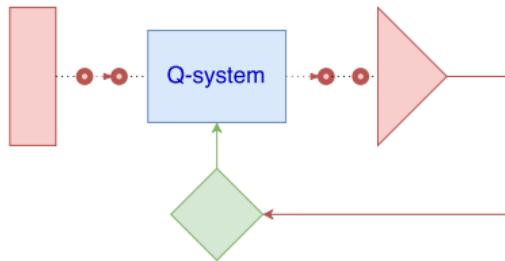
$$|\Psi\rangle \propto |\text{left}\rangle^{\text{Alice}} \otimes |\uparrow\rangle^{\text{Bob}} + |\text{right}\rangle^{\text{Alice}} \otimes |\downarrow\rangle^{\text{Bob}}.$$


Bob can decide to whether or not he measures his spin:

Bob measures

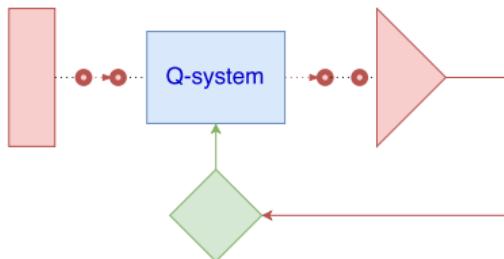

Bob doesn't measure

The big question


What mathematical object can one construct to source the gravitational field while keeping the Born rule?

Feedback approach

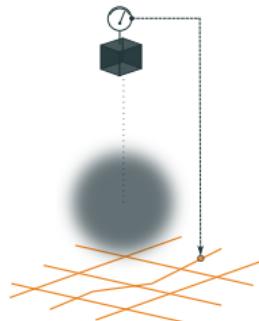
Measurement + feedback


Actually, in orthodox quantum theory, trivial way to do quantum-classical coupling:
measurement & feedback [Diósi & Halliwell]

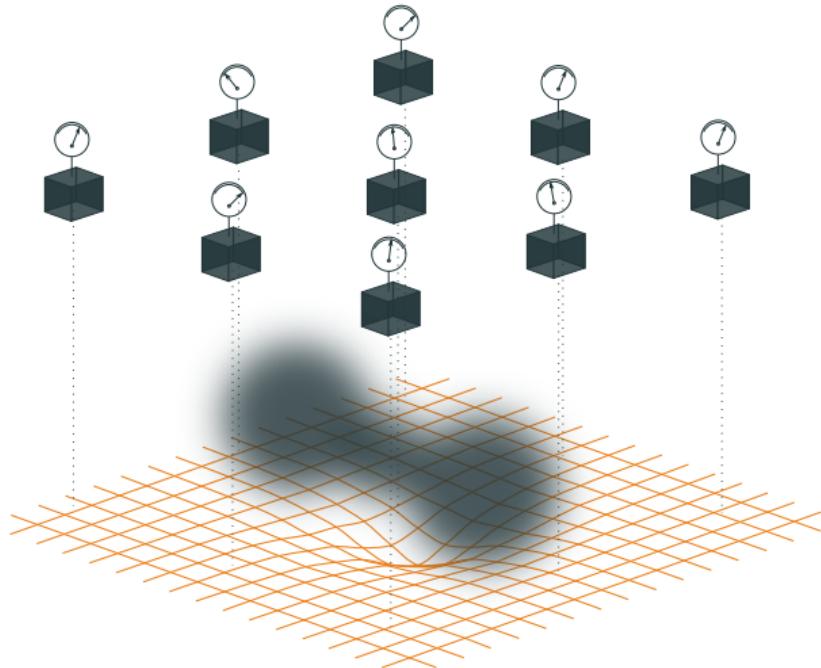
The state of the controller is the classical variable

Measurement + feedback

Actually, in orthodox quantum theory, trivial way to do quantum-classical coupling:
measurement & feedback [Diósi & Halliwell]

