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3 questions in quantum mechanics that drive me

Observation Unification Many-body
How to measure and control How to unify quantum How to efficiently manage
quantum systems? mechanics and gravity many-body states
» Fundamentally » |s gravity quantum? > With tensor networks
» Theoretically FAPP » Clarify with toy models > For QFT?
» In real life » Testable predictions
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Observation
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Motivation

“We know that the moon is demonstrably not there when
nobody looks”

David Mermin 1981



Introduction

Measurement postulate

For a system “described” by \p) € # and a measurement
of projectors TT; such that ), TT; = 1:
& Born rule : Result i with probability P[i] = (W[IT;[)

& Collapse : [{) — HILLl[’,)]

Max Born John von Neumann

What is a measurement?

» When can the postulate be applied?
» Can measurement be deduced from other postulates?

Albert Einstein John S. Beil



Introduction

Moving the Heisenberg cut

Limit between the system, obeying the Schrédinger equation and the observer who can apply
the measurement postulate.

Eugene Wigner
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Continuous observation
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Repeated interactions

Discrete quantum trajectories

A sequence of [\,) or p, (random) and the corresponding
measurement results 6, = £1.
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Repeated interactions

Discrete quantum trajectories

A sequence of [\,) or p, (random) and the corresponding
measurement results 6, = £1.

» Make the interaction between system and probe smoother Uit = 1 + iy/€ Asys ® Bprobe

» Increase the frequency at which probes are sent: T o ¢

Continuous quantum trajectories

A continuous map [;) or p; (random) and the corresponding
continuous measurement signal y; < /e >, dx. Typically:

dipe) = [—int + VY(A— (A))dW, — %(A - <A>)2dt} )

where W; Brownian A\ Essentially a central limit theorem result A\



In practice

» Discrete situations “LKB style”, with actual
repeated interactions

» Almost “true” continuous measurement
settings (quantum optics, quantum dots)
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Example 0

Situation considered
Pure continuous measurement of a qubit:
» for the population: p, = [(1 [b:)[?
» one can show: dp; = /¥ p:(1 — p;) dW;
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Situation considered
Pure continuous measurement of a qubit:
» for the population: p, = [(1 [b:)[?
» one can show: dp; = /¥ p:(1 — p;) dW;




Questions

Measurement is now dynamical with a time scale y~!. Hence one can:
& Optimize it
& Study its competition with (few-body) unitary dynamics

& Exploit it for real-time “soft” control



Questions

Measurement is now dynamical with a time scale y~!. Hence one can:
& Optimize it
& Study its competition with (few-body) unitary dynamics

& Exploit it for real-time “soft” control

Strong continuous observation vy > w; Weak continuous observation vy~ w;
» Non-demolition measurement » Optimization
» Quantum jumps » Control
» Quantum spikes » Continuous quantum error correction
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath /ﬂ
» p; ground state population ( -
> Thermal bath p; — pBeltzmann N

» Continuous energy measurement p;, — 0 or 1 N

No measurement, y =0A
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath
» p; ground state population
» Thermal bath p, — pBeltzmann

» Continuous energy measurement p;, — 0 or 1

Weak measurement, y = 0.1A
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath 1
» p; ground state population k N
» Thermal bath p, — pBeltzmann \.

» Continuous energy measurement p;, — 0 or 1

Decent measurement, vy = A
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Situation considered

Qubit coupled to a thermal bath ﬂ
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath ﬂ
» p; ground state population o
» Thermal bath p, — pBeltzmann ‘\

» Continuous energy measurement p; — 0 or 1

Pretty strong measurement, y = 100 A

1 4 B I ——

Dy

I
|
[
0 VARV L wLile o P /L AR LN AT R A
0 5

10 15 20



Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath
» p; ground state population
» Thermal bath p, — pBeltzmann

» Continuous energy measurement p; — 0 or 1

Strong measurement, Yy = 1000 A
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath
» p; ground state population
» Thermal bath p, — pBeltzmann

