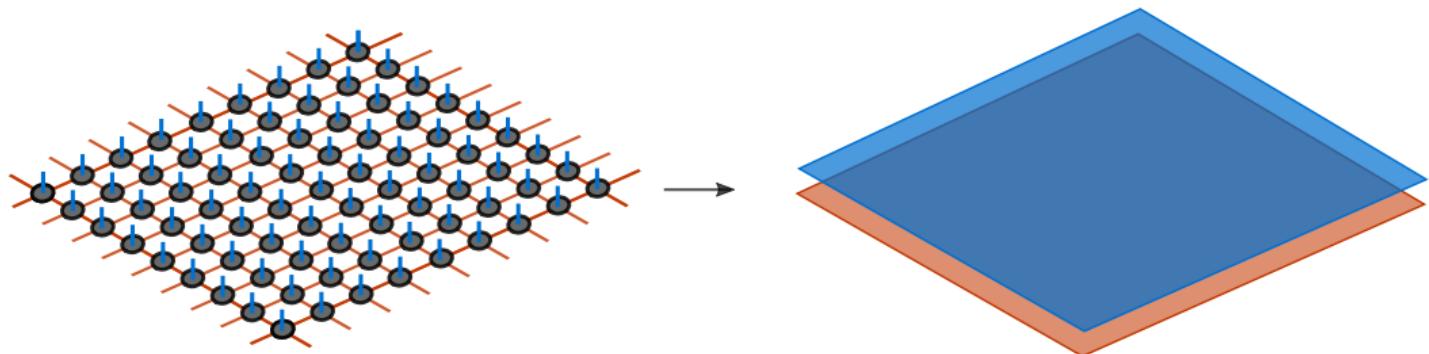


Continuous Tensor Network States of Quantum Fields

Antoine Tilloy, with J. Ignacio Cirac
Max Planck Institute of Quantum Optics, Garching, Germany



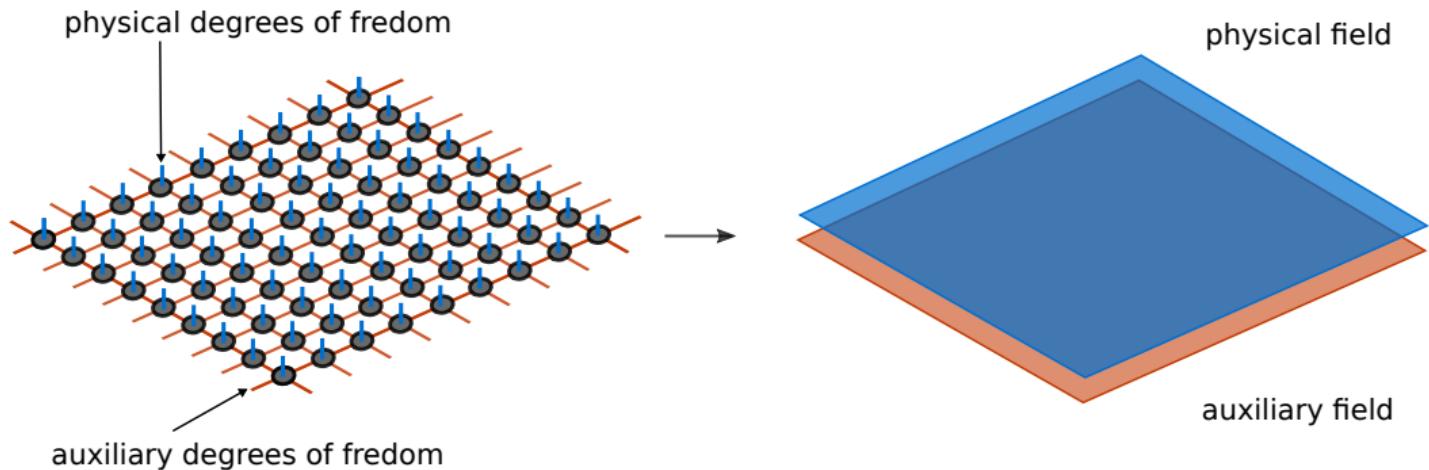
GQFI seminar

Albert Einstein Institute, Potsdam, Germany

September 27th, 2018

Alexander von Humboldt
Stiftung / Foundation

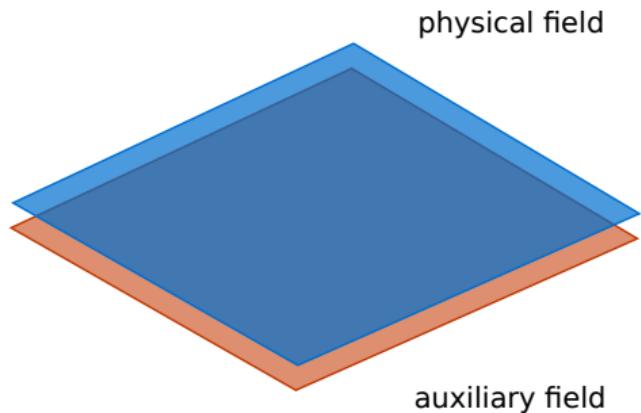
Objective



Objective

Why?

- ▶ **Computations:** the continuum brings new methods (perturbative expansions, saddle point approximations, differential equations)
- ▶ **QFT:** apply directly to QFT, without discretization
- ▶ **Symmetries:** Implement Euclidean / Translation invariance exactly
- ▶ **Holography:** (?) Construct better toy models



Problem

Many-body states are complicated.

$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} |i_1, \dots, i_n\rangle$$

2^n parameters c_{i_1, i_2, \dots, i_n} .

Typical many-body Hamiltonians are simple.

$$H = \sum_{k=1}^n h_k$$

$\sim \text{const} \times n$ parameters.

Problem

Many-body states are complicated.

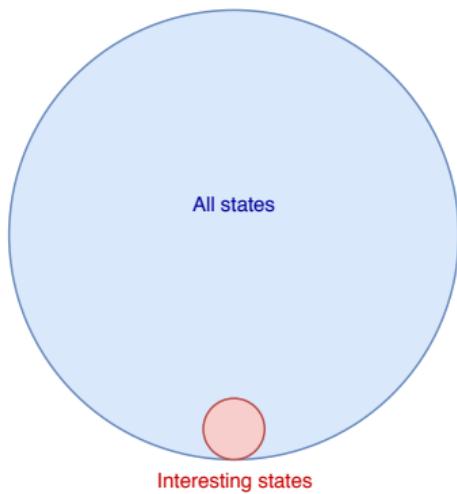
$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} |i_1, \dots, i_n\rangle$$

2^n parameters c_{i_1, i_2, \dots, i_n} .

Typical many-body Hamiltonians are simple.

$$H = \sum_{k=1}^n h_k$$

$\sim \text{const} \times n$ parameters.