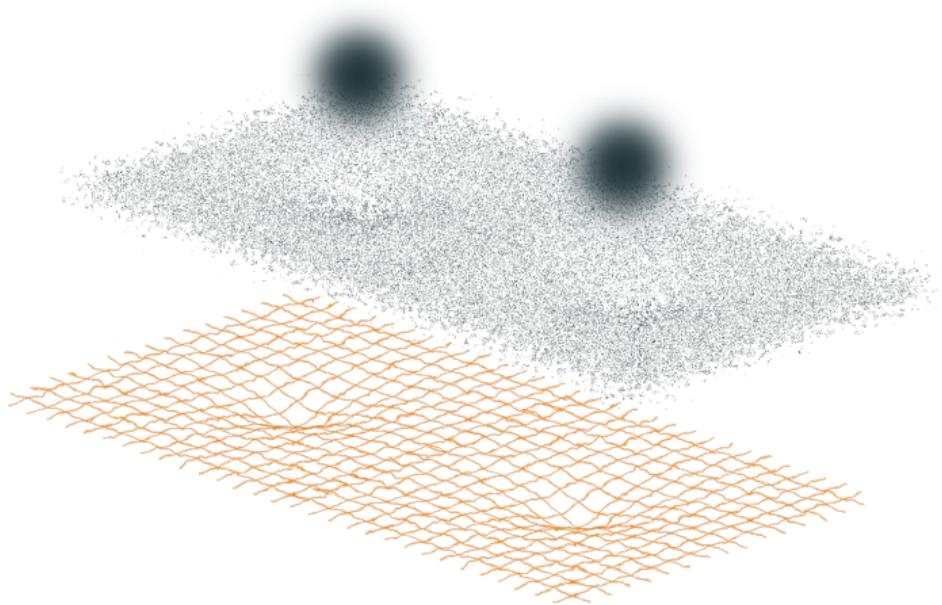

The state of the controller is the classical variable

Idea:


Source gravity by measuring the mass density:

$$\nabla^2 \Phi(x) = 4\pi G \mathcal{S}_{\hat{M}}(x)$$

[Kafri, Taylor & Milburn 2014]
[Diósi & T 2015]



Formal / “intuition pump” picture

“There are detectors in space-time measuring the mass density continuously and curving space-time accordingly.” → this is why it works

Ontological picture

“The gravitational interaction is mediated by a stochastic field, which is the **primitive ontology** of the theory” → this is how it should be understood physically

Continuous measurement

Stochastic Master Equation (~ 1987)

Density matrix:

$$d\rho_t = \mathcal{L}(\rho_t) dt + \gamma \mathcal{D}[\mathcal{O}](\rho_t) dt + \sqrt{\gamma} \mathcal{H}[\mathcal{O}](\rho_t) dW_t$$

Signal:

$$dy_t = \sqrt{\gamma} \operatorname{tr} [(\mathcal{O} + \mathcal{O}^\dagger) \rho_t] dt + dW_t$$

with:

- $\mathcal{D}[\mathcal{O}](\rho) = \mathcal{O}\rho\mathcal{O}^\dagger - \frac{1}{2} (\mathcal{O}^\dagger\mathcal{O}\rho + \rho\mathcal{O}^\dagger\mathcal{O})$
- $\mathcal{H}[\mathcal{O}](\rho) = \mathcal{O}\rho + \rho\mathcal{O}^\dagger - \operatorname{tr} [(\mathcal{O} + \mathcal{O}^\dagger) \rho] \rho$
- $\frac{dW_t}{dt}$ “white noise”

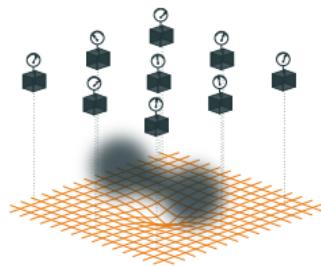
V. Belavkin

A. Barchielli

L. Diósi

Model

1. Step 1: continuous mass density measurement


We **imagine** that space-time is filled with detectors weakly measuring the mass density:

The equation for matter is now as before with

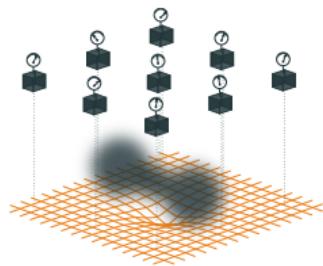
$$\mathcal{O} \rightarrow \hat{M}(x), \forall x \in \mathbb{R}^3$$

$\gamma \rightarrow \gamma(x, y)$ coding detector strength and correlation

and there is a “mass density signal” $S(x)$ in every point.

Model

1. Step 1: continuous mass density measurement

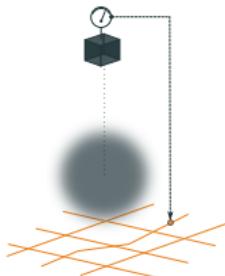

We **imagine** that space-time is filled with detectors weakly measuring the mass density:

The equation for matter is now as before with

$$\mathcal{O} \rightarrow \hat{M}(x), \forall x \in \mathbb{R}^3$$

$\gamma \rightarrow \gamma(x, y)$ coding detector strength and correlation

and there is a “mass density signal” $S(x)$ in every point.