» Continuous energy measurement p; — 0 or 1

Very strong measurement, y = 10% A
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath
» p; ground state population

» Thermal bath p; — pBoltzmann

» Continuous energy measurement p; — 0 or 1

Uber strong measurement, y = 10° A
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath
» p; ground state population
» Thermal bath p, — pBeltzmann

» Continuous energy measurement p; — 0 or 1

Uber strong measurement, y = 10° A
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Strong measurement limit: example 2

System considered

Qubit in a magnetic field | measurement basis
> pr = (el )P

» H = $o0,: Rabi oscillations p; ~ cos(wt)
» Measurement p; — 0 or 1

No measurement, y = 0w
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System considered

Qubit in a magnetic field | measurement basis

> pr = (el 1)
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Strong measurement limit: example 2

System considered

Qubit in a magnetic field | measurement basis

> pe = 1(el 1)

» H = $o0,: Rabi oscillations p; ~ cos(wt)

» Measurement p; — 0 or 1

Decent measurement, Y= w
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Strong measurement limit: example 2

System considered

Qubit in a magnetic field | measurement basis

> pr = (el 1)
» H = Zo,: Rabi oscillations p; ~ cos(wt)

» Measurement p; — 0 or 1

Getting strong measurement, Yy = 10 w
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Strong measurement limit: example 2

System considered

Qubit in a magnetic field | measurement basis

> pr = (el 1)
» H = Zo,: Rabi oscillations p; ~ cos(wt)

» Measurement p; — 0 or 1

Pretty strong measurement, y = 30 w
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System considered

Qubit in a magnetic field | measurement basis

> pr = (el 1)
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Strong measurement limit: example 2

System considered

Qubit in a magnetic field | measurement basis

> pe = (Ve 1)
» H = Zo0,: Rabi oscillations p; ~ cos(wt)

» Measurement p; — 0 or 1

Very strong measurement, y = 300 w
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Strong measurement limit: example 2

System considered

Qubit in a magnetic field 1. measurement basis

> pr = (el )P
» H = $o,: Rabi oscillations p; ~ cos(wt)

» Measurement p; — 0 or 1

Uber strong measurement, y = 1000 w
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Theorem: jumps

1. Markovian evolution £(p:) = L(p¢) — i [H, p¢]
2. Continuous measurement of O = Y, A¢|k) (k|

Quantum jumps

When vy — +00, p; converges to a Markov
chain with transition matrix M:

“incoherent” contribution

o 1| Hy P
7

“incoherent” contribution

—
vy — +00



A subtlety: spikes
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A subtlety: spikes

:E m ' ﬂﬂﬂ L
Py
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» Remain in the limit
» Are Levy distributed
» Are univeral

Spikes:

» Are experimentally relevant (e.g. for control)

Carrying computations rigorously, one discovers things people did not expect and thought were
experimental mistakes



Some results

Strong continuous measurement

1. Jumps Others

1. Control
» {$ A T, M Bauer, D Bernard EPL 2014

\

‘Whjmh ﬂ 2. Optimal measurement
{ AT, PRA 2016

3. Exact results
O AT, PRA-Rapid 2018

[ \

<{> M Bauer, D Bernard, AT JPA 2015
<{ AT, M Bauer, D Bernard PRA 2015
<{> M Bauer, D Bernard, AT JPA 2016

I & AT, Quantum 2017

TWT 4. Non-Markovian exploration
mmh lL

5. Many-body exploration
& X Cao, AT, A De Luca, 2018



Future

Fast transition in the field in the last 2 — 3 years: new questions

Applications
Are there obvious questions
on the standard theory?

» Theory to experiments
» Experiments to theory

QCMX: Bretheau & Pillet

M Exact signal correlators
AT, PRA-Rapid 2018

Non-Markovianity
How to include it in the
theory?

» N-M feedback
» N-M measurement

[

1 -1
(Veu(2)| Aldbea(2)) (eI Allgs(4))

& Non-Markovian Monte-Carlo
AT, Quantum 2017

Many-body
Joining measurement and
MB dynamics

» For integrable models
» KPZ universality class?

