
Pulling 3 Threads in Quantum Mechanics
Observation – Unification – Many-body

Antoine Tilloy
Max Planck Institute of Quantum Optics, Garching, Germany

Seminar for the Physics Department
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3 questions in quantum mechanics that drive me

Observation
How to measure and control
quantum systems?
I Fundamentally
I Theoretically FAPP
I In real life

Unification
How to unify quantum
mechanics and gravity
I Is gravity quantum?
I Clarify with toy models
I Testable predictions

Many-body
How to efficiently manage
many-body states
I With tensor networks
I For QFT?
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Observation



Motivation

“We know that the moon is demonstrably not there when
nobody looks”

David Mermin 1981



Introduction

Measurement postulate
For a system “described” by |ψ〉 ∈H and a measurement
of projectors Πi such that

∑
i Πi = 1:

♣ Born rule : Result i with probability P[i ] = 〈ψ|Πi |ψ〉
♣ Collapse : |ψ〉 −→ Πi |ψ〉√

P[i ]
Max Born John von Neumann

Albert Einstein John S. Bell

What is a measurement?

I When can the postulate be applied?
I Can measurement be deduced from other postulates?



Introduction

Moving the Heisenberg cut
Limit between the system, obeying the Schrödinger equation and the observer who can apply
the measurement postulate.

Eugene Wigner
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Continuous observation



Repeated interactions

Discrete quantum trajectories
A sequence of |ψn〉 or ρn (random) and the corresponding
measurement results δn = ±1.

I Make the interaction between system and probe smoother Uint = 1+ i
√
εAsys ⊗ Bprobe

I Increase the frequency at which probes are sent: τ ∝ ε

Continuous quantum trajectories
A continuous map |ψt〉 or ρt (random) and the corresponding
continuous measurement signal yt ∝

√
ε
∑

k δk . Typically:

d|ψt〉 =
[
−iH dt +√γ(A − 〈A〉)dWt −

γ

2 (A − 〈A〉)2 dt
]
|ψt〉

where Wt Brownian BEssentially a central limit theorem result B
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In practice

I Discrete situations “LKB style”, with actual
repeated interactions

I Almost “true” continuous measurement
settings (quantum optics, quantum dots)



Example 0

Situation considered
Pure continuous measurement of a qubit:
I for the population: pt = |〈↑ |ψt〉|2
I one can show: dpt =

√
γ pt(1 − pt) dWt
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Questions

Measurement is now dynamical with a time scale γ−1. Hence one can:
♣ Optimize it
♣ Study its competition with (few-body) unitary dynamics
♣ Exploit it for real-time “soft” control

Strong continuous observation γ� ωi

I Non-demolition measurement
I Quantum jumps
I Quantum spikes

Weak continuous observation γ ∼ ωi

I Optimization
I Control
I Continuous quantum error correction
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Strong measurement limit: example 1

Situation considered
Qubit coupled to a thermal bath
I pt ground state population
I Thermal bath pt → pBoltzmann

I Continuous energy measurement pt → 0 or 1

No measurement, γ = 0 λ
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Strong measurement limit: example 2

System considered
Qubit in a magnetic field ⊥ measurement basis
I pt = |〈ψt | ↑〉z |2
I H = ω

2 σx : Rabi oscillations pt ∼ cos(ωt)
I Measurement pt → 0 or 1

No measurement, γ = 0ω
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Theorem: jumps

1. Markovian evolution L(ρt) = L(ρt) − i [H, ρt ]

2. Continuous measurement of O =
∑

k λk |k〉〈k |

Quantum jumps
When γ→ +∞, ρt converges to a Markov
chain with transition matrix M:

Mi←j =

“incoherent” contribution︷︸︸︷
Lii

jj +
1

4γ

∣∣∣∣ Hij

λi − λj

∣∣∣∣2︸ ︷︷ ︸
“incoherent” contribution



A subtlety: spikes

Spikes:
I Remain in the limit
I Are Levy distributed
I Are univeral
I Are experimentally relevant (e.g. for control)