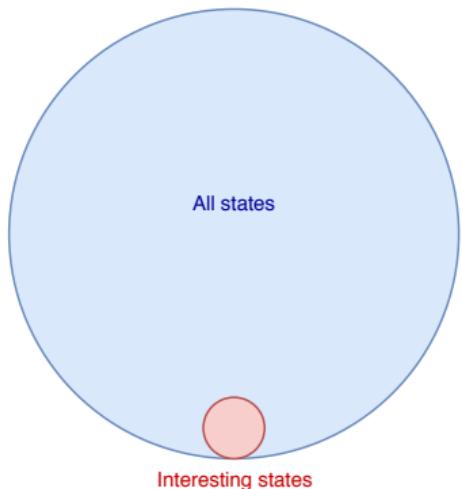


Problem

Many-body states are complicated.

$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} |i_1, \dots, i_n\rangle$$

2^n parameters c_{i_1, i_2, \dots, i_n} .



Typical many-body Hamiltonians are simple.

$$H = \sum_{k=1}^n h_k$$

$\sim \text{const} \times n$ parameters.

Variational optimization

To find the ground state:

$$|\text{ground}\rangle = \min_{|\Psi\rangle \in \mathcal{S}} \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

Can we find a subspace \mathcal{S} s. t.:

- $|\mathcal{S}| \propto n^k \ll e^n$
- \mathcal{S} approximates well interesting states
- *bonus* $\langle \Psi | \mathcal{O}(x) | \Psi \rangle$ is computable

An idea popular in many fields

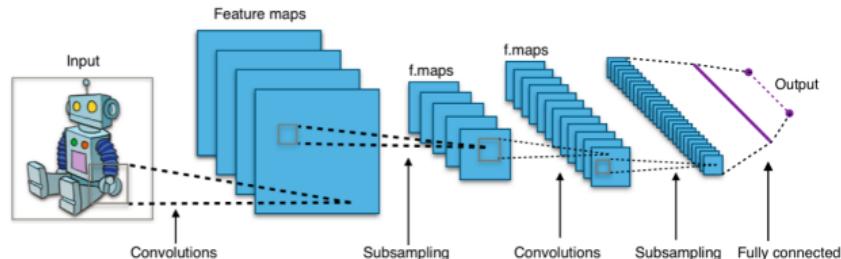
- ▶ Mean field approximation (of which TNS are an extension)

$$\psi(x_1, x_2, \dots, x_n) = \psi_1(x_1) \psi_2(x_2) \dots \psi_n(x_n)$$

- ▶ Special variational wave functions in **Quantum chemistry** (whole industry of ansatz)
- ▶ **Moore-Read wavefunctions** in the study of the quantum Hall effect

$$\psi(x_1, x_2, \dots, x_n) = \left\langle \hat{\phi}(x_1) \hat{\phi}(x_2) \dots \hat{\phi}(x_n) \right\rangle_{\text{CFT}}$$

- ▶ Fully connected and convolutional **neural networks** used in machine learning



Matrix product states

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} |i_1, \dots, i_n\rangle$$

Matrix Product States (MPS)

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

- ▶ A_i are $D \times D$ complex matrices
- ▶ A is a $2 \times D \times D$ tensor $[A_i]_{k,l}$
- ▶ $|L\rangle$ and $|R\rangle$ are D -vectors.

- ◊ $n \times 2 \times D^2$ parameters instead of 2^n
- ◊ D is the **bond dimension** and encodes the size of the variational class

Remark: actually equivalent with the density matrix renormalization group (DMRG)

Graphical notation

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

Notation: $[A_i]_{k,l} = \text{---} \bullet \text{---}$ and $k \text{---} l = \sum \delta_{k,l}$ gives:

Graphical notation

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

Notation: $[A_i]_{k,l} = \text{---} \bullet \text{---}$ and $k \text{ --- } l = \sum \delta_{k,l}$ gives:

Example: computation of correlations

$$\langle A | \mathcal{O}(i_k) \mathcal{O}(i_\ell) | A \rangle =$$

can be done by iteration 2 maps:

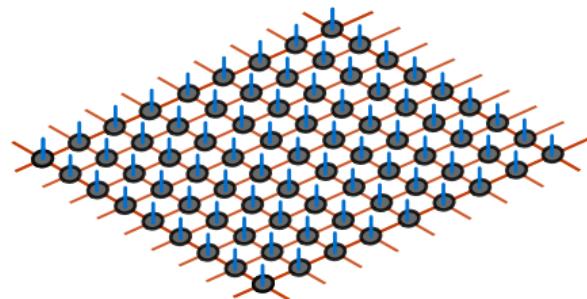
$$\Phi = \begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} \quad \text{and} \quad \Phi_{\mathcal{O}} = \begin{array}{c} \text{---} \\ \text{---} \\ | \\ \text{---} \\ \text{---} \end{array}$$

The contraction for a $d = 1$ system, can be seen as an open-system dynamics in $d = 0$.

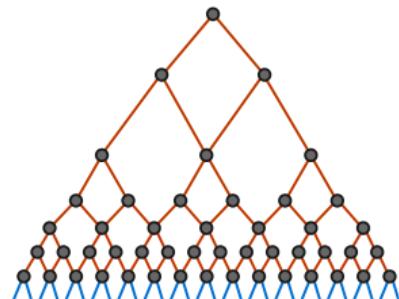
Generalizations: different tensor networks

Matrix Product States (MPS)

Projected Entangled Pair States
(PEPS)



Multi-scale Entanglement
Renormalization Ansatz (MERA)



Some facts

A list of theorems [very colloquially]:

- ▶ **Expressiveness** [trivial] Tensor Network States cover \mathcal{H} when $D \propto 2^n$
- ▶ **Area law** The entanglement of a subregion of space scales as its area for a TNS
- ▶ **Efficiency** [gapped] Matrix Product States approximate well the ground states of gapped systems in 1 spatial dimension
- ▶ **Efficiency** [critical] Multi-scale Entanglement Renormalization Ansatz (MERA) approximate well the ground states of critical systems in 1 spatial dimension.
- ▶ **Symmetries** Physical symmetries can be implemented locally on the bond space
- ▶ **Inverse problem** TNS are the ground state of a local parent Hamiltonian

Successes and limits

Successes: why the deserved hype

- ♥ Arbitrary precision for $1d$ quantum systems
- ♥ Classification of topological phases in $1d$ and $2d$
- ♥ Progress on non-Abelian lattice Gauge theories
- ♥ AdS/CFT toy models

Limits: why it is overhyped

- ♠ Hard to contract in $d \geq 2$
- ♠ No continuum limit in $d \geq 2$
- ♠ Lack of analytic techniques