000000060

0 100 200 300
t

® arXiv:1804.04638
X Cao, AT, A De Luca



Unification




Prolegomena

Classical gravity Semiclassical gravity Fully quantum gravity
.
.
» Matter is classical » Matter is quantum » Matter is quantum
» Spacetime is classical » Spacetime is classical » Spacetime is quantum

{ No experimental evidence for the quantization of gravity
& Is semi-classical gravity really impossible?
{ Can we construct simple toy models clarifying the alleged problems?



“Standard” semi-classical gravity

A semi-classical theory of gravity tells 2 stories:
1. Quantum matter moves in a curved classical space-time

2. The classical space-time is curved by quantum matter




“Standard” semi-classical gravity

A semi-classical theory of gravity tells 2 stories:
1. Quantum matter moves in a curved classical space-time

2. The classical space-time is curved by quantum matter

1 is known (QFTCST), 2 is not

The crucial question of semi-classical gravity is to know how quantum matter
should source curvature.



Mgller-Rosenfeld semi-classical gravity

Mean-field prescription

The choice of Mgller and Rosenfeld it to take:

1 A
Ruv — 3R guv = 816 (Ty)

. . . Christian Mgller
—» source gravity via expectation values
L

There are:

» technical relativistic difficulties [renormalization of (T, )]

» conceptual non-relativistic difficulties [Born rule, signalling,---].

Leon Rosenfeld



Mgller-Rosenfeld semi-classical gravity

Mean-field prescription

The choice of Mgller and Rosenfeld it to take:

1 A
Ruv — 3R guv = 816 (Ty)

. . . Christian Mgller
—» source gravity via expectation values

g

There are:

» technical relativistic difficulties [renormalization of (T, )]

» conceptual non-relativistic difficulties [Born rule, signalling,---].

Leon Rosenfeld

Situation
Semiclassical gravity looks impossible even in the Newtonian regime:
& What can source the gravitational field if not (-)? &



ion

” solut

ition pump

“Intu

“There are detectors in space-time measuring the mass density continuously and curving

" — this is why it works

space-time accordingly.



Results (in a nutshell)
Standard quantum feedback like computations give for p; = E[[,) (1).[]:

0w =1 | Ho + 5 | [ exay ey GBI o] — [ axay 2,1 [0, [, 01,

with the gravitational pair-potential ¥ = [1Z£] (x,y) = —ﬁ,

and the positional decoherence Z(x,y) = [Y+ 7 oy 1o ¥ ] (x,y)
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Results (in a nutshell)
Standard quantum feedback like computations give for p; = E[[,) (1).[]:

0w =1 | Ho + 5 | [ exay ey GBI o] — [ axay 2,1 [0, [, 01,

with the gravitational pair-potential ¥ = [1Z£] (x,y) = —ﬁ,

and the positional decoherence Z(x,y) = [Y+ 7 oy 1o ¥ ] (x,y)

& No faster-than-light signalling Constructive bypass of a pseudo no-go theorem
& Not falsified, but soon falsifiable

#® Minimizing decoherence over the class of models gives the exact decoherence functional
conjectured by Penrose in 1991

“Hard” results Pedagogical formulation
& First functioning class of models { Model without It calculus
AT, L. Diési PRD 2016 AT, PRD-Rapid 2018
¢ Principle to reduce to one model ¢ General perspective

AT, L. Diési PRD 2017 AT, arXiv:1802.03291



Should one believe in it?

Antoine, do you seriously believe the
world is like in your theory?

Sheldon Goldstein

| bet 99 to one that the outcome
will be consistent with gravity having
quantum properties.