Carrying computations rigorously, one discovers things people did not expect and thought were
experimental mistakes
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Some results

Strong continuous measurement

1. Jumps

2. Spikes

♦ M Bauer, D Bernard, AT JPA 2015

♦ AT, M Bauer, D Bernard PRA 2015

♦ M Bauer, D Bernard, AT JPA 2016

Others

1. Control
♦ A T, M Bauer, D Bernard EPL 2014

2. Optimal measurement
♦ AT, PRA 2016

3. Exact results
♦ AT, PRA-Rapid 2018

4. Non-Markovian exploration
♦ AT, Quantum 2017

5. Many-body exploration
♦ X Cao, AT, A De Luca, 2018



Future
Fast transition in the field in the last 2 − 3 years: new questions

Applications
Are there obvious questions
on the standard theory?
I Theory to experiments
I Experiments to theory

QCMX: Bretheau & Pillet

♠ Exact signal correlators
AT, PRA-Rapid 2018

Non-Markovianity
How to include it in the
theory?
I N-M feedback
I N-M measurement

♠ Non-Markovian Monte-Carlo
AT, Quantum 2017

Many-body
Joining measurement and
MB dynamics
I For integrable models
I KPZ universality class?
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♠ arXiv:1804.04638
X Cao, AT, A De Luca



Unification



Prolegomena

Classical gravity

I Matter is classical
I Spacetime is classical

Semiclassical gravity

I Matter is quantum
I Spacetime is classical

Fully quantum gravity

I Matter is quantum
I Spacetime is quantum

♦ No experimental evidence for the quantization of gravity
♦ Is semi-classical gravity really impossible?
♦ Can we construct simple toy models clarifying the alleged problems?



“Standard” semi-classical gravity

A semi-classical theory of gravity tells 2 stories:
1. Quantum matter moves in a curved classical space-time
2. The classical space-time is curved by quantum matter

1 is known (QFTCST), 2 is not

The crucial question of semi-classical gravity is to know how quantum matter
should source curvature.
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Møller-Rosenfeld semi-classical gravity

Mean-field prescription
The choice of Møller and Rosenfeld it to take:

Rµν −
1
2 R gµν = 8πG 〈T̂µν〉

→ source gravity via expectation values

There are:
I technical relativistic difficulties [renormalization of 〈Tµν〉]
I conceptual non-relativistic difficulties [Born rule, signalling,· · · ].

Christian Møller

Leon Rosenfeld

Situation
Semiclassical gravity looks impossible even in the Newtonian regime:
♠ What can source the gravitational field if not 〈·〉? ♠



Møller-Rosenfeld semi-classical gravity

Mean-field prescription
The choice of Møller and Rosenfeld it to take:

Rµν −
1
2 R gµν = 8πG 〈T̂µν〉

→ source gravity via expectation values

There are:
I technical relativistic difficulties [renormalization of 〈Tµν〉]
I conceptual non-relativistic difficulties [Born rule, signalling,· · · ].

Christian Møller

Leon Rosenfeld

Situation
Semiclassical gravity looks impossible even in the Newtonian regime:
♠ What can source the gravitational field if not 〈·〉? ♠



“Intuition pump” solution

“There are detectors in space-time measuring the mass density continuously and curving
space-time accordingly.” → this is why it works



Results (in a nutshell)
Standard quantum feedback like computations give for ρt = E[|ψt〉〈ψt |]:

∂tρt =− i
[

H0 +
1
2

∫∫
dxdyV (x , y)M̂(x)M̂(y), ρt

]
−

1
8

∫∫
dxdy D(x , y)

[
M̂(x),

[
M̂(y), ρt

]]
,

with the gravitational pair-potential V =
[ 4πG
∇2

]
(x , y) = − G

|x−y | ,

and the positional decoherence D(x , y) =
[
γ
4 + V ◦ γ−1 ◦ V >

]
(x , y)

