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Introduction

There are often two ways to estimate things:

» The dumb way: compute theory prediction and fit on simple observables.

> The smart way: reconstruct the optimal Bayesian estimate of the thing from the dataset.

“Dumb” way

Figure: Chase & Geremia 2009, Phys. Rev. A 79, 022314
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Introduction

There are often two ways to estimate things:
» The dumb way: compute theory prediction and fit on simple observables.

» The smart way: reconstruct the optimal Bayesian estimate of the thing from the dataset.
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“Smart” way

° “Dumb” way
Objective: discuss both approaches in the continuous measurement context
Small novelty: A theoretical formula for the N-point functions makes the dumb way quite

general
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Figure: Chase & Geremia 2009, Phys. Rev. A 79, 022314
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Continuous measurements
Smart parameter estimation
Dumb parameter estimation
Computing correlation function

Including imperfections
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Repeated interactions

Discrete quantum trajectories

A sequence of p,,) or p, (random) and the corresponding
measurement results 0, = £1.
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» Increase the frequency at which probes are sent:

TXE

5/23



Repeated interactions

Discrete quantum trajectories

A sequence of p,,) or p, (random) and the corresponding
measurement results 0, = £1.

» Make the interaction between system and probe smoother

Uint =1+ "\/E Osys @ Kprobe

» Increase the frequency at which probes are sent:

TXE

Continuous quantum trajectories

A continuous map [1;) or p; (random) and the corresponding
continuous measurement signal r; o ﬁzk Ok

/\Essentially a central limit theorem result A\
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In practice

» Discrete situations “LKB style”, with actual
repeated interactions

» Almost “true” continuous measurement
settings (homodyne detection in quantum
optics, quantum point contacts for quantum
dots)
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Result

Stochastic Master Equation (~ 1987)

Density matrix:

dp: = L(p) dt +v D[O](p;) dt + /Y1 H[O](p) dW;

Signal:
I, = % with dre = Ay tr [(O+ O) p] dt +dW,

with:
» D[O](p) = OpOT — 1 (0TOp + p0OT0)
» H[O](p) = Op + pOT —tr [(O+ OT) p] p

> ds/tvt “white noise”

V. Belavkin

A. Barchielli
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Example 0
Situation considered

Pure continuous measurement of a qubit: ) J

» Qubit = 7 = (2 S -

» Hence Pr = < 5; 1 ﬁtpt > ‘;\\\
t

» Continuous energy measurement: O = 0, oc H
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Example 0
Situation considered

Pure continuous measurement of a qubit:

» Qubit = 7 = (2

> Hencept—< 5§ 1utpt>
t

» Continuous energy measurement: O = 0, oc H

Starting point:
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Example 0

Situation considered

Pure continuous measurement of a qubit:

» Qubit = 7 = (2

» Hence p; = ( 5§ 1 ﬁtpt )
t

» Continuous energy measurement: O = 0, o< H

Starting point:
dp: =y D[Ol(p) dt + /¥y H[Ol(p¢) dW;

= Equation for the probability:
dp: = /vy pe(1 — pe) dW,
— Equation for the phase:

dUt :7gutdt+ g(thfl)th
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Example 0

Pure continuous measurement of a qubit dp; = /vy p:(1 — p;) dW;
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Example 0

Pure continuous measurement of a qubit dp, = /v p:(1 — p;) dW,

9/23



Smart parameter estimation

We assume there are unknown parameters in the evolution, e.g. p evolves with:

dps = —i[He, p:l dt +vyDI[O](p:) dt + \/ﬁi}f[oﬂpt) dW;

continuous measurement

with & unknown.

See e.g.: Gambetta & Wiseman 2001,Phys. Rev. A 64, 042105 — Chase & Geremia 2009, Phys. Rev. A 79, 022314 —

Negretti & Mglmer 2013, New J. Phys. 15, 125002 — Six et al. 2015, 54th IEEE CDC, pp. 7742-7748 1093
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Smart parameter estimation
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dp; = —ilHg, pel dt +vD[O](p,) dt + /ynH[O](p:) dW;
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How to estimate & from a continuous
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Smart parameter estimation

We assume there are unknown parameters in the evolution, e.g. p evolves with:

dpt:—i[Hg,pt}dt+YD[O Pt) dt+\/79{ 1(pt) dW;

continuous measurement

with & unknown.

Question Idea
How to estimate & from a continuous Turn parameter estimation back into
measurement record /; ? a filtering problem.

Imagine the unknown parameter is an internal degree of freedom:
1. Define 57 = ;@ Huyx With Ju = span(|&1), -+, |En))
2. Define pg = ZLVZI pk @ |€4) (Ex| where pX = 71, ps(0) where 71, prior for &
3. Define H=Y 1 He, @ &) (Exl, and O = O @ Lo
4. Solve the SME: dp; = —i[H, p¢] dt +yD[O](p;) dt + \/YnH[O](p;) dW;
Diagonality in the auxiliary basis is preserved and generically 7, (t) i Sk ke

See e.g.: Gambetta & Wiseman 2001,Phys. Rev. A 64, 042105 — Chase & Geremia 2009, Phys. Rev. A 79, 022314 —

Negretti & Mglmer 2013, New J. Phys. 15, 125002 — Six et al. 2015, 54th IEEE CDC, pp. 7742-7748 093



Smart parameter estimation: intuition

Why does it work?