2. Step 2: Feedback

We take the mass density signal $S(x)$ to source the gravitational field φ :

$$\nabla^2 \varphi(x) = 4\pi G S(x)$$

which is **formally** equivalent to quantum feedback.

Result

Standard quantum feedback like computations give for $\rho_t = \mathbb{E}[\Psi_t \rangle \langle \Psi_t]$:

$$\begin{aligned}\partial_t \rho = & -i \left[H_0 + \frac{1}{2} \iint dx dy \mathcal{V}(x, y) \hat{M}(x) \hat{M}(y), \rho_t \right] \\ & - \frac{1}{8} \iint dx dy \mathcal{D}(x, y) \left[\hat{M}(x), [\hat{M}(y), \rho_t] \right],\end{aligned}$$

with the **gravitational pair-potential**

$$\mathcal{V} = \left[\frac{4\pi G}{\nabla^2} \right] (x, y) = -\frac{G}{|x - y|},$$

and the **positional decoherence**

$$\mathcal{D}(x, y) = \left[\frac{\gamma}{4} + \mathcal{V} \circ \gamma^{-1} \circ \mathcal{V}^\top \right] (x, y)$$

Hence the expected pair potential has been generated consistently at the price of more decoherence.

Principle of least decoherence

$$\mathcal{D}(x, y) = \left[\frac{\gamma}{4} + \mathcal{V} \circ \gamma^{-1} \circ \mathcal{V}^\top \right] (x, y)$$

There is still a (functional) degree of freedom $\gamma(x, y)$:

- ▶ Large $\|\gamma\| \implies$ strong “measurement” induced decoherence
- ▶ Small $\|\gamma\| \implies$ strong “feedback” decoherence

Principle of least decoherence

$$\mathcal{D}(x, y) = \left[\frac{\gamma}{4} + \mathcal{V} \circ \gamma^{-1} \circ \mathcal{V}^\top \right] (x, y)$$

There is still a (functional) degree of freedom $\gamma(x, y)$:

- ▶ Large $\|\gamma\| \implies$ strong “measurement” induced decoherence
- ▶ Small $\|\gamma\| \implies$ strong “feedback” decoherence

There is an optimal kernel that minimizes decoherence.

Principle of least decoherence

$$\mathcal{D}(x, y) = \left[\frac{\gamma}{4} + \mathcal{V} \circ \gamma^{-1} \circ \mathcal{V}^\top \right] (x, y)$$

There is still a (functional) degree of freedom $\gamma(x, y)$:

- ▶ Large $\|\gamma\| \implies$ strong “measurement” induced decoherence
- ▶ Small $\|\gamma\| \implies$ strong “feedback” decoherence

There is an optimal kernel that minimizes decoherence.

Diagonalizing in Fourier, one gets a global minimum for

$$\gamma = 2\sqrt{\mathcal{V} \circ \mathcal{V}^\top} = -2\mathcal{V}$$

Hence:

$$\mathcal{D}(x, y) = -\mathcal{V}(x, y) = \frac{G}{|x - y|}$$

This is just the decoherence kernel of the Diósi-Penrose model (erstwhile heuristically derived)!

Regularization

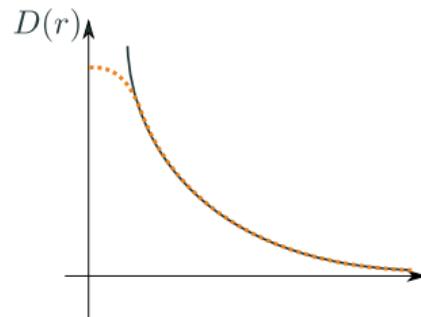
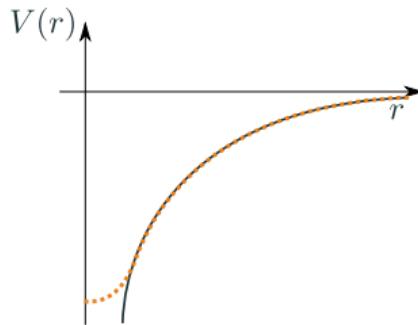
Even for the minimal decoherence prescription, the decoherence is **infinite**.