♠ No faster-than-light signalling Constructive bypass of a pseudo no-go theorem
♠ Not falsified, but soon falsifiable
♠ Minimizing decoherence over the class of models gives the exact decoherence functional

conjectured by Penrose in 1991

“Hard” results

♦ First functioning class of models
AT, L. Diósi PRD 2016

♦ Principle to reduce to one model
AT, L. Diósi PRD 2017

Pedagogical formulation

♦ Model without Itô calculus
AT, PRD-Rapid 2018

♦ General perspective
AT, arXiv:1802.03291
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AT, L. Diósi PRD 2017

Pedagogical formulation

♦ Model without Itô calculus
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Should one believe in it?

Antoine, do you seriously believe the
world is like in your theory?

Sheldon Goldstein

I bet 99 to one that the outcome
will be consistent with gravity having
quantum properties.

Carlo Rovelli

NewScientist — 14 April 2018



Future

We will know during my lifetime if gravity is a quantum force

Bose et al. PRL 2017

I Self-heating computations for neutron stars
I Opportunistic attack of other foundations problems



Many-body: tensor network states



Problem
Many-body states are complicated.

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,in |i1, · · · , in〉

2n parameters ci1,i2,··· ,in .

Typical many-body Hamiltonians are simple.

H =

n∑
k=1

hk

∼ const× n parameters.

All states

Interesting states

Variational optimization
To find the ground state:

|ground〉 = min
|ψ〉∈S

〈ψ|H |ψ〉
〈ψ|ψ〉

Can we find a subspace S s. t.:
I |S | ∝ nk � en

I S approximates well interesting states
I bonus 〈ψ|O(x)|ψ〉 is computable
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An idea popular in many fields

I Mean field approximation (of which TNS are an extension)

ψ(x1, x2, · · · , xn) = ψ1(x1)ψ2(x2) · · ·ψn(xn)

I Special variational wave functions in Quantum chemistry (whole industry of ansatz)
I Moore-Read wavefunctions in the study of the quantum Hall effect

ψ(x1, x2, · · · , xn) =
〈
φ̂(x1)φ̂(x2) · · · φ̂(xn)

〉
CFT

I Fully connected and convolutional neural networks used in machine learning



Matrix product states

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,in |i1, · · · , in〉

Matrix Product States (MPS)

|A, L,R〉 =
∑

i1,i2,··· ,in

〈L|Ai1(1)Ai2(2) · · ·Ain(n)|R〉 |i1, · · · , in〉

I Ai are D × D complex matrices
I A is a 2× D × D tensor [Ai ]k,l
I |L〉 and |R〉 are D-vectors.

Remark: actually equivalent
with the density matrix
renormalization group
(DMRG)

♦ n × 2× D2 parameters instead of 2n

♦ D is the bond dimension and encodes the size of the variational class



Graphical notation
|A, L,R〉 =∑i1,i2,··· ,in〈L|Ai1(1)Ai2(2) · · ·Ain(n)|R〉 |i1, · · · , in〉

Notation: [Ai ]k,l = and k l =
∑
δk,l gives:

|A, L,R〉 =

Example: computation of correlations

〈A|O(ik)O(i`)|A〉 =

can be done by iteration 2 maps:

Φ = and ΦO =

The contraction for a d = 1 system, can be seen as an open-system dynamics in d = 0.
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Generalizations: different tensor networks

Matrix Product States (MPS)

Projected Entangled Pair States
(PEPS)

Multi-scale Entanglement
Renormalization Ansatz (MERA)



Some facts

A list of theorems [very colloquially]:
I Expressiveness [trivial] Tensor Network States cover H when D ∝ 2n