Carlo Rovelli

NewScientist — 14 April 2018



Future

We will know during my lifetime if gravity is a quantum force

Bose et al. PRL 2017

» Self-heating computations for neutron stars

» Opportunistic attack of other foundations problems



Many-body: tensor network states




Problem

Many-body states are complicated.
|ll)> = Z Cityiny++ yin |i1»"' )in>
fyi2y = sin

2" parameters c;

sl2y 500t

Typical many-body Hamiltonians are simple.

H= i hy
k=1

~ const X n parameters.
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Problem

Many-body states are complicated.

) = Z Citizy-oeyin |11y ** 5 n)

i1yi2y " in

n
2" parameters ¢,

125050t

Interesting states

Typical many-body Hamiltonians are simple.

H= ihk
k=1

~ const X n parameters.

Variational optimization

To find the ground state:

lground) = min (lH)
hes (bhb)
Can we find a subspace .¥' s. t.:
> .Y x nk < e”
» . approximates well interesting states
» bonus (P|O(x)hp) is computable



An idea popular in many fields

» Mean field approximation (of which TNS are an extension)

Px1y X2y -+, Xn) = P1(x1) Ya(x2) - - - Palxy)

» Special variational wave functions in Quantum chemistry (whole industry of ansatz)
» Moore-Read wavefunctions in the study of the quantum Hall effect

b,y s x) = (BOble) - $lx) )

CFT

» Fully connected and convolutional neural networks used in machine learning

Feature maps

Convolutions i C i i Fully




Matrix product states

N)) = Z Ciyyiny--yin il)"' )in>

1502y in

Matrix Product States (MPS)

Remark: actually equivalent
with the density matrix
renormalization group
(DMRG)

ALRY =Y (LA (1)A,(2) -+ A (n)IR) lin, -+ in)

il\iZy'“ yin

» A; are D x D complex matrices
> Aisa2xDxD tensor [Ailx,
» |L) and |R) are D-vectors.

& nx 2 x D? parameters instead of 2"
& D is the bond dimension and encodes the size of the variational class



Graphical notation
AL R) =3 i (LA (DAL (2) - A (n)IR) liny -+ i)

Notation: [Alx, = —l— and k—— 1= by, gives:

anr =t b LLLLLLLLLL LI LI L L



Graphical notation
‘A> L) R> = Zihizy...’in<L|Ai1(1)Aiz(2) e Al,,(n)lR> |i1) T )in>

Notation: [Alx, = —l— and k—— 1= by, gives:

anr =t b LLLLLLLLLL LI LI L L

Example: computation of correlations

can be done by iteration 2 maps:

.
O = and q)o ZI
——

The contraction for a d = 1 system, can be seen as an open-system dynamics in d = 0.




Generalizations: different tensor networks

Matrix Product States (MPS)

SAVVLLLLLLLL L L L

Projected Entangled Pair States Multi-scale Entanglement
(PEPS) Renormalization Ansatz (MERA)




Some facts

A list of theorems [very colloquially]:

>
>
>

Expressiveness [trivial] Tensor Network States cover J# when D o 2"
Area law The entanglement of a subregion of space scales as its area for a TNS

Efficiency [gapped] Matrix Product States approximate well the ground states of gapped
systems in 1 spatial dimension

Efficiency [critical] Multi-scale Entanglement Renormalization Ansatz (MERA)
approximate well the ground states of critical systems in 1 spatial dimension.

Symmetries Physical symmetries can be implemented locally on the bond space

Inverse problem TNS are the ground state of a local parent Hamiltonian



Successes and limits

Successes: why the deserved hype — —
Limits: why it is overhyped
Q' Arbitrary precision for 1d quantum systems

@ Classification of topological phases in 1d and 2d

@ Progress on non-Abelian lattice Gauge theories o Lack of i techni
O AdS/CFT toy models o G GRS TSl B

& Hard to contract in d > 2

& No continuum limit in d > 2



Successes and limits

Successes: why the deserved hype — —
Limits: why it is overhyped
Q' Arbitrary precision for 1d quantum systems

@ Classification of topological phases in 1d and 2d

@ Progress on non-Abelian lattice Gauge theories & Lack of analytic techni
O AdS/CFT toy models o G GRS TSl B

& Hard to contract in d > 2

& No continuum limit in d > 2

Can one apply tensor network techniques directly in the continuum, to QFT?




Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

AUl didll
LLuu R
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Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

AUl didll
LLuu R

» the bond dimension D stays fixed

» the local physical dimension explodes C? ® - - - ® C? — .Z (L?([x, x + dx])).
= Spins become fields — (=~ central limit theorem ~ quantum noises d, d&)

» A cMPS is a quantum field state parameterized by finite dimensional matrices:
1@, Ry w) = {wi[Pexp { 5 dx Qx) @ 1+ R(x) @i (x) } lwg) [0)



Continuous Tensor Networks: blocking




Continuous Tensor Networks: blocking

Upon blocking:

& The physical Hilbert space
dimension d increases (idem
cMPS = physical field)

& The bond dimension D increases
too



Idea: QFT states from classical random fields in the same
dimension

physical indice IV, B, a)
iliary indices ‘ B
boundary tensor ¢

D
V,8,) = [ D0 Bola) exp { | % 3 3 10w + VIatx)) - alolll /() 10)

laux;) |V, B, a)

in) 1 louty
| —
/
Q

0Qin 0Qout

arXiv:1808.00976



Applications and future

Develop this technology

1. Symmetries

2. Renormalization

3. AdS/CFT toys




Teaching philosophy

ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

» Peculiar students (good level, low drive) have special needs

» What is important for students is not (necessarily) related to my research
» Teaching helps learning

» Higher level popularization and outreach are important



Summary

Continuous measurement
theory

Solid mathematics
answering semifundamental
questions and helping

experimentalists on campus.

Alternative semiclassical
gravity

An application of the
previous theoretical toolbox
to deep questions at low
added cost

And hopefully 1 or 2 more columns in the next 5 years...

Continuous tensor
network states

An ongoing expansion of a
powerful mathematical
method to the realm of
Quantum Field Theory



Technical complements on strong continuous measurements



Theorem: jumps

“incoherent” contribution

~= 1| H |?
Mi R Ll_l. T U
A 4 + 4-’Y ‘)\, — )\j
~—_———

“incoherent” contribution

Consequences:

» Gives a signature of the underlying process enabling the transitions: coherent vs
incoherent

» Cannot be reproduced by projective measurements because: [A; —A;| # const Vi, j
» Can be used for minimalist control using solely y (arXiv:1404.7391)

Extensions
» Several commuting observables O,

» Repeated imperfect measurements instead of continuous



Jumps: proof
Standard small noise expansion techniques are useless in this context

Idea of the proof
Perturbation theory at the level of the Fokker-Planck equation for p;:
0:P(p) =DP(p)

where ® is a differential operator

Write ® = vy®1 + Dg, hence P(p) = exp (tyD1 + tDp)

» To zeroth order, P(p) = exp(tyD;), = converges exponentially fast to the kernel of
91, i.e. Dirac around pointer states

» To next order, exp tDg gives the transition rates



Spikes
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Theorem: spikes

T T ' mq

Py 9

Spike statistics

The number of spikes starting from 0 and ending in the domain & of the plane (¢, p) is a
Poisson process of intensity (D) :

p:J dv with dv:%dpdt
2 p



Spikes: idea of the proof

Quickest way: do a p dependent time rescaling — arXiv:1512.02861
pi(1—p)*dt =dt

pr has a well defined limit when vy — +o0:
» Reflected Brownian Motion

1

T

p}" ™ I I 1” i I'i
M

L ||h n .HL‘ H wiadily M.‘ !

i N\ w .m w [

Works only for qubits...



Are spikes real?

Introduce a classical hidden Markov model:

A ) :
R o -

S = G=-+1 =+l =-1
L A \J R t 3 2 1

Ry Q:

0 0

\ t t

Yields the same filtering equation as for thermal jumps:

dQ: = MQeq — Q) dt + /¥ Q:(1 — Q) dW;



Are spikes real?