Regularization

Even for the minimal decoherence prescription, the decoherence is **infinite**.

Adding a regulator at a length scale σ has 2 effects:

- ▶ It tames decoherence, making it finite
- ▶ It regularizes the pair potential $\propto \frac{1}{r}$ for $r \lesssim \sigma$

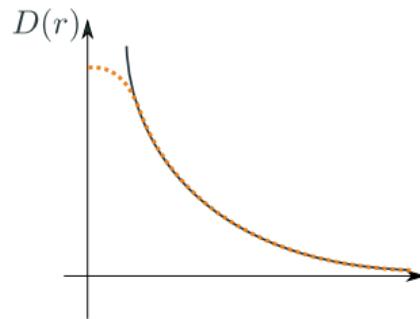
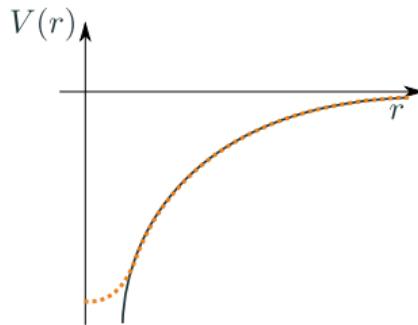


Regularization

Even for the minimal decoherence prescription, the decoherence is **infinite**.

Adding a regulator at a length scale σ has 2 effects:

- ▶ It tames decoherence, making it finite
- ▶ It regularizes the pair potential $\propto \frac{1}{r}$ for $r \lesssim \sigma$

⇒ there is a **trade-off**.

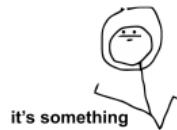


Regularization

Even for the minimal decoherence prescription, the decoherence is **infinite**.

Adding a regulator at a length scale σ has 2 effects:

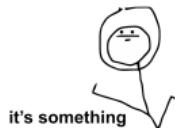
- ▶ It tames decoherence, making it finite
- ▶ It regularizes the pair potential $\propto \frac{1}{r}$ for $r \lesssim \sigma$

⇒ there is a **trade-off**.

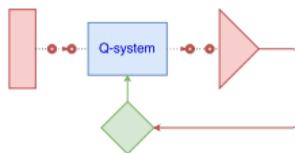

Experimentally:

$$\frac{10^{-15} m}{\text{decoherence constraint}} \ll \sigma \leq \frac{10^{-4} m}{\text{gravitational constraint}}$$

Importantly $\sigma > \ell_{\text{Compton}} \gg \ell_{\text{Planck}}$.

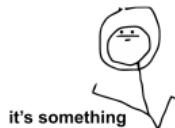

Summary of the approach

1. **Most importantly:** Constructing consistent models of semiclassical gravity is possible... in the Newtonian limit

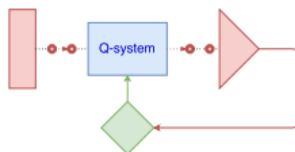


Summary of the approach

1. **Most importantly:** Constructing consistent models of semiclassical gravity is possible... in the Newtonian limit



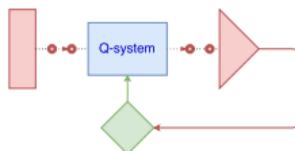
2. The intuition is to use measurement based **Markovian feedback**



Summary of the approach

1. **Most importantly:** Constructing consistent models of semiclassical gravity is possible... in the Newtonian limit

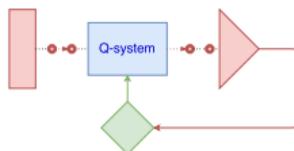
2. The intuition is to use measurement based **Markovian feedback**


3. The price to pay for semiclassical coupling is intrinsic and gravitational decoherence

Summary of the approach

1. **Most importantly:** Constructing consistent models of semiclassical gravity is possible... in the Newtonian limit

2. The intuition is to use measurement based **Markovian feedback**


3. The price to pay for semiclassical coupling is intrinsic and gravitational decoherence
4. Minimizing total decoherence gives a parameter free model

Summary of the approach

1. **Most importantly:** Constructing consistent models of semiclassical gravity is possible... in the Newtonian limit

2. The intuition is to use measurement based **Markovian feedback**

3. The price to pay for semiclassical coupling is intrinsic and gravitational decoherence
4. Minimizing total decoherence gives a parameter free model
5. ... up to regularization σ , which is upper bounded and lower bounded experimentally:

$$\text{decoherence constraint} \quad 10^{-15} m \ll \sigma \leq \text{gravitational constraint} \quad 10^{-4} m$$