Convergence? — Collapse in the space of parameters

Continuous measurement purifies the state enlarged with its “unknown parameter” degree of
freedom while preserving the block diagonal structure.
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Smart parameter estimation: intuition

Why does it work?

Convergence? — Collapse in the space of parameters

Continuous measurement purifies the state enlarged with its “unknown parameter” degree of
freedom while preserving the block diagonal structure.

Accuracy? — Hidden Variable

Because we are diagonal in the basis of unknown parameters, the model is mathematically
equivalent to a classical filter with an unknown yet predetermined hidden variable &.

Easy to extend to a fluctuating unknown parameter &(t).
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Smart parameter estimation: first subtlety
Discretization of the unkown parameter values & — &,
The auxiliary Hilbert space 77, needs to be large for high accuracy

I | | | | | | |
[ { { { { { { \
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Smart parameter estimation: first subtlety

Discretization of the unkown parameter values & — &,
The auxiliary Hilbert space 77, needs to be large for high accuracy

I | | | | | |

[ { { { { { {

Resampling

Keep #,x small to find a crude approximation and then refine around this value. lterate.

-0 |
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Smart parameter estimation: example

Estimation of the efficiency 1 of the heterodyne detection of a fluorescence:

wdind,

0
0 500 1000 1500 2000 0 2
Number of Trajectories

4 6 8
Number of Trajectories x10° Number of Trajectories 6

Six et al. 2015, 54th IEEE Conference on Decision and Control (CDC), Osaka, pp. 7742-7748

10 0 0.5 1 1.5 2 25 3

13/23



Smart parameter estimation: difficulties

a) Main practical difficulty: p: = f(po, /) where f is a complicated
non-linear function of the measured signal.
b) Further, amplification typically filters the signal:

. t
I :J du K(t—u) I,

measured signal 00 true signal

Solution:
1. Discretize at a high frequency
2. Deconvolute the filter of the detection chain
3. Numerically integrate the discretized SME

But will become untractable for large quantum systems because
requires reconstructing p.

detection chain

Figure: Supplementary Material of Ficheux et al. 2017, arXiv:1711.01208

Smart integration scheme: Rouchon & Ralph 2015, Phys. Rev. A 91, 012118 4o



Dumb parameter estimation

Smart parameter estimation is mathematically optimal, but sometimes overkill or hard to

implement.
Smart parameter estimation Dumb parameter estimation
Reconstruct a non-trivial function of Compute a trivial function of the signal
the signal e.g. p: to obtain directly e.g. E[l1;,] and use the theory to relate
the probability 7t of the unknown it to system parameters &. Fit theory on
parameter &. experiment.

See e.g.: Jordan & Biittiker 2005, Phys. Rev. Lett. 95, 220401 — Atalaya et al. 2017, Phys. Rev. A 95, 032317 —
Atalaya et al. 2017, arXiv:1702.08077 e on
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Dumb parameter estimation

Smart parameter estimation is mathematically optimal, but sometimes overkill or hard to

implement.
Smart parameter estimation Dumb parameter estimation
Reconstruct a non-trivial function of Compute a trivial function of the signal
the signal e.g. p: to obtain directly e.g. E[l1;,] and use the theory to relate
the probability 7t of the unknown it to system parameters &. Fit theory on
parameter &. experiment.

Candidates for “dumb” parameter estimation

— the signal N-point correlation functions:

Ktl)”. ty - ]E [Itl e ItN]

}

Advantages
1. Requires only analog manipulations of the signal (delay lines & multipliers)

2. Can include all the imperfections in the theoretical fit.

See e.g.: Jordan & Biittiker 2005, Phys. Rev. Lett. 95, 220401 — Atalaya et al. 2017, Phys. Rev. A 95, 032317 —
Atalaya et al. 2017, arXiv:1702.08077
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Computing correlation functions
Setup: Continuous measurement of several operators

dp = L(p)dt+ Y Dlcd(p) dt + vk Hlc (p) d W,
k=1

with signal:
1

2\/Mk

d 1
I = d—’: with dr, = Strl(c, + cf)pldt +

dW.
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Computing correlation functions

Setup: Continuous measurement of several operators

dp = L(p)dt + ZD[C/(](P) dt + i Hlckl (p) d W,
k=1

with signal:

I, = ‘Z—’tk with dry = %tr[(ck +cl)pldt + 2\;ﬂde.
Objective
Compute N-point functions:

Koyyooon (t1y oy oo s tn) = T [y, (t1) hey (22) - - fopy (2],

as a function of the system dynamics £, measured operators {c.};_;, and efficiencies {nx};_;.
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Computing correlation functions

Setup: Continuous measurement of several operators

dp=L(p)dt+ Y Dlad(p) dt + x Hlcd (p) dWi,
k=1

with signal:
drk . 1 1
he= g, with dre = Strl(c + chpldt + 7 AW
Objective
Compute N-point functions:
Kooty (try oy s tn) = B Uy, (t1) e, (82) - - - foy (W],

as a function of the system dynamics £, measured operators {c.};_;, and efficiencies {nx};_;.