1 i y=01 ! ] 4 =10
Q:
R,

/WW%W

0 07 0 10¢

oo W v=10 ! I M = 100
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Are spikes real?

With (classical) smoothing, i.e. a posteriori estimation:

1 M v=01 ! n ~ =10
1
R,
0 0 W LLAJ \/\/\/
0 107 0 107
! (] y=10 ! ] v =100
0 0

0 07 0 10¢



Technical complements alternative semiclassical gravity



Model

1. Step 1: continuous mass density measurement
We imagine that space-time is filled with detectors weakly measuring the mass density:

The equation for matter is now as before with 3
0 S

0 — M(x), Vx € R? e 3 e
v — v(x, y) coding detector strength and correlation !

and there is a "mass density signal” S(x) in every point.

2. Step 2: Feedback

We take the mass density signal S(x) to source the %ﬁﬁ
gravitational field ¢: 1

V2@(x) = 41 G S(x)

which is formally equivalent to quantum feedback.




Result

Standard quantum feedback like computations give for p; = E[) (W.[]:
. 1 A AN\
00 =i | o+ 5 [[axay Lx BIGORT(), o

— % dexdy 2(x,y) [/\/}I(XL [//\\/I(Y)a pt”>

with the gravitational pair-potential

and the positional decoherence

D(x,y) = [% + ¥ oyt o"f/q (x,y)

Hence the expected pair potential has been generated consistently at the price of more
decoherence.



Principle of least decoherence

Dy) = |3 +7 0y o7 T] (xy)

There is still a (functional) degree of freedom y(x, y):

» Large ||y|| = strong “measurement” induced decoherence
» Small ||y|| = strong “feedback” decoherence

There is an optimal kernel that minimizes decoherence.

Diagonalizing in Fourier, one gets a global minimum for
Y=2VY¥ o ¥ T =22V

Hence:
G
Ix —yl

This is just the decoherence kernel of the Didsi-Penrose model (erstwhile heuristically derived)!

D(x,y) ==V (xy) =




Regularization

Even for the minimal decoherence prescription, the decoherence is infinite.
Adding a regulator at a length scale ¢ has 2 effects:

» |t tames decoherence, making it finite
» It regularizes the pair potential oc ; for r S o
— there is a trade-off.

V(r) D(r)

Experimentally:
10%m <0< 10 *m

decoherence constraint gravitational constraint

Importantly o > £compton >> {Pianck.



Experimental final word (for this approach)
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Technical complements on the cTNS construction



Choice of trivial tensor

For MPS, not much choice:

For TNS in d > 2, many options:

1. Take a & between all legs ~ GHZ state T(%) = ><
= trivial geometry

2. Take two identities T(®) = >
—> breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions T > < + =

We will consider a softer modification of the first version:




Ansatz

1 — Take a “Trivial” tensor:

¢2)  ¢B)
Td(>0()1),d>(2),¢(3)‘¢,(4) = - ;;2575.-—'
o) o)
-1 D
~ exp {2 Z[d)k(l) — dr(2)]% + [br(2) — dr(3)]?
k=1

10x(3) — br(@) + [dr(4) — mm?}

The indices ¢ are in RP (and not 1,---, D)

2 — And add a “correction”:

exp {—e2V [d(1),--, d(4)] + 2ad(1),- -, d(H] YT (x)}

3 — Realize tensor contraction = functional integral and trivial tensor gives free field measure.



Functional integral definition

In the continuum limit:




Functional integral definition

In the continuum limit:




Operator definition

|V7 (X> =
T N /N
| e (] e L TRCITBLI 4 (00— bl () 0
where:

> $k(x) and 7 (x) are k independent canonically conjugated pairs of (auxiliary) field

operators: [bx(x), di(y)] = 0, [R(x)k, Ri(y)] = 0, and G (x),Rs(y)] = ik, 8(x — y)
acting on a space of d — 1 dimensions.