Experimental final word

PRL 119, 240401 (2017)

PHYSICAL REVIEW LETTERS

week ending
15 DECEMBER 2017

Spin Entanglement Witness for Quantum Gravity

Sougato Bose,¹ Anupam Mazumdar,² Gavin W. Morley,³ Hendrik Ulbricht,⁴ Marko Toro,⁵ Mauro Paternostro,⁵ Andrew A. Geraci,⁶ Peter F. Barker,¹ M. S. Kim,⁷ and Gerard Milburn^{7,8}

¹Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom

²Van Swinderen Institute University of Groningen, 9747 AG Groningen, The Netherlands

³Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom

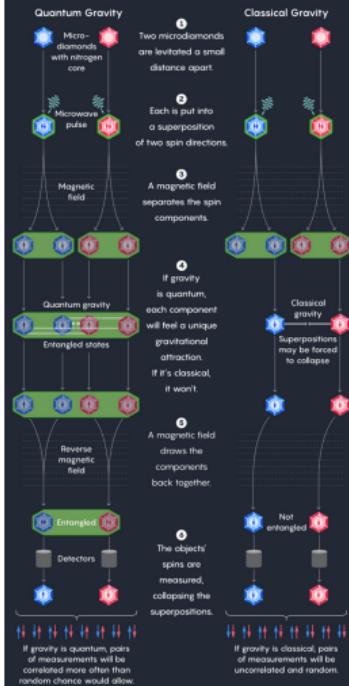
⁴Department of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton, United Kingdom

⁵CTAMOP, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN Belfast, United Kingdom

⁶Department of Physics, University of Nevada, Reno, 89557 Nevada, USA

⁷QOLS, Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom

⁸Centre for Engineered Quantum Systems, School of Mathematics and Physics,
The University of Queensland, QLD 4072, Australia


(Received 6 September 2017; revised manuscript received 6 November 2017; published 13 December 2017)

Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.

DOI: 10.1103/PhysRevLett.119.240401

Witnessing Quantum Gravity

A newly proposed experiment could confirm that gravity is a quantum force. It involves two microdiamonds, each placed in a quantum "superposition" of two possible locations. If gravity is quantum, the gravitational attraction between the diamonds will entangle their states. If it's not, the diamonds won't become entangled.

How seriously should we take it?

*Antoine, do you seriously believe the
world is like in your theory?*

Sheldon Goldstein

How seriously should we take it?

Antoine, do you seriously believe the world is like in your theory?

Sheldon Goldstein

I bet 99 to one that the outcome will be consistent with gravity having quantum properties.

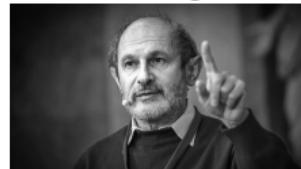
Carlo Rovelli

NewScientist — 14 April 2018

Conclusion

Does gravity need to be quantized? No

- ▶ Weak arguments grounded on **hope** and **aesthetics**
- ▶ Strong argument: standard approach to semiclassical gravity **empirically inadequate**

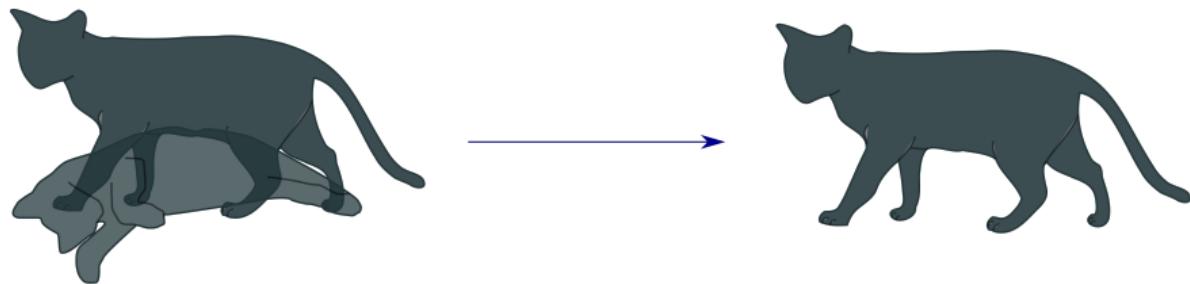

Counter example

- ▶ Semiclassical coupling \equiv Measurement based feedback
- ▶ Parameter free model up to regularization