Many ways:
» Quantum noise / continuous matrix product states
» Discretization

But | take the (possibly pedestrian) purely stochastic route.
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Computing correlation functions

Idea:

1. Introduce a generating functional Z;(T),

noT
exp (Z J, dete) /k(u)duﬂ

k=1

Z-j =K

2. Solve a differential equation for p;( T) such that tr[p;( T)] = Z;(t),
3. Carry the functional differentiation explicitly

I 5,
Sje, (1) ey (tn) li=0

Keyoooon (1, -+ 5 )
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Computing correlation functions

Correlation function — without equal point distribution
Forti <th <-- <ty
i + + +
Koyoyty (t1y oy s EN) = s X tr | g @eyty G+ Ppmry 6 Oy - p(0) ]

N

where @, = exp{t (L + Y 7_; Dlck])} and ¢ - p = cp + pct.

Graphically: initial state — propagators — operator insertions

A\ lgnores the singular 5(t; — t;) equal point contributions

Close earlier results:
Zoller & Gardiner 1995, Lecture Notes for the Les Houches Summer School LXIIl on Quantum Fluctuations
Barchielli & Gregoratti 2009, Quantum trajectories and measurements in continuous time: the diffusive case

Verstraete & Cirac 2010, Phys. Rev. Lett. 104, 190405 1893



Including imperfections

In practice, signals are smeared (imperfect amplification):

I(t) = 1y = J(p(u) I{u)du
The corresponding correlation function:

Koy, tn (@1, s on) =Bl (@1) - ley (@n)] .

picks up the equal point & contributions.

They can be included: straightforward albeit slightly cumbersome.
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Example

Setup: Qubit without proper dynamics (£ = 0), continuously measured with ¢; = /Y50
(with associated signal  := /) and ¢, = /y_o_ = \/y_(0x —io,)/2 (with associated signal
I2 = /,)
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Example

Setup: Qubit without proper dynamics (£ = 0), continuously measured with ¢; = /yYx0x
(with associated signal  := /) and ¢, = /y_o_ = \/y_(0x —io,)/2 (with associated signal
I2 = /,)

General formula gives e.g. :

Ve 2, . 2
Kx (i) = X— " Y [tr—t1]/2 0 0 _erx Y- —(y_ 42yt
s ( 1y 2) > € X t2t1+ tit "/7—}- 2yx Z0 — v ¥ 2YX

with zy = tr[o,p(0)] and 64,;, is the Heaviside function
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Example

Include a simple imperfection in the detection chain, low pass filter with bandwidth A:
» Smears the regular part of correlation functions

» Picks the otherwise “hidden” equal point singularities
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Example

Include a simple imperfection in the detection chain, low pass filter with bandwidth A:
» Smears the regular part of correlation functions

» Picks the otherwise “hidden” equal point singularities

K, _ K, . —exact, \=+00
== exact, A\=10
——numeric

0‘1_I T |t

~+

-1 0 1 -1 0 1

time in units of v,
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Link with continuous matrix product states

Continuous matrix product states (cMPS)
A variational class of states for 1 + 1d quantum field theories. Idem continuous measurement
with dictionnary:

> quantum noise <> quantum field

» small system of interest <+ variational parameters

Hibener, Mari & Eisert 2013, Phys. Rev. Lett. 110 040401 93
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Link with continuous matrix product states

Continuous matrix product states (cMPS)
A variational class of states for 1 + 1d quantum field theories. Idem continuous measurement
with dictionnary:

> quantum noise <> quantum field

» small system of interest <+ variational parameters

Wick’s theorem for cMPS

N-point fuctions of cMPS in the thermodynamic limit can be generically reconstructed from
their 2 and 3 point functions.

Continuous measurement translation

All the parameters that can be in principle estimated in the stationary state can generically
be estimated using only 2 and 3 point correlation functions.

Hibener, Mari & Eisert 2013, Phys. Rev. Lett. 110 040401 93



Summary

There are smart ways and dumb ways to estimate system parameters:
» Smart is optimal, but difficult, and possibly one day untractable.

» Dumb is suboptimal, but easier to implement

The dumb method relies on the computation of signal N-point functions. The latter can be
computed exactly in full generality and including detection imperfections.

Studying and controling quantum systems without reconstructing their state and focusing only
on simple functions of the signal may be easier. Being dumb is the future.

Reference: arXiv:1712.05725
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