Operator definition

|V» Ba (X> =
T /N N\
tr[@ﬂ'exp (—LdTLdX ﬁk(x)fk(x) + V“’k(x)zv“”‘(x) + VB — add(x) w*(m)ﬂ 0)
where:

» &i(x) and Ak(x) are k independent canonically conjugated pairs of (auxiliary) field

operators: [bx(x), ®i(y)] = 0, [R(x)k, Ri(y)] = 0, and G (x),Ri(y)] = ik, 8(x — y)
acting on a space of d — 1 dimensions.



Expressivity and stability

How big are cTNS?

Stability Expressivity

The sum of two cTNS of bond field All states in the Fock space can be

dimension D; and D, is a cTNS with bond approximated by cTNS:

field dimension D < Dy + D, + 1: » A field coherent state is a cTNS with
D=0

Vi, &) + [Vo, o) = W
V1, 00) +[V2, ) = IW, B) » Stability allows to get all sums of field

coherent states

Note: expressivity can also be obtained with D =1 but it is less natural. Flexibility in D
makes the expressivity higher for restricted classes of V' and «.



Computations

Define generating functional for normal ordered correlation functions

1
Zjrj =

Functional integral representation

» Use formula for overlap of field
coherent states

(Blo) = exp (J dx B* (x) oc(x))

» Compute with Gaussian
integration + Feynman diagrams
or Monte Carlo

m(V, ol exp (J dxj’(x)le(x)> exp (J dxj(x)ll)(x)) |V, )

Operator representation
Similar to cMPS

» Transfer matrix
(0x)0(y)) =tr (Po - e VD - pyar
with T=Q®1+1® Q@+ R® R with

(A 4 V(X))
Q- —J .

+ V($(x))

and R@ R = [ V($(x)) ® V((x))T



Redundancies

Discrete redundancy Continuum redundancy

Different elementary tensors are equivalent, v SV
+V.-F
they give the same state: () () b, 6]

S
when o = 7 and g =\

up to boundary terms:

Just Stokes' theorem. If Q has a boundary 9Q):

D[p] — Dld] exp {ﬁddlx Flx, d(x)] - n(x)}

o]




Renormalization

Clx, -y xa) =(T(1)|00xa) -+ O(xa) T (1)),
the objective is to find a tensor T(A) of new parameters such that:
CAxay -+, Axp) o< (T(A)O(x1) - - - O () T (A)).

Doable exactly:
Vo AVoA 7T and a— AfaoA’z

— d =2, All powers of the field in V and « yield relevant couplings

— d =3, The powers p =1,2,3,4,5 of the field in V yield relevant A > 0 couplings. The
power p = 6 is marginal in V. For «, the powers p = 1,2 are relevant and p = 3 is
marginal. All other powers are irrelevant.



Getting back cMPS

One can get back cMPS with finite bond dimension by:
1. Compactification Take d — 1 dimensions out of d to be very small

T D B
|V, B, o) >~ tr {E‘Iexp (—J dTZ ?’% + VIX] - afX] IIJT(T))} 0)
0 k=1

= Hilbert space of a quantum particle in D space dimensions.

2. Quantization Take V with D deep minima to force the auxiliary field to take only D
possibilities



Generalization

For a general Riemanian manifold M with boundary 0M, define:

M

V,B, &) = J"Dd) B(dlon) exp { Jddx\/_( +Vid, Vo] — ald, V] lw) }|0>

i.e. add curvature and possible anisotropies in V' and «

Example: «[x, ¢, V] localized on the boundary and
hyberbolic metrix g:

— cMERA in d — 1 dimensions



Summary

D
V,8,60 = [ D0 Bl0laa) e {-| %% 3 3 [Vulx)? + Vigl) - alobol ' (x) | 0)
k=

1

Continuous tensor network states are natural continuum limits of tensor network states and
natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks
Can be made Euclidean invariant
Have functional and operator representations

Have a geometrical equivalent of the discrete gauge redundancies

LA

Have an exact and explicit renormalization flow