Experimentally

- ▶ Quantitatively: additional decoherence with a very specific form
- ▶ Qualitatively: cannot entangle

Acknowledgments



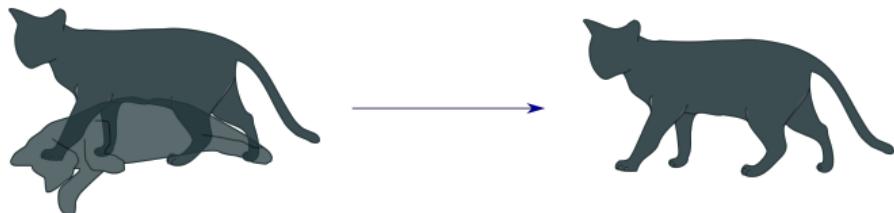
Lajos Diósi

References

1. Kafri, Taylor, Milburn *A classical channel model for gravitational decoherence*, NJPhys 2014 and *Bounds on quantum communication via Newtonian gravity* NJPhys 2015
2. T, Diósi *Sourcing semiclassical gravity from spontaneously localized quantum matter* PRD 2016 and *Principle of least decoherence for Newtonian semiclassical gravity* PRD 2017
3. T, Ghirardi *Rimini Weber model with massive flashes* PRD 2018 and *Binding quantum matter and space time without romanticism*

IV – Link with collapse models

Collapse models


Naive definition

Collapse models are an attempt to solve the measurement problem of quantum mechanics through an *ad hoc*, non-linear, and stochastic modification of the Schrödinger equation.

$$\partial_t |\Psi_t\rangle = -iH|\Psi_t\rangle + \varepsilon f_\xi(|\Psi_t\rangle)$$

A few names:

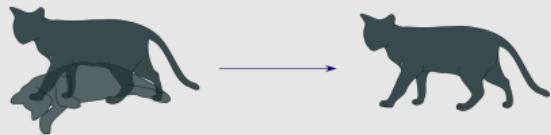
Pearle, Ghirardi, Rimini, Weber,
Diósi, Adler, Gisin, Tumulka,
Bedingham, Penrose, Percival,
Bassi, Ferialdi, Weinberg ...

Collapse models

The modification is such that:

Weak collapse

A single particle *extremely rarely* collapses in the position basis


- ▶ Microscopic dynamics unchanged

Amplification

The effective collapse rate is renormalized for macroscopic superpositions:

- ▶ Macroscopic superpositions almost instantly collapse

We have a collapse model!

Actually, the continuous measurement of the regularized mass density gives:

- ▶ The Continuous Spontaneous Localization (CSL) model for $\gamma(x, y) \propto \delta(x, y)$ i.e. maximally local (up to regularization)
- ▶ The Diósi-Penrose (DP) model for $\gamma(x, y)$ minimizing decoherence

We have a collapse model!

Actually, the continuous measurement of the regularized mass density gives:

- ▶ The Continuous Spontaneous Localization (CSL) model for $\gamma(x, y) \propto \delta(x, y)$ i.e. maximally local (up to regularization)
- ▶ The Diósi-Penrose (DP) model for $\gamma(x, y)$ minimizing decoherence

Consequences

1. Our model **solves the measurement problem**. There are no macroscopic superpositions

We have a collapse model!

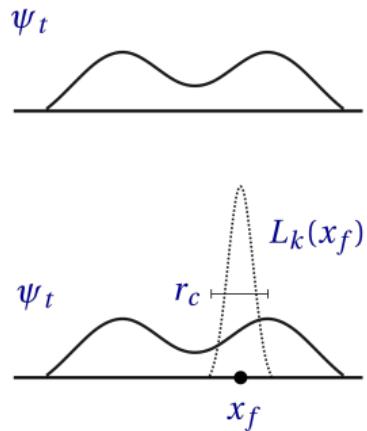
Actually, the continuous measurement of the regularized mass density gives:

- ▶ The Continuous Spontaneous Localization (CSL) model for $\gamma(x, y) \propto \delta(x, y)$ i.e. maximally local (up to regularization)
- ▶ The Diósi-Penrose (DP) model for $\gamma(x, y)$ minimizing decoherence

Consequences

1. Our model **solves the measurement problem**. There are no macroscopic superpositions
2. It is tempting make an analog construction for GRW

