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Objective

Why?

» Computations: the continuum brings
new methods (perturbative
expansions, saddle point
approximations, differential equations)

» QFT: apply directly to QFT, without
discretization

» Symmetries: Implement Euclidean /
Translation invariance exactly

» Holography: (?) Construct better
toy models

physical field

auxiliary field




Problem

Many-body states are complicated.
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Typical many-body Hamiltonians are simple.
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Many-body states are complicated.
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Interesting states

Typical many-body Hamiltonians are simple.

H= ihk
k=1

~ const X n parameters.

Variational optimization

To find the ground state:

lground) = min (lH)
hes (bhb)
Can we find a subspace .¥' s. t.:
> .Y x nk < e”
» . approximates well interesting states
» bonus (P|O(x)hp) is computable



An idea popular in many fields

» Mean field approximation (of which TNS are an extension)

Px1y X2y -+, Xn) = P1(x1) Ya(x2) - - - Palxy)

» Special variational wave functions in Quantum chemistry (whole industry of ansatz)
» Moore-Read wavefunctions in the study of the quantum Hall effect

b,y s x) = (BOble) - $lx) )

CFT

» Fully connected and convolutional neural networks used in machine learning

Feature maps

Convolutions i C i i Fully




Matrix product states

N)) = Z Ciyyiny--yin il)"' )in>

1502y in

Matrix Product States (MPS)

Remark: actually equivalent
with the density matrix
renormalization group
(DMRG)

ALRY =Y (LA (1)A,(2) -+ A (n)IR) lin, -+ in)

il\iZy'“ yin

» A; are D x D complex matrices
> Aisa2xDxD tensor [Ailx,
» |L) and |R) are D-vectors.

& nx 2 x D? parameters instead of 2"
& D is the bond dimension and encodes the size of the variational class



Graphical notation
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Graphical notation
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Notation: [Alx, = —l— and k—— 1= by, gives:

anr =t b LLLLLLLLLL LI LI L L

Example: computation of correlations

can be done by iteration 2 maps:

.
O = and q)o ZI
——

The contraction for a d = 1 system, can be seen as an open-system dynamics in d = 0.




Generalizations: different tensor networks

Matrix Product States (MPS)

SAVVLLLLLLLL L L L

Projected Entangled Pair States Multi-scale Entanglement
(PEPS) Renormalization Ansatz (MERA)




Some facts

A list of theorems [very colloquially]:

>
>
>

Expressiveness [trivial] Tensor Network States cover J# when D o 2"
Area law The entanglement of a subregion of space scales as its area for a TNS

Efficiency [gapped] Matrix Product States approximate well the ground states of gapped
systems in 1 spatial dimension

Efficiency [critical] Multi-scale Entanglement Renormalization Ansatz (MERA)
approximate well the ground states of critical systems in 1 spatial dimension.

Symmetries Physical symmetries can be implemented locally on the bond space

Inverse problem TNS are the ground state of a local parent Hamiltonian



Successes and limits

Successes: why the deserved hype — —
Limits: why it is overhyped
Q' Arbitrary precision for 1d quantum systems

@ Classification of topological phases in 1d and 2d

@ Progress on non-Abelian lattice Gauge theories o Lack of i techni
O AdS/CFT toy models o G GRS TSl B

& Hard to contract in d > 2

& No continuum limit in d > 2



Successes and limits

Successes: why the deserved hype — —
Limits: why it is overhyped
Q' Arbitrary precision for 1d quantum systems

@ Classification of topological phases in 1d and 2d

@ Progress on non-Abelian lattice Gauge theories & Lack of analytic techni
O AdS/CFT toy models o G GRS TSl B

& Hard to contract in d > 2

& No continuum limit in d > 2

Can one apply tensor network techniques directly in the continuum, to QFT?
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Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

AUl didll
LLuu R

» the bond dimension D stays fixed

» the local physical dimension explodes C? ® - - - ® C? — .Z (L?([x, x + dx])).
= Spins become fields — (=~ central limit theorem ~ quantum noises d, d&)