Successes and limits

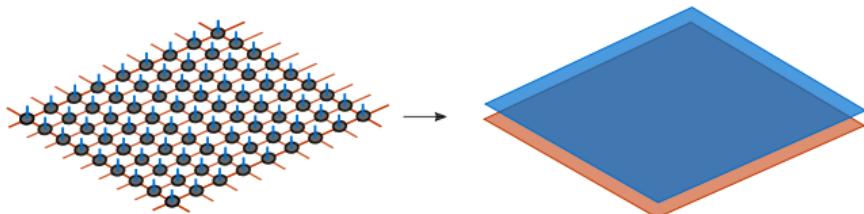
Successes: why the deserved hype

- ♥ Arbitrary precision for $1d$ quantum systems
- ♥ Classification of topological phases in $1d$ and $2d$
- ♥ Progress on non-Abelian lattice Gauge theories
- ♥ AdS/CFT toy models

Limits: why it is overhyped

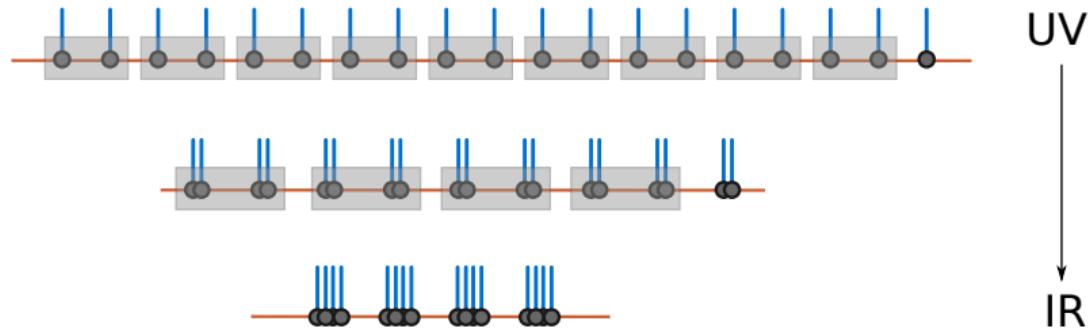
- ♠ Hard to contract in $d \geq 2$
- ♠ No continuum limit in $d \geq 2$
- ♠ Lack of analytic techniques

Can one apply tensor network techniques directly in the continuum, to QFT?



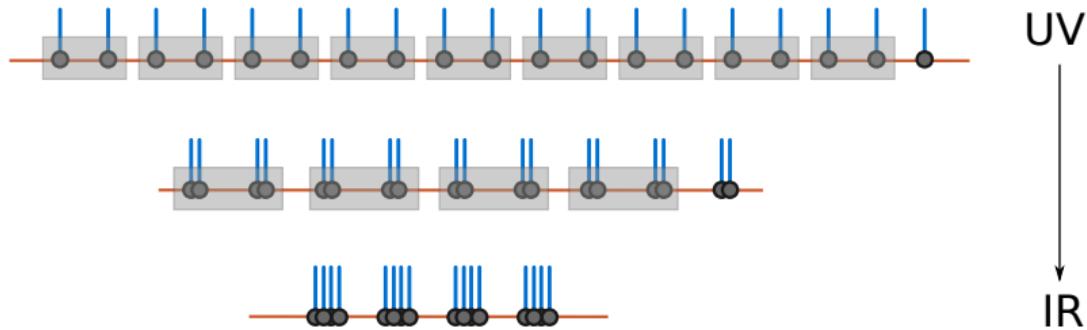
Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS



Continuous Matrix Product States (cMPS)

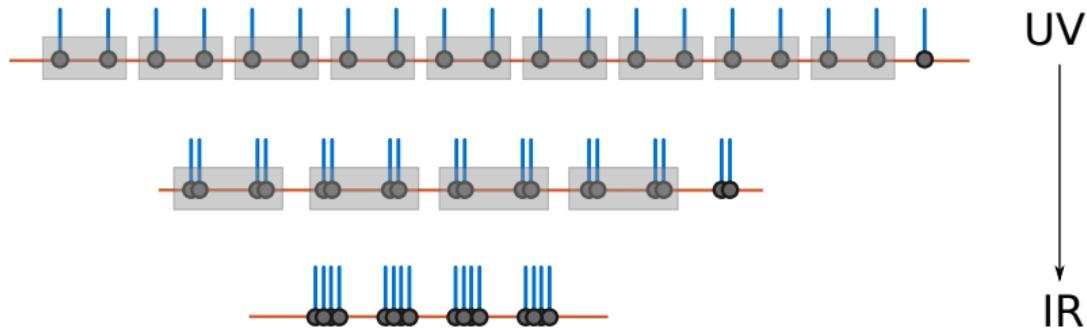
Taking the continuum limit of a MPS



- ▶ the bond dimension D stays fixed

Continuous Matrix Product States (cMPS)

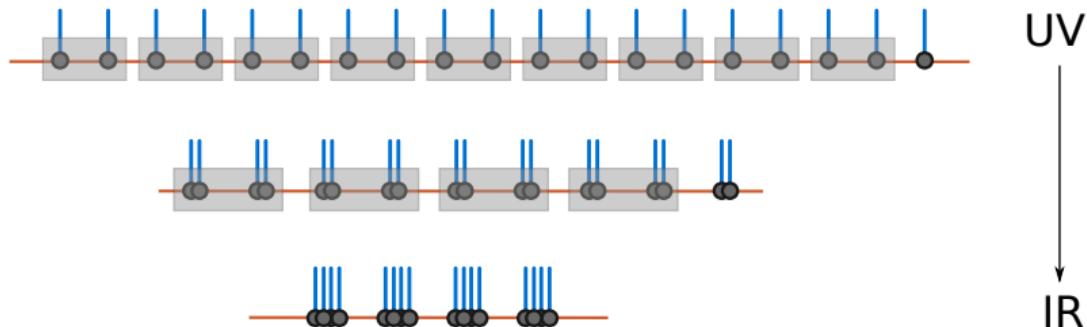
Taking the continuum limit of a MPS



- ▶ the bond dimension D stays fixed
- ▶ the local physical dimension explodes $\mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 \rightarrow \mathcal{F}(L^2([x, x + dx]))$.
⇒ **Spins** become **fields** – (\simeq central limit theorem \simeq quantum noises $d\xi, d\xi^\dagger$)

