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Introduction

There are often two ways to estimate things:
I The dumb way: compute theory prediction and fit on simple observables.
I The smart way: reconstruct the optimal Bayesian estimate of the thing from the dataset.

“Dumb” way “Smart” way

Objective: discuss both approaches in the continuous measurement context

Small novelty: A theoretical formula for the N-point functions makes the dumb way quite
general

Figure: Chase & Geremia 2009, Phys. Rev. A 79, 022314
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Outline

1. Continuous measurements
2. Smart parameter estimation
3. Dumb parameter estimation
4. Computing correlation function
5. Including imperfections
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Continuous measurement
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Repeated interactions

Discrete quantum trajectories
A sequence of |ψn〉 or ρn (random) and the corresponding
measurement results δn = ±1.

I Make the interaction between system and probe smoother

Uint = 1+ i
√
εOsys ⊗ Kprobe

I Increase the frequency at which probes are sent:

τ ∝ ε

Continuous quantum trajectories
A continuous map |ψt〉 or ρt (random) and the corresponding
continuous measurement signal rt ∝

√
ε
∑

k δk

BEssentially a central limit theorem result B

5 / 23



Repeated interactions

Discrete quantum trajectories
A sequence of |ψn〉 or ρn (random) and the corresponding
measurement results δn = ±1.

I Make the interaction between system and probe smoother

Uint = 1+ i
√
εOsys ⊗ Kprobe

I Increase the frequency at which probes are sent:

τ ∝ ε

Continuous quantum trajectories
A continuous map |ψt〉 or ρt (random) and the corresponding
continuous measurement signal rt ∝

√
ε
∑

k δk

BEssentially a central limit theorem result B

5 / 23



Repeated interactions

Discrete quantum trajectories
A sequence of |ψn〉 or ρn (random) and the corresponding
measurement results δn = ±1.

I Make the interaction between system and probe smoother

Uint = 1+ i
√
εOsys ⊗ Kprobe

I Increase the frequency at which probes are sent:

τ ∝ ε

Continuous quantum trajectories
A continuous map |ψt〉 or ρt (random) and the corresponding
continuous measurement signal rt ∝

√
ε
∑

k δk

BEssentially a central limit theorem result B
5 / 23



In practice

I Discrete situations “LKB style”, with actual
repeated interactions

I Almost “true” continuous measurement
settings (homodyne detection in quantum
optics, quantum point contacts for quantum
dots)
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Result

Stochastic Master Equation (∼ 1987)

Density matrix:

dρt = L(ρt) dt + γD[O](ρt) dt +√γηH[O](ρt) dWt

Signal:
It =

drt
dt with drt =

√
γ tr

[
(O+ O†) ρt

]
dt + dWt

with:
I D[O](ρ) = OρO† − 1

2
(
O†Oρ+ ρO†O

)
I H[O](ρ) = Oρ+ ρO† − tr

[
(O+ O†) ρ

]
ρ

I dWt
dt “white noise”

V. Belavkin

A. Barchielli

L. Diósi
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Example 0
Situation considered
Pure continuous measurement of a qubit:

I Qubit ⇒H = C2

I Hence ρt =

(
pt ut
u∗t 1 − pt

)
I Continuous energy measurement: O = σz ∝ H

Starting point:
dρt = γD[O](ρt) dt +√γH[O](ρt) dWt

=⇒ Equation for the probability:

dpt =
√
γ pt(1 − pt) dWt

=⇒ Equation for the phase:

dut = −
γ

8 ut dt +
√
γ

2 (2pt − 1) dWt
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Example 0

Pure continuous measurement of a qubit dpt =
√
γ pt(1 − pt) dWt
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Smart parameter estimation
We assume there are unknown parameters in the evolution, e.g. ρ evolves with:

dρt = −i [Hξ, ρt ] dt + γD[O](ρt) dt +√γηH[O](ρt) dWt︸ ︷︷ ︸
continuous measurement

with ξ unknown.

Question
How to estimate ξ from a continuous
measurement record It ?