The GRW model

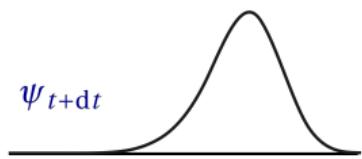

GRW model for N spinless particles

- ▶ Standard linear evolution between jumps

$$\partial_t |\psi_t\rangle = -iH|\psi_t\rangle$$

- ▶ Jump hitting particle k in x_f at a rate λ

$$|\psi_t\rangle \rightarrow \frac{\hat{L}_k(x_f)|\psi_t\rangle}{\|\hat{L}_k(x_f)|\psi_t\rangle\|}$$

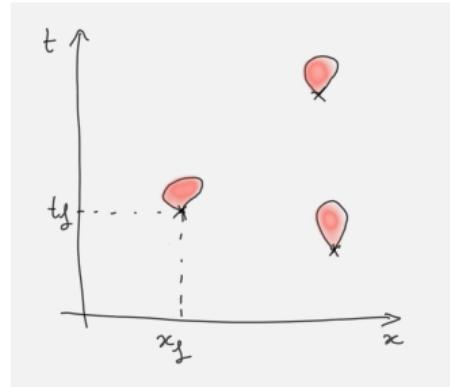


with

$$\mathbb{P}(x_f) = \|\hat{L}_k(x_f)|\psi_t\rangle\|^2$$

and

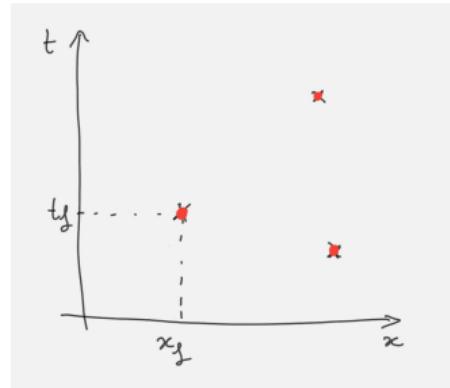
$$\hat{L}_k(x_f) = \frac{1}{(\pi r_c^2)^{3/2}} e^{(\hat{x}_k - x_f)^2 / (2r_c^2)}$$



GRW with massive flashes

Sourcing equation –general case–

Gravitational Φ field created by a single flash (x_f, t_f) :


$$\nabla^2 \Phi(x, t) = 4\pi G m_k \lambda^{-1} f(t - t_f, x - x_f)$$

Sourcing equation –sharp limit–

Gravitational Φ field created by a single flash (x_f, t_f) :

$$\nabla^2 \Phi(x, t) = 4\pi G m_k \lambda^{-1} \delta(t - t_f, x - x_f)$$

GRW with massive flashes

Add the gravitational field in the Schrödinger equation

$$\begin{aligned}\hat{V}_G &= \int dx \Phi(x) \hat{M}(x) \\ &= -G\lambda^{-1} \sum_{\ell=1}^N m_k m_l \int dx \frac{f(t - t_f, x - x_f)}{|x - \hat{x}_\ell|}\end{aligned}$$

with $\hat{M}(x) = \sum_{\ell=1}^N m_\ell \delta(x - \hat{x}_\ell)$.

In the limit of sharp sources, \hat{V}_G is ill-defined but the corresponding unitary is fine:

$$\begin{aligned}\hat{U}_k(x_f) &= \exp \left(-\frac{i}{\hbar} \int_{t_f}^{+\infty} dt \hat{V}_G(t) \right) \\ &= \exp \left(i \frac{G}{\lambda \hbar} \sum_{\ell=1}^N \frac{m_k m_\ell}{|x_f - \hat{x}_\ell|} \right)\end{aligned}$$

GRW with massive flashes

Just after a jump, a **jump dependent** unitary is applied to the N -particle system:

$$|\Psi_t\rangle \rightarrow \hat{U}_k(x_f) \frac{\hat{L}_k(x_f)|\Psi_t\rangle}{\|\hat{L}_k(x_f)|\Psi_t\rangle\|} = \frac{\hat{U}_k(x_f)\hat{L}_k(x_f)|\Psi_t\rangle}{\|\hat{U}_k(x_f)\hat{L}_k(x_f)|\Psi_t\rangle\|} := \frac{\hat{B}_k(x_f)|\Psi_t\rangle}{\|\hat{B}_k(x_f)|\Psi_t\rangle\|}$$

It is just like changing the collapse operators to non self-adjoint ones!