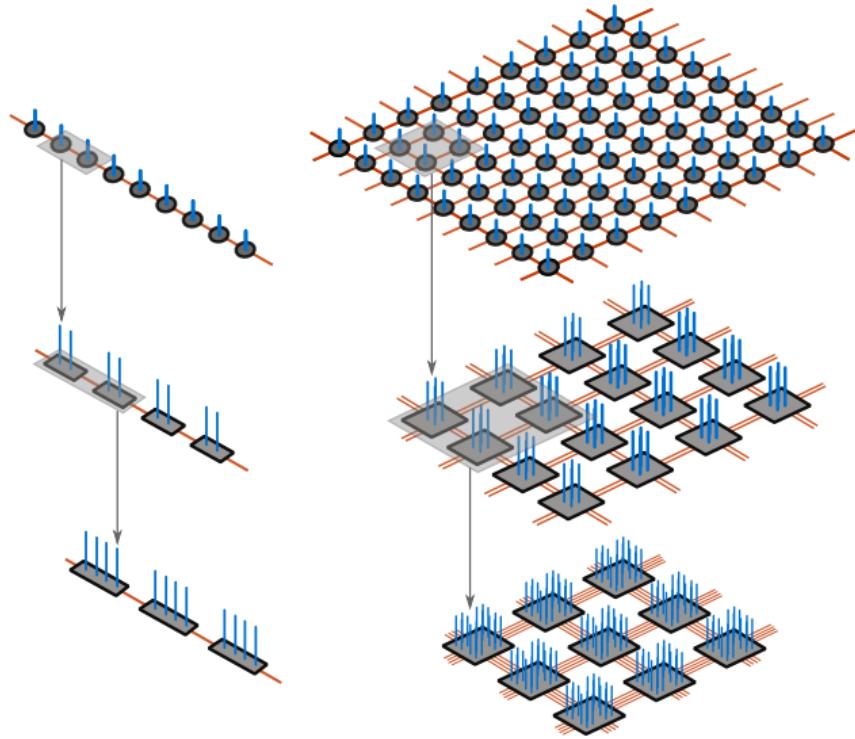
Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

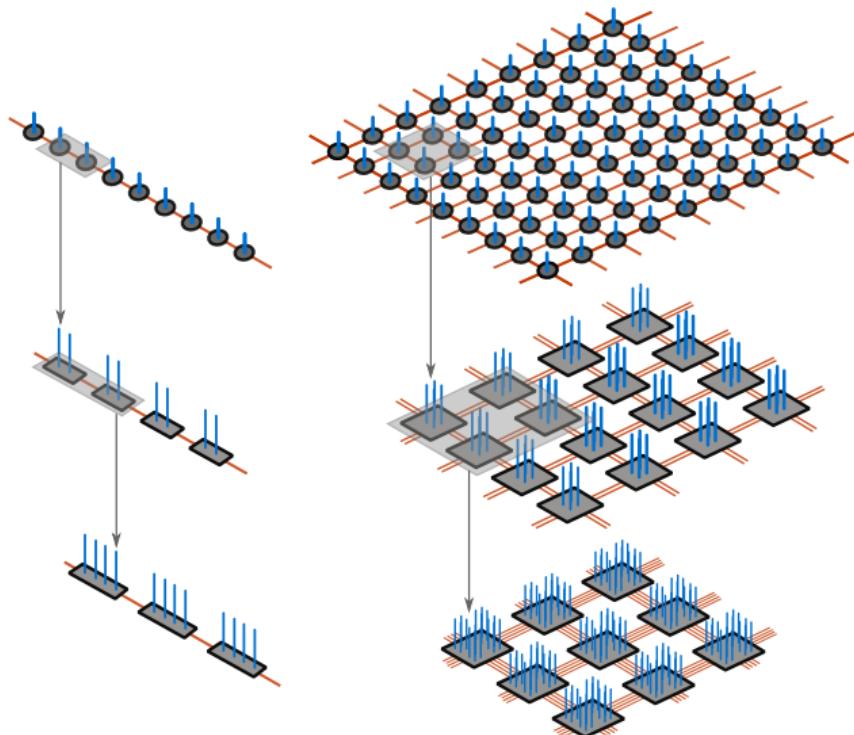


- ▶ the bond dimension D stays fixed
- ▶ the local physical dimension explodes $\mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 \rightarrow \mathcal{F}(L^2([x, x + dx]))$.
 \Rightarrow **Spins** become **fields** – (\simeq central limit theorem \simeq quantum noises $d\xi, d\xi^\dagger$)
- ▶ A cMPS is a quantum field state parameterized by finite dimensional matrices:
$$|Q, R, \omega\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q(x) \otimes \mathbb{1} + R(x) \otimes \psi^\dagger(x) \right\} | \omega_R \rangle |0\rangle$$

Continuous Tensor Networks: blocking



Continuous Tensor Networks: blocking



Upon blocking:

- ♣ The **physical** Hilbert space dimension d increases (idem cMPS \implies physical field)
- ♣ The **bond** dimension D increases too

Choice of trivial tensor

For **MPS**, not much choice:

$$\text{---} \bullet \text{---} = \text{---} + \varepsilon \dots$$

Choice of trivial tensor

For **MPS**, not much choice:

$$\text{---} \bullet \text{---} = \text{---} + \varepsilon \dots$$

For **TNS** in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \cancel{\text{---}}$
 \implies trivial geometry

Choice of trivial tensor

For **MPS**, not much choice:

For **TNS** in $d \geq 2$, many options:

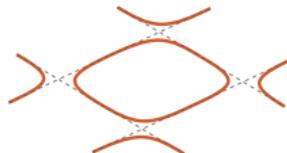
1. Take a δ between all legs \sim GHZ state $T^{(0)} = \cancel{\times}$
 \implies trivial geometry
2. Take two identities $T^{(0)} = \cancel{\times} \times \cancel{\times}$
 \implies breakdown of Euclidean invariance

Choice of trivial tensor

For **MPS**, not much choice:

For **TNS** in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \times$
 \Rightarrow trivial geometry
2. Take two identities $T^{(0)} = ><$
 \Rightarrow breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions $T^{(0)} = >< + <>$



Choice of trivial tensor

For **MPS**, not much choice:

A diagram showing a black dot representing a tensor. It has two horizontal legs, one red and one blue, meeting at the dot. To the right of the dot is an equals sign (=). Following the equals sign are two horizontal red lines, representing the continuation of the MPS. To the right of the red lines is a plus sign (+). To the right of the plus sign is a blue symbol $\varepsilon \dots$, indicating higher-order terms.

For **TNS** in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \times$
 \Rightarrow trivial geometry
2. Take two identities $T^{(0)} = ><$
 \Rightarrow breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions $T^{(0)} = >< + <>$



We will consider a softer modification of the first version:

$$T^{(0)} \sim \times$$

A diagram showing a black dot representing a tensor. It has four horizontal legs, two red and two blue, meeting at the dot. The legs are slightly curved and cross each other, forming a diamond-like shape. To the right of the dot is an equals sign (=). Following the equals sign are two horizontal red lines, representing the continuation of the TNS.