I Area law The entanglement of a subregion of space scales as its area for a TNS
I Efficiency [gapped] Matrix Product States approximate well the ground states of gapped

systems in 1 spatial dimension
I Efficiency [critical] Multi-scale Entanglement Renormalization Ansatz (MERA)

approximate well the ground states of critical systems in 1 spatial dimension.
I Symmetries Physical symmetries can be implemented locally on the bond space
I Inverse problem TNS are the ground state of a local parent Hamiltonian



Successes and limits

Successes: why the deserved hype

♥ Arbitrary precision for 1d quantum systems
♥ Classification of topological phases in 1d and 2d
♥ Progress on non-Abelian lattice Gauge theories
♥ AdS/CFT toy models

Limits: why it is overhyped

♠ Hard to contract in d > 2
♠ No continuum limit in d > 2
♠ Lack of analytic techniques

Can one apply tensor network techniques directly in the continuum, to QFT?
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Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

UV

IR

I the bond dimension D stays fixed
I the local physical dimension explodes C2 ⊗ · · · ⊗ C2 −→ F (L2([x , x + dx ])).

=⇒ Spins become fields – (' central limit theorem ' quantum noises dξ, dξ†)
I A cMPS is a quantum field state parameterized by finite dimensional matrices:

|Q,R,ω〉 = 〈ωL|P exp
{∫L

0 dx Q(x)⊗ 1+ R(x)⊗ψ†(x)
}
|ωR〉 |0〉
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Continuous Tensor Networks: blocking

Upon blocking:
♣ The physical Hilbert space

dimension d increases (idem
cMPS =⇒ physical field)

♣ The bond dimension D increases
too
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Idea: QFT states from classical random fields in the same
dimension

|V ,B, α〉 =
∫
DφB(φ|∂Ω) exp

{
−

∫
Ω

dd x 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)]ψ†(x)
}

|0〉

arXiv:1808.00976



Applications and future

Develop this technology

1. Symmetries

2. Renormalization

3. AdS/CFT toys



Teaching philosophy

I Peculiar students (good level, low drive) have special needs
I What is important for students is not (necessarily) related to my research
I Teaching helps learning
I Higher level popularization and outreach are important



Summary

Continuous measurement
theory

Solid mathematics
answering semifundamental
questions and helping
experimentalists on campus.

Alternative semiclassical
gravity

An application of the
previous theoretical toolbox
to deep questions at low
added cost

Continuous tensor
network states

An ongoing expansion of a
powerful mathematical
method to the realm of
Quantum Field Theory

And hopefully 1 or 2 more columns in the next 5 years...



Technical complements on strong continuous measurements



Theorem: jumps

Mi←j =

“incoherent” contribution︷︸︸︷
Lii

jj +
1

4γ

∣∣∣∣ Hij

λi − λj

∣∣∣∣2︸ ︷︷ ︸
“incoherent” contribution

Consequences:
I Gives a signature of the underlying process enabling the transitions: coherent vs

incoherent
I Cannot be reproduced by projective measurements because: |λi − λj | 6= const ∀i , j
I Can be used for minimalist control using solely γ (arXiv:1404.7391)

Extensions
I Several commuting observables O`

I Repeated imperfect measurements instead of continuous



Jumps: proof

Standard small noise expansion techniques are useless in this context

Idea of the proof
Perturbation theory at the level of the Fokker-Planck equation for ρt :

∂tP(ρ) = DP(ρ)

where D is a differential operator

Write D = γD1 +D0, hence P(ρ) = exp (tγD1 + tD0)

I To zeroth order, P(ρ) = exp(tγD1), =⇒ converges exponentially fast to the kernel of
D1, i.e. Dirac around pointer states

I To next order, exp tD0 gives the transition rates



Spikes



Theorem: spikes

Spike statistics
The number of spikes starting from 0 and ending in the domain D of the plane (t, p) is a
Poisson process of intensity µ(D) :

µ =

∫
D

dν with dν =
λ

p2 dp dt



Spikes: idea of the proof
Quickest way: do a ρ dependent time rescaling – arXiv:1512.02861

p2
t (1 − pt)

2 dt = dτ

pτ has a well defined limit when γ→ +∞:
I Reflected Brownian Motion

Works only for qubits...