In the end, all the empirical content lies in the master equation:

$$\partial_t \rho_t = -\frac{i}{\hbar} [H, \rho_t] + \lambda \sum_{k=1}^n \int dx_f \hat{B}_k(x_f) \rho_t \hat{B}_k(x_f) - \rho_t$$

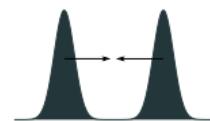
GRW with massive flashes: phenomenology

Single particle master equation

Consider the density matrix

$$\begin{aligned}\rho : \mathbb{R}^3 \times \mathbb{R}^3 &\longrightarrow \mathbb{C} \\ (x, y) &\longmapsto \rho(x, y)\end{aligned}$$

It obeys:


$$\partial_t \rho_t(x, y) = \lambda (\Gamma(x, y) - 1) \rho(x, y)$$

with

$$\begin{aligned}\Gamma(x, y) = &\int \frac{dx_f}{(\pi r_C^2)^{3/2}} \exp \left(i \frac{Gm^2}{\lambda \hbar} \left[\frac{1}{|x - x_f|} - \frac{1}{|y - x_f|} \right] \right) \\ &\times \exp \left(-\frac{(x - x_f)^2 + (y - x_f)^2}{2r_C^2} \right)\end{aligned}$$

Lemma 1:

- $\Gamma(x, y)$ is **real** \rightarrow pure decoherence
- No self-attraction

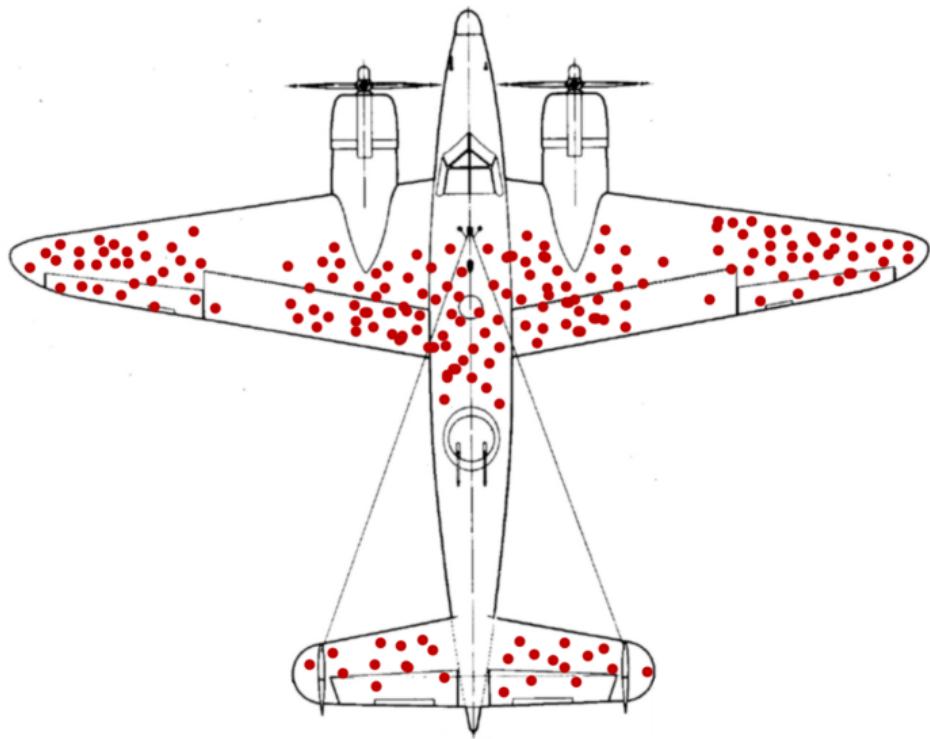
Lemma 2:

- The model is falsifiable for “all” values of λ

GRW with massive flashes: recovering Newtonian gravity

Two lengths scales in the problem:

- ▶ r_c the collapse regularization radius
- ▶ $r_G = Gm^2/(\hbar\lambda)$ a new gravitational length scale


For distances d larger than these two length scales:

- ▶ One can neglect the Gaussian smearing of the collapse
- ▶ The fact that gravity “kicks” instead of being continuous can be neglected on the average evolution:

$$U_k(x_f) \simeq 1 + i \frac{G}{\lambda \hbar} \sum_{\ell=1}^N \frac{m_k m_\ell}{|x_f - \hat{x}_\ell|}$$

We then recover Newton's potential! (+ decoherence)

Bonus: Survival bias