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagup \quad \diagdown \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ \frac{-1}{2} \sum_{k=1}^D [\phi_k(1) - \phi_k(2)]^2 + [\phi_k(2) - \phi_k(3)]^2 \right. \\ \left. + [\phi_k(3) - \phi_k(4)]^2 + [\phi_k(4) - \phi_k(1)]^2 \right\}$$

The indices ϕ are in \mathbb{R}^D (and **not** $1, \dots, D$)

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagup \quad \diagdown \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ \frac{-1}{2} \sum_{k=1}^D [\phi_k(1) - \phi_k(2)]^2 + [\phi_k(2) - \phi_k(3)]^2 \right. \\ \left. + [\phi_k(3) - \phi_k(4)]^2 + [\phi_k(4) - \phi_k(1)]^2 \right\}$$

The indices ϕ are in \mathbb{R}^D (and **not** $1, \dots, D$)

2 – And add a “correction”:

$$\exp \left\{ -\varepsilon^2 V [\phi(1), \dots, \phi(4)] + \varepsilon^2 \alpha [\phi(1), \dots, \phi(4)] \psi^\dagger(x) \right\}$$

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagup \quad \diagdown \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ \frac{-1}{2} \sum_{k=1}^D [\phi_k(1) - \phi_k(2)]^2 + [\phi_k(2) - \phi_k(3)]^2 \right. \\ \left. + [\phi_k(3) - \phi_k(4)]^2 + [\phi_k(4) - \phi_k(1)]^2 \right\}$$

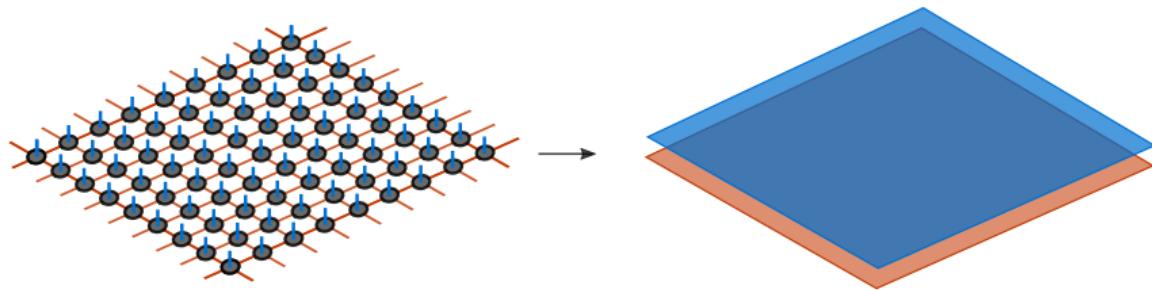
The indices ϕ are in \mathbb{R}^D (and **not** $1, \dots, D$)

2 – And add a “correction”:

$$\exp \left\{ -\varepsilon^2 V [\phi(1), \dots, \phi(4)] + \varepsilon^2 \alpha [\phi(1), \dots, \phi(4)] \psi^\dagger(x) \right\}$$

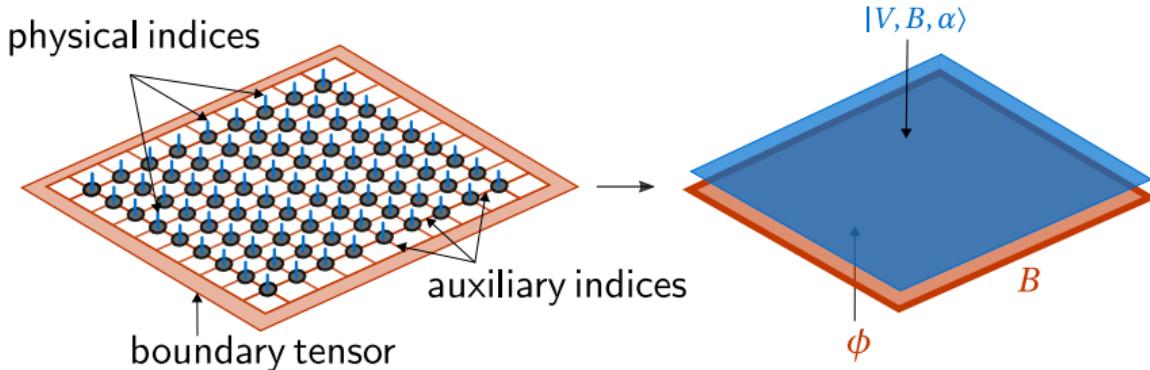
3 – Realize tensor contraction = functional integral and trivial tensor gives free field measure.

Functional integral definition



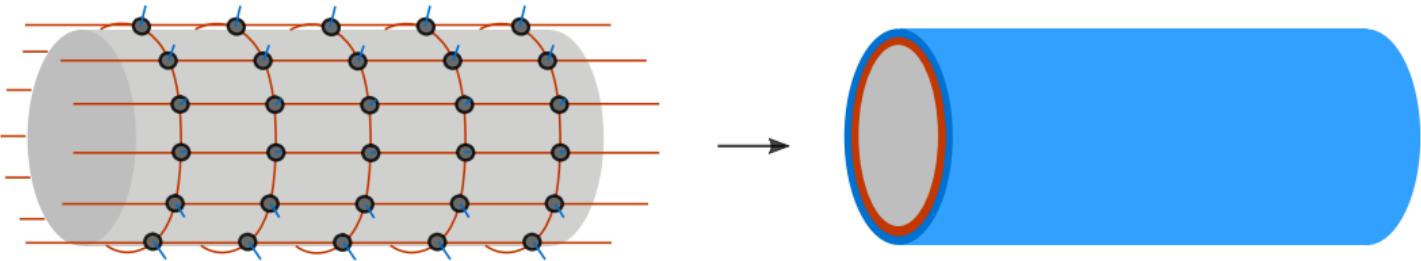
$$|V, \alpha\rangle = \int \mathcal{D}\phi \exp \left\{ - \int_{\Omega} d^d x \frac{1}{2} \sum_{k=1}^D [\nabla \phi_k(x)]^2 + V[\phi(x)] - \alpha[\phi(x)] \psi^\dagger(x) \right\} |0\rangle$$

Functional integral definition



$$|V, B, \alpha\rangle = \int \mathcal{D}\phi \, B(\phi|_{\partial\Omega}) \exp \left\{ - \int_{\Omega} d^d x \, \frac{1}{2} \sum_{k=1}^D [\nabla \phi_k(x)]^2 + V[\phi(x)] - \alpha[\phi(x)] \psi^\dagger(x) \right\} |0\rangle$$