Idea
Turn parameter estimation back into
a filtering problem.

Imagine the unknown parameter is an internal degree of freedom:
1. Define H = Hs ⊗Haux with Haux = span(|ξ1〉, · · · , |ξN〉)
2. Define ρ0 =

∑N
k=1 ρ

k
s ⊗ |ξk〉〈ξk | where ρk

s = πk ρs(0) where πk prior for ξk

3. Define H =
∑N

k=1 Hξk ⊗ |ξk〉〈ξk |, and O→ O⊗ 1aux

4. Solve the SME: dρt = −i [H, ρt ] dt + γD[O](ρt) dt +√γηH[O](ρt) dWt

Diagonality in the auxiliary basis is preserved and generically πk(t) ∼
t→+∞ δk,kreal

See e.g.: Gambetta & Wiseman 2001,Phys. Rev. A 64, 042105 — Chase & Geremia 2009, Phys. Rev. A 79, 022314 —
Negretti & Mølmer 2013, New J. Phys. 15, 125002 — Six et al. 2015, 54th IEEE CDC, pp. 7742-7748
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Smart parameter estimation: intuition

Why does it work?

Convergence? → Collapse in the space of parameters
Continuous measurement purifies the state enlarged with its “unknown parameter” degree of
freedom while preserving the block diagonal structure.

Accuracy? → Hidden Variable
Because we are diagonal in the basis of unknown parameters, the model is mathematically
equivalent to a classical filter with an unknown yet predetermined hidden variable ξ.

Easy to extend to a fluctuating unknown parameter ξ(t).
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Smart parameter estimation: first subtlety
Discretization of the unkown parameter values ξ→ ξk
The auxiliary Hilbert space Haux needs to be large for high accuracy

Resampling
Keep Haux small to find a crude approximation and then refine around this value. Iterate.
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Smart parameter estimation: example

Estimation of the efficiency η of the heterodyne detection of a fluorescence:
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Smart parameter estimation: difficulties

a) Main practical difficulty: ρt = f (ρ0, I) where f is a complicated
non-linear function of the measured signal.
b) Further, amplification typically filters the signal:

Ĩt
measured signal

=

∫ t

−∞du K (t − u) Iu
true signal

Solution:
1. Discretize at a high frequency
2. Deconvolute the filter of the detection chain
3. Numerically integrate the discretized SME

But will become untractable for large quantum systems because
requires reconstructing ρ.

detection chain

Figure: Supplementary Material of Ficheux et al. 2017, arXiv:1711.01208
Smart integration scheme: Rouchon & Ralph 2015, Phys. Rev. A 91, 012118
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Dumb parameter estimation
Smart parameter estimation is mathematically optimal, but sometimes overkill or hard to
implement.

Smart parameter estimation
Reconstruct a non-trivial function of
the signal e.g. ρt to obtain directly
the probability π of the unknown
parameter ξ.

Dumb parameter estimation
Compute a trivial function of the signal
e.g. E[It1 It2 ] and use the theory to relate
it to system parameters ξ. Fit theory on
experiment.

Candidates for “dumb” parameter estimation
→ the signal N-point correlation functions:

Kt1,··· ,tN = E [It1 · · · ItN ]

Advantages
1. Requires only analog manipulations of the signal (delay lines & multipliers)
2. Can include all the imperfections in the theoretical fit.

See e.g.: Jordan & Büttiker 2005, Phys. Rev. Lett. 95, 220401 — Atalaya et al. 2017, Phys. Rev. A 95, 032317 —
Atalaya et al. 2017, arXiv:1702.08077
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Computing correlation functions
Setup: Continuous measurement of several operators

dρ = L(ρ)dt +
n∑

k=1
D[ck ](ρ) dt +√ηk H[ck ](ρ) dWk ,

with signal:
Ik =

drk
dt with drk =

1
2 tr[(ck + c†k )ρ] dt + 1

2√ηk
dWk .