» A cMPS is a quantum field state parameterized by finite dimensional matrices:
1@, Ry w) = {wi[Pexp { 5 dx Qx) @ 1+ R(x) @i (x) } lwg) [0)



Continuous Tensor Networks: blocking




Continuous Tensor Networks: blocking

Upon blocking:

& The physical Hilbert space
dimension d increases (idem
cMPS = physical field)

& The bond dimension D increases
too
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Choice of trivial tensor

For MPS, not much choice:

For TNS in d > 2, many options:

1. Take a & between all legs ~ GHZ state T(%) = ><
= trivial geometry

2. Take two identities T(®) = >
= breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions T > < + =

We will consider a softer modification of the first version:




Ansatz

1 — Take a “Trivial” tensor:
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Ansatz

1 — Take a “Trivial” tensor:

¢2)  ¢B)
Td(>0()1),d>(2),¢(3)‘¢,(4) = - ;;2575.-—'
o) o)
-1 D
~ exp {2 Z[d)k(l) — dr(2)]% + [br(2) — dr(3)]?
k=1

10x(3) — br(@) + [dr(4) — mm?}

The indices ¢ are in RP (and not 1,---, D)

2 — And add a “correction”:

exp {—e2V [d(1),--, d(4)] + 2ad(1),- -, d(H] YT (x)}

3 — Realize tensor contraction = functional integral and trivial tensor gives free field measure.



Functional integral definition




Functional integral definition

|V, B, )

boundary tensor

physical indices



Operator definition

|V7 (X> =
T N /N
| e (] e L TRCITBLI 4 (00— bl () 0
where:

> $k(x) and 7 (x) are k independent canonically conjugated pairs of (auxiliary) field

operators: [bx(x), di(y)] = 0, [R(x)k, Ri(y)] = 0, and G (x),Rs(y)] = ik, 8(x — y)
acting on a space of d — 1 dimensions.



Operator definition

laux;) |V,B,a)
lin) lout)

X > aQin Q aQout
T
IV, B, ) =
T /N /N
tr[ésrexp (-J dTde RbI) y YOLITOLD |y ) al ) xpT(T,x)ﬂ 0)
0
where:

> $k(x) and 7t (x) are k independent canonically conjugated pairs of (auxiliary) field

operators: [bx(x), i(y)] = 0, [ROx), Ri(y)] = 0, and [px(x), Ri(y)] = i8k, 8(x — y)
acting on a space of d — 1 dimensions.



Wave-function definition

A generic state [V) in Fock space can be written:
+oo

) — ZJ @alay 5 Xa) iyt () [0)

n!
n=0 "

where ¢, is a symmetric n-particle wave-function

Functional integral representation
Operator representation

:Jdu(cb)flv((b) b (x1)] -~ alp (o))

@ =
with: tr |B &ryx, 80xm) Gryyry s R0xn-1) -+ 8lx1) oy
> du(d) = ith:
1 with:
Do exp { 2 [ 47X [Voi(x]] } > @u,v = Texp[— [, dt[ ¢ dxH(x)]
> Av(d) = Q Extension of Moore-Read

B(dloa)exp {— [4 d¥x VId(x)]}



Expressivity and stability

How big are cTNS?

Stability Expressiveness

The sum of two cTNS of bond field All states in the Fock space can be

dimension D; and D, is a cTNS with bond approximated by cTNS:

field dimension D < Dy + D, + 1: » A field coherent state is a cTNS with
D=0

Vi, &) + [Vo, o) = W
V1, 00) +[V2, ) = IW, B) » Stability allows to get all sums of field

coherent states

Note: expressiveness can also be obtained with D =1 but it is less natural. Flexibility in D
makes the expressivity higher for restricted classes of V' and «.



Computations

Define generating functional for normal ordered correlation functions

1
Zjrj =

Functional integral representation

» Use formula for overlap of field
coherent states

(Blo) = exp (J dx B* (x) oc(x))

» Compute with Gaussian
integration + Feynman diagrams
or Monte Carlo

m(V, ol exp (J dxj’(x)le(x)> exp (J dxj(x)ll)(x)) |V, )

Operator representation
Similar to cMPS

» Transfer matrix
(0x)0(y)) =tr (Po - e VD - pyar
with T=Q®1+1® Q@+ R® R with

(A 4 V(X))
Q- —J .