Operator definition



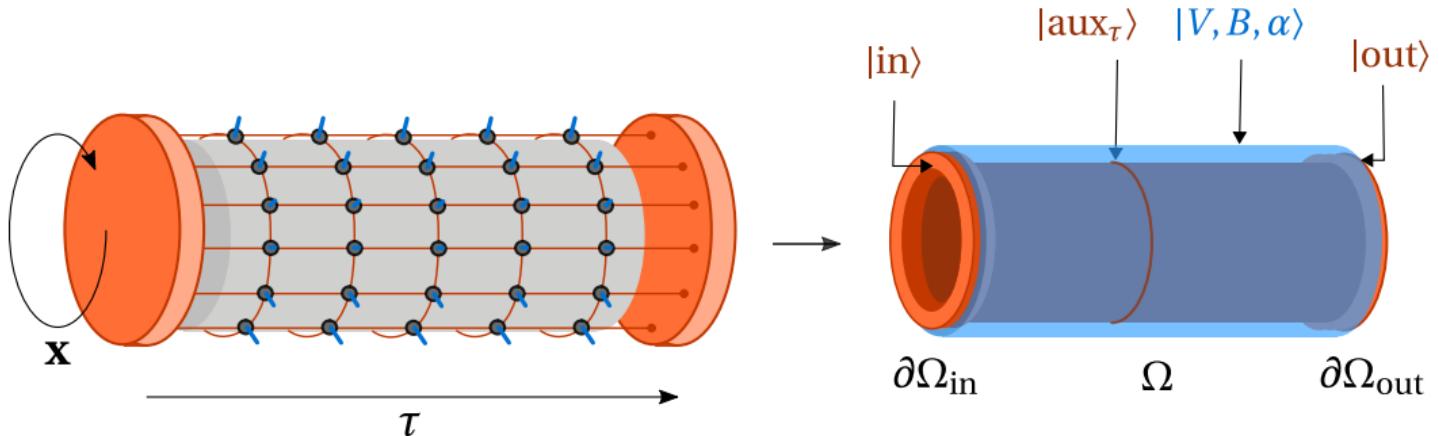
$|V, \alpha\rangle =$

$$\text{tr} \left[\mathcal{T} \exp \left(- \int_0^T d\tau \int_S dx \frac{\hat{\pi}_k(x) \hat{\pi}_k(x)}{2} + \frac{\nabla \hat{\phi}_k(x) \nabla \hat{\phi}_k(x)}{2} + V[\hat{\phi}(x)] - \alpha[\hat{\phi}(x)] \psi^\dagger(\tau, x) \right) \right] |0\rangle$$

where:

- $\hat{\phi}_k(x)$ and $\hat{\pi}_k(x)$ are k independent canonically conjugated pairs of (auxiliary) field operators: $[\hat{\phi}_k(x), \hat{\phi}_l(y)] = 0$, $[\hat{\pi}(x)_k, \hat{\pi}_l(y)] = 0$, and $[\hat{\phi}_k(x), \hat{\pi}_l(y)] = i\delta_{k,l} \delta(x - y)$ acting on a space of $d - 1$ dimensions.

Operator definition



$$|V, B, \alpha\rangle =$$

$$\text{tr} \left[\hat{B} \mathcal{T} \exp \left(- \int_0^T d\tau \int_S dx \frac{\hat{\pi}_k(x) \hat{\pi}_k(x)}{2} + \frac{\nabla \hat{\phi}_k(x) \nabla \hat{\phi}_k(x)}{2} + V[\hat{\phi}(x)] - \alpha[\hat{\phi}(x)] \psi^\dagger(\tau, x) \right) \right] |0\rangle$$

where:

- $\hat{\phi}_k(x)$ and $\hat{\pi}_k(x)$ are k independent canonically conjugated pairs of (auxiliary) field operators: $[\hat{\phi}_k(x), \hat{\phi}_l(y)] = 0$, $[\hat{\pi}_k(x), \hat{\pi}_l(y)] = 0$, and $[\hat{\phi}_k(x), \hat{\pi}_l(y)] = i\delta_{k,l} \delta(x - y)$ acting on a space of $d - 1$ dimensions.

Wave-function definition

A generic state $|\Psi\rangle$ in Fock space can be written:

$$|\Psi\rangle = \sum_{n=0}^{+\infty} \int_{\Omega^n} \frac{\varphi_n(x_1, \dots, x_n)}{n!} \psi^\dagger(x_1) \dots \psi^\dagger(x_n) |0\rangle$$

where φ_n is a symmetric n -particle wave-function

Functional integral representation

$$\varphi_n = \int d\mu(\phi) \mathcal{A}_V(\phi) \alpha[\phi(x_1)] \dots \alpha[\phi(x_n)]$$

with:

- $d\mu(\phi) = \mathcal{D}\phi \exp \left[-\frac{1}{2} \int_{\Omega} d^d x [\nabla \phi_k(x)]^2 \right]$
- $\mathcal{A}_V(\phi) = B(\phi|_{\partial\Omega}) \exp \left\{ - \int_{\Omega} d^d x V[\phi(x)] \right\}$

Operator representation

$$\varphi_n =$$

$$\text{tr} \left[\hat{B} \hat{G}_{T, \tau_n} \hat{\alpha}(x_n) \hat{G}_{\tau_n, \tau_{n-1}} \hat{\alpha}(x_{n-1}) \dots \hat{\alpha}(x_1) \hat{G}_{\tau_1, 0} \right]$$

with:

- $\hat{G}_{u,v} = \mathcal{T} \exp \left[- \int_v^u d\tau \int_S dx \mathcal{H}(x) \right]$
- ♡ Extension of Moore-Read

Expressivity and stability

How big are cTNS?

Stability

The sum of two cTNS of bond field dimension D_1 and D_2 is a cTNS with bond field dimension $D \leq D_1 + D_2 + 1$:

$$|V_1, \alpha_1\rangle + |V_2, \alpha_2\rangle = |W, \beta\rangle$$

Expressiveness

All states in the Fock space can be approximated by cTNS:

- ▶ A field coherent state is a cTNS with $D = 0$
- ▶ Stability allows to get all sums of field coherent states

Note: expressiveness can also be obtained with $D = 1$ but it is less natural. Flexibility in D makes the expressivity higher for restricted classes of V and α .

Computations

Define generating functional for normal ordered correlation functions

$$Z_{j',j} = \frac{1}{\langle V, \alpha | V, \alpha \rangle} \langle V, \alpha | \exp \left(\int dx j'(x) \psi^\dagger(x) \right) \exp \left(\int dx j(x) \psi(x) \right) | V, \alpha \rangle$$

Functional integral representation

- ▶ Use formula for overlap of field coherent states

$$\langle \beta | \alpha \rangle = \exp \left(\int dx \beta^*(x) \alpha(x) \right)$$