Objective
Compute N-point functions:

K`1`2···`N (t1, t2, · · · , tN) := E [I`1(t1)I`2(t2) · · · I`N (tN)] ,

as a function of the system dynamics L, measured operators {ck }
n
k=1, and efficiencies {ηk }

n
k=1.

Many ways:
I Quantum noise / continuous matrix product states
I Discretization

But I take the (possibly pedestrian) purely stochastic route.
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Computing correlation functions

Idea:
1. Introduce a generating functional Zj(T ),

Zj := E

[
exp

( n∑
k=1

∫T

0
jk(u) Ik(u) du

)]

2. Solve a differential equation for ρ̄j(T ) such that tr[ρ̄j(T )] = Zj(t),
3. Carry the functional differentiation explicitly

K`1···`N (t1, · · · , tN) =
δ

δj`1(t1)
· · · δ

δj`N (tN)
Zj

∣∣∣
j=0

17 / 23



Computing correlation functions

Correlation function – without equal point distribution
For t1 < t2 < · · · < tN :

K`1`2···`N (t1, t2, · · · , tN) =
1

2N × tr
[
c+
`N
ΦtN−tN−1c+

`N−1
· · · Φt2−t1c+

`1
Φt1 · ρ(0)

]
,

where Φt = exp {t (L+
∑n

k=1 D[ck ])} and c+ · ρ = cρ+ ρc†.

Graphically: initial state – propagators – operator insertions

B Ignores the singular δ(ti − tj) equal point contributions

Close earlier results:
Zoller & Gardiner 1995, Lecture Notes for the Les Houches Summer School LXIII on Quantum Fluctuations
Barchielli & Gregoratti 2009, Quantum trajectories and measurements in continuous time: the diffusive case
Verstraete & Cirac 2010, Phys. Rev. Lett. 104, 190405
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Including imperfections

In practice, signals are smeared (imperfect amplification):

I(t)→ Iϕ =

∫
ϕ(u) I(u) du

The corresponding correlation function:

K`1,··· ,`N (ϕ1, · · · , ϕN) := E [I`1(ϕ1) · · · I`N (ϕN)] .

picks up the equal point δ contributions.

They can be included: straightforward albeit slightly cumbersome.
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Example

Setup: Qubit without proper dynamics (L = 0), continuously measured with c1 =
√
γxσx

(with associated signal I1 := Ix ) and c2 =
√
γ−σ− =

√
γ−(σx − iσy )/2 (with associated signal

I2 := I−).

General formula gives e.g. :

Kx,−(t1, t2) =

√
γ−γx

2 e−γ−|t2−t1|/2×
{
θt2t1+θt1t2

[
2γx

γ−+ 2γx
−

(
z0 −

γ−

γ−+ 2γx

)
e−(γ−+2γx )t1

]}
with z0 = tr[σzρ(0)] and θt1t2 is the Heaviside function
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Example

Include a simple imperfection in the detection chain, low pass filter with bandwidth λ:
I Smears the regular part of correlation functions
I Picks the otherwise “hidden” equal point singularities
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Link with continuous matrix product states

Continuous matrix product states (cMPS)

A variational class of states for 1 + 1d quantum field theories. Idem continuous measurement
with dictionnary:

I quantum noise ↔ quantum field
I small system of interest ↔ variational parameters

Wick’s theorem for cMPS
N-point fuctions of cMPS in the thermodynamic limit can be generically reconstructed from
their 2 and 3 point functions.

Continuous measurement translation
All the parameters that can be in principle estimated in the stationary state can generically
be estimated using only 2 and 3 point correlation functions.

Hübener, Mari & Eisert 2013, Phys. Rev. Lett. 110 040401
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Summary

There are smart ways and dumb ways to estimate system parameters:
I Smart is optimal, but difficult, and possibly one day untractable.
I Dumb is suboptimal, but easier to implement

The dumb method relies on the computation of signal N-point functions. The latter can be
computed exactly in full generality and including detection imperfections.

Studying and controling quantum systems without reconstructing their state and focusing only
on simple functions of the signal may be easier. Being dumb is the future.

Reference: arXiv:1712.05725
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