+ V($(x))

and R@ R = [ V($(x)) ® V((x))T



Redundancies

Discrete redundancy

Different elementary tensors are equivalent,
they give the same state:
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Redundancies

Discrete redundancy Continuum redundancy

Different elementary tensors are equivalent, v SV
+V.-F
they give the same state: () () b, 6]

S
when o = 7 and g =\

up to boundary terms:

Just Stokes' theorem. If QO has a boundary 9Q):

Dlp] — Dld] exp {ﬁddlx Flx, d(x)] - n(x)}

o]




Renormalization
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the objective is to find a tensor T(A) of new parameters such that:
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Renormalization

Clxty =+ x) =(T(1)O00xa) - - O(x)I T (1)),
the objective is to find a tensor T(A) of new parameters such that:
CAxa, -y Axq) o< (T(A)|O(x1) - - O(xa)[ T(A)).

Doable exactly:
V= AVoA7 and a—AfaoAT

— d =2, All powers of the field in V and « yield relevant couplings

— d =3, The powers p = 1,2,3,4,5 of the field in V yield relevant A > 0 couplings. p =6
is marginal in V. For o, p = 1,2 are relevant and p = 3 is marginal. All other p are
irrelevant.



Getting back cMPS

One can get back cMPS with finite bond dimension by:
1. Compactification Take d — 1 dimensions out of d to be very small

T D B
|V, B, o) >~ tr {E‘Iexp (—J dTZ ?’% + VIX] - afX] IIJT(T))} 0)
0 k=1

= Hilbert space of a quantum particle in D space dimensions.

2. Quantization Take V with D deep minima to force the auxiliary field to take only D
possibilities



Generalization

For a general Riemanian manifold M with boundary 0M, define:

IV, B, o) = J@q» B(dlanc) exp {—Jﬁdxﬁ(w + VIVl = ald, Vol o) }|0>

i.e. add curvature and possible anisotropies in V' and «



Generalization

For a general Riemanian manifold M with boundary 0M, define:

M

V,B, &) = J"Dd) B(dlon) exp { Jddx\/_( +Vid, Vo] — ald, V] lw) }|0>

i.e. add curvature and possible anisotropies in V' and «

Example: «[x, ¢, V] localized on the boundary and
hyberbolic metrix g:

— cMERA in d — 1 dimensions



Future

Limitations and work for the future
» Quite formal out of the Gaussian regime (back to perturbative)
» Limited to bosonic field theories (so far)
» Parent Hamiltonian?
» Gauge invariant states
>

Topology?



Summary

D
V,8,60 = [ D0 Bl0laa) e {-| %% 3 3 [Vulx)? + Vigl) - alobol ' (x) | 0)
k=

1

Continuous tensor network states are natural continuum limits of tensor network states and
natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks
Can be made Euclidean invariant
Have functional and operator representations

Have a geometrical equivalent of the discrete gauge redundancies

LA

Have an exact and explicit “renormalization” flow




Continuous Matrix Product States

Type of ansatz

» Matrices A, (x) where the index iy corresponds to V' (x)|0) in physical space.

Informal cMPS definition

Fixed by:
Ag=1+¢eQ » Finite particle number
A =¢R 000000
Az Sk 0100 00 o
f (eR)" » Consistency

’ bbb

so we go from oo to 2 matrices



Continuous Matrix Product States

Definition

L
[ 2 ) — sl {L dx Qo1+R® uﬂ(x)} lwr) [0)

» @, R are D x D matrices,
» |w;) and |wg) are boundary vectors € CP,

> [(x), b (y)] =8(x—y)

Idea: Computations
< limi
A(x) =~ Aol + AT (x) Thermodynamic limit
~181+eQ@1+ R (x) (()0(y) =tr (Do - e T 0o - pz)

~exple (Q® 1+ R@VPI(x))] - _
with T=Q1+1®Q+R®R