- ▶ Compute with Gaussian integration + Feynman diagrams or Monte Carlo

Operator representation

Similar to cMPS

- ▶ Transfer matrix

$$\langle \mathcal{O}(x) \mathcal{O}(y) \rangle = \text{tr} \left(\Phi_{\mathcal{O}} \cdot e^{-(y-x)T} \Phi_{\mathcal{O}} \cdot \rho_{\text{stat}} \right)$$

with $T = Q \otimes \mathbb{1} + \mathbb{1} \otimes \bar{Q} + R \otimes \bar{R}$ with

$$Q = - \int \frac{\hat{\pi}_k(x)^2 + [\nabla \hat{\phi}_k(x)]^2}{2} + V(\hat{\phi}(x))$$

and $R \otimes \bar{R} = \int V(\hat{\phi}(x)) \otimes V(\hat{\phi}(x))^\dagger$

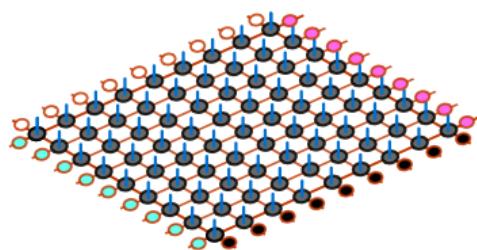
Redundancies

Discrete redundancy

Different elementary tensors are **equivalent**,
they give the same state:

The diagram illustrates the equivalence of different tensor configurations. At the top, two tensor nodes are shown: one with two red lines and one with three lines (one red, one blue, one orange). A blue tilde symbol (\sim) indicates they are equivalent. Below this, two simplification rules are given: a red line with a blue dot and a red line with an orange dot are shown to be equivalent to a single red line; and a red line with an orange dot and a black dot are shown to be equivalent to a blue line.

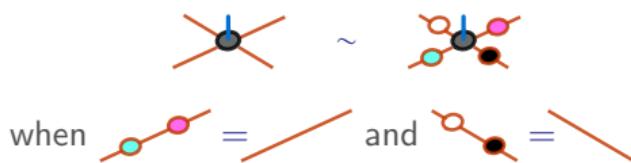
up to **boundary** terms:



Redundancies

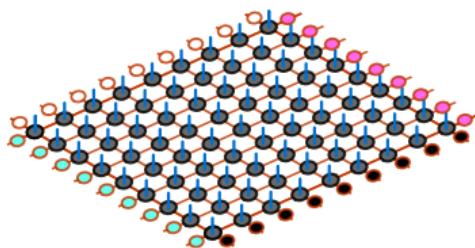
Discrete redundancy

Different elementary tensors are **equivalent**, they give the same state:



when = and =

up to **boundary** terms:

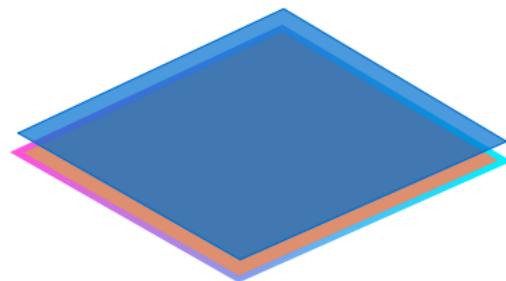


Continuum redundancy

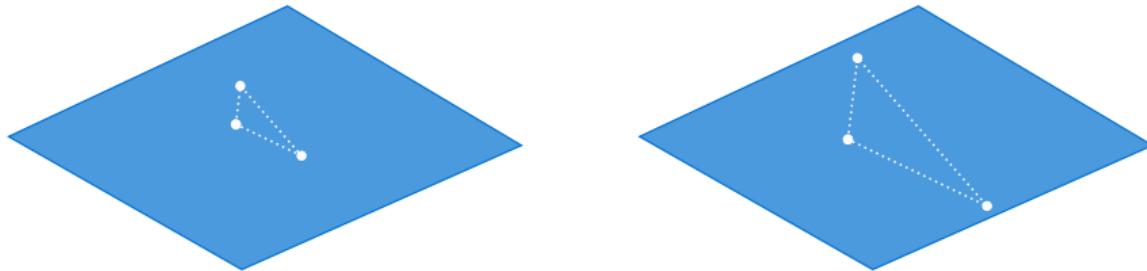
$$V(\phi) \rightarrow V(\phi) + \nabla \cdot \mathcal{F}[x, \phi(x)]$$

Just Stokes' theorem. If Ω has a boundary $\partial\Omega$:

$$\mathcal{D}[\phi] \rightarrow \mathcal{D}[\phi] \exp \left\{ \oint_{\partial\Omega} d^{d-1}x \mathcal{F}[x, \phi(x)] \cdot \mathbf{n}(x) \right\}$$



Renormalization

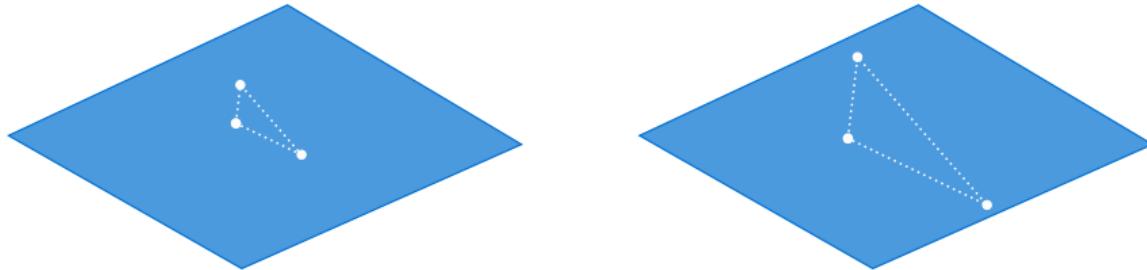


$$C(x_1, \dots, x_n) = \langle T(1) | \mathcal{O}(x_1) \dots \mathcal{O}(x_n) | T(1) \rangle,$$

the objective is to find a tensor $T(\lambda)$ of new parameters such that:

$$C(\lambda x_1, \dots, \lambda x_n) \propto \langle T(\lambda) | \mathcal{O}(x_1) \dots \mathcal{O}(x_n) | T(\lambda) \rangle.$$

Renormalization



$$C(x_1, \dots, x_n) = \langle T(1) | \mathcal{O}(x_1) \dots \mathcal{O}(x_n) | T(1) \rangle,$$

the objective is to find a tensor $T(\lambda)$ of new parameters such that:

$$C(\lambda x_1, \dots, \lambda x_n) \propto \langle T(\lambda) | \mathcal{O}(x_1) \dots \mathcal{O}(x_n) | T(\lambda) \rangle.$$

Doable exactly:

$$V \rightarrow \lambda^d V \circ \lambda^{\frac{2-d}{2}} \quad \text{and} \quad \alpha \rightarrow \lambda^{\frac{d}{2}} \alpha \circ \lambda^{\frac{2-d}{2}}$$

Renormalization



$$C(x_1, \dots, x_n) = \langle T(1) | \mathcal{O}(x_1) \dots \mathcal{O}(x_n) | T(1) \rangle,$$

the objective is to find a tensor $T(\lambda)$ of new parameters such that:

$$C(\lambda x_1, \dots, \lambda x_n) \propto \langle T(\lambda) | \mathcal{O}(x_1) \dots \mathcal{O}(x_n) | T(\lambda) \rangle.$$

Doable exactly:

$$V \rightarrow \lambda^d V \circ \lambda^{\frac{2-d}{2}} \quad \text{and} \quad \alpha \rightarrow \lambda^{\frac{d}{2}} \alpha \circ \lambda^{\frac{2-d}{2}}$$

- $d = 2$, All powers of the field in V and α yield relevant couplings
- $d = 3$, The powers $p = 1, 2, 3, 4, 5$ of the field in V yield relevant $\Delta > 0$ couplings. $p = 6$ is marginal in V . For α , $p = 1, 2$ are relevant and $p = 3$ is marginal. All other p are irrelevant.

Getting back cMPS

One can get back cMPS with finite bond dimension by:

1. **Compactification** Take $d - 1$ dimensions out of d to be very small

$$|V, B, \alpha\rangle \simeq \text{tr} \left[\hat{B} \mathcal{T} \exp \left(- \int_0^T d\tau \sum_{k=1}^D \frac{\hat{P}_k^2}{2} + V[\hat{X}] - \alpha[\hat{X}] \psi^\dagger(\tau) \right) \right] |0\rangle$$

⇒ Hilbert space of a quantum particle in D space dimensions.

2. **Quantization** Take V with D deep minima to force the auxiliary field to take only D possibilities

Generalization

For a general Riemannian manifold \mathcal{M} with boundary $\partial\mathcal{M}$, define:

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi B(\phi|_{\partial\mathcal{M}}) \exp \left\{ - \int_{\mathcal{M}} d^d x \sqrt{g} \left(\frac{g^{\mu\nu} \partial_\mu \phi_k \partial_\nu \phi_k}{2} + V[\phi, \nabla \phi] - \alpha[\phi, \nabla \phi] \psi^\dagger \right) \right\} |0\rangle$$

i.e. add curvature and possible anisotropies in V and α

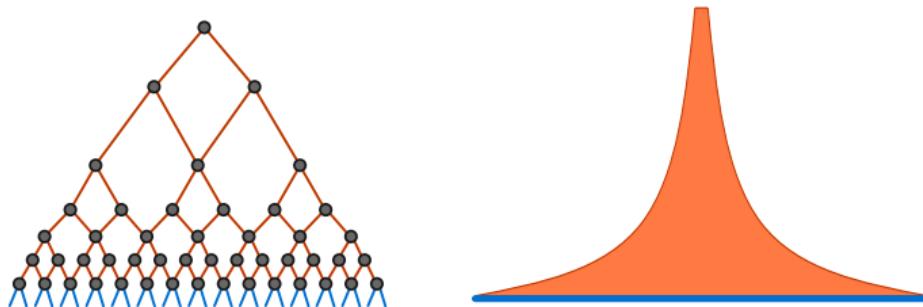
Generalization

For a general Riemannian manifold \mathcal{M} with boundary $\partial\mathcal{M}$, define:

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi B(\phi|_{\partial\mathcal{M}}) \exp \left\{ - \int_{\mathcal{M}} d^d x \sqrt{g} \left(\frac{g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi}{2} + V[\phi, \nabla \phi] - \alpha[\phi, \nabla \phi] \psi^\dagger \right) \right\} |0\rangle$$

i.e. add curvature and possible anisotropies in V and α

Example: $\alpha[x, \phi, \nabla \phi]$ localized on the boundary and hyperbolic metric g :



→ cMERA in $d - 1$ dimensions

Future

Limitations and work for the future

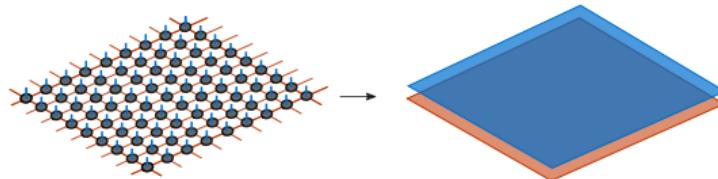
- ▶ Quite formal out of the Gaussian regime (back to perturbative)
- ▶ Limited to bosonic field theories (so far)
- ▶ Parent Hamiltonian?
- ▶ Gauge invariant states
- ▶ Topology?

Summary

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi \, B(\phi|_{\partial\Omega}) \exp \left\{ - \int_{\Omega} d^d x \frac{1}{2} \sum_{k=1}^D [\nabla \phi_k(x)]^2 + V[\phi(x)] - \alpha[\phi(x)] \psi^\dagger(x) \right\} |0\rangle$$

Continuous tensor network states are natural continuum limits of tensor network states and natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks
2. Can be made Euclidean invariant
3. Have functional and operator representations
4. Have a geometrical equivalent of the discrete gauge redundancies
5. Have an exact and explicit “renormalization” flow



Continuous Matrix Product States

Type of ansatz

- Matrices $A_{i_k}(x)$ where the index i_k corresponds to $\psi^{\dagger i_k}(x)|0\rangle$ in physical space.

Informal cMPS definition

$$A_0 = \mathbb{1} + \varepsilon Q$$

$$A_1 = \varepsilon R$$

$$A_2 = \frac{(\varepsilon R)^2}{\sqrt{2}}$$

...

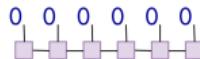
$$A_n = \frac{(\varepsilon R)^n}{\sqrt{n}}$$

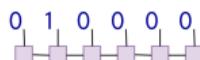
...

so we go from ∞ to 2 matrices

Fixed by:

- Finite particle number


$$\propto 1$$


$$\propto \varepsilon$$

- Consistency

Continuous Matrix Product States

Definition

$$|Q, R, \omega\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x) \right\} | \omega_R \rangle |0\rangle$$

- Q, R are $D \times D$ matrices,
- $|\omega_L\rangle$ and $|\omega_R\rangle$ are boundary vectors $\in \mathbb{C}^D$,
- $[\psi(x), \psi^\dagger(y)] = \delta(x - y)$

Idea:

$$\begin{aligned} A(x) &\simeq A_0 \mathbb{1} + A_1 \psi^\dagger(x) \\ &\simeq \mathbb{1} \otimes \mathbb{1} + \varepsilon Q \otimes \mathbb{1} + \varepsilon R \otimes \psi^\dagger(x) \\ &\simeq \exp [\varepsilon (Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x))] \end{aligned}$$

Computations

Thermodynamic limit

$$\langle \mathcal{O}(x) \mathcal{O}(y) \rangle = \text{tr} \left(\Phi_{\mathcal{O}} \cdot e^{-(y-x)T} \Phi_{\mathcal{O}} \cdot \rho_{\text{stat}} \right)$$

$$\text{with } T = Q \otimes \mathbb{1} + \mathbb{1} \otimes \bar{Q} + R \otimes \bar{R}$$