Are spikes real?
Introduce a classical hidden Markov model:

Yields the same filtering equation as for thermal jumps:

dQt = λ(Qeq − Qt) dt +√γQt(1 − Qt) dWt



Are spikes real?



Are spikes real?
With (classical) smoothing, i.e. a posteriori estimation:



Technical complements alternative semiclassical gravity



Model

1. Step 1: continuous mass density measurement
We imagine that space-time is filled with detectors weakly measuring the mass density:

The equation for matter is now as before with

O→ M̂(x), ∀x ∈ R3

γ→ γ(x , y) coding detector strength and correlation

and there is a “mass density signal” S(x) in every point.

2. Step 2: Feedback
We take the mass density signal S(x) to source the
gravitational field ϕ:

∇2ϕ(x) = 4πG S(x)

which is formally equivalent to quantum feedback.



Result

Standard quantum feedback like computations give for ρt = E[|ψt〉〈ψt |]:

∂tρ =− i
[

H0 +
1
2

∫∫
dxdyV (x , y)M̂(x)M̂(y), ρt

]
−

1
8

∫∫
dxdy D(x , y)

[
M̂(x),

[
M̂(y), ρt

]]
,

with the gravitational pair-potential

V =

[
4πG
∇2

]
(x , y) = −

G
|x − y | ,

and the positional decoherence

D(x , y) =
[γ

4 + V ◦ γ−1 ◦ V >
]
(x , y)

Hence the expected pair potential has been generated consistently at the price of more
decoherence.



Principle of least decoherence

D(x , y) =
[γ

4 + V ◦ γ−1 ◦ V >
]
(x , y)

There is still a (functional) degree of freedom γ(x , y):
I Large ‖γ‖ =⇒ strong “measurement” induced decoherence
I Small ‖γ‖ =⇒ strong “feedback” decoherence

There is an optimal kernel that minimizes decoherence.

Diagonalizing in Fourier, one gets a global minimum for

γ = 2
√

V ◦ V > = −2V

Hence:
D(x , y) = −V (x , y) = G

|x − y |
This is just the decoherence kernel of the Diósi-Penrose model (erstwhile heuristically derived)!



Regularization

Even for the minimal decoherence prescription, the decoherence is infinite.
Adding a regulator at a length scale σ has 2 effects:
I It tames decoherence, making it finite
I It regularizes the pair potential ∝ 1

r for r . σ

=⇒ there is a trade-off.

Experimentally:
10−15m

decoherence constraint
� σ 6 10−4m

gravitational constraint

Importantly σ > `Compton � `Planck.



Experimental final word (for this approach)

Lucy Reading-Ikkanda/Quanta Magazine



Technical complements on the cTNS construction



Choice of trivial tensor
For MPS, not much choice:

= + ε · · ·

For TNS in d > 2, many options:
1. Take a δ between all legs ∼ GHZ state T (0) =

=⇒ trivial geometry
2. Take two identities T (0) =

=⇒ breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions T (0) = +

We will consider a softer modification of the first version:

T (0) ∼



Ansatz

1 – Take a “Trivial” tensor:

T (0)
φ(1),φ(2),φ(3),φ(4) =

∼ exp
{
−1
2

D∑
k=1

[φk(1) − φk(2)]2 + [φk(2) − φk(3)]2

+ [φk(3) − φk(4)]2 + [φk(4) − φk(1)]2
}

The indices φ are in RD (and not 1, · · · ,D)

2 – And add a “correction”:

exp
{
−ε2V [φ(1), · · · , φ(4)] + ε2α [φ(1), · · · , φ(4)]ψ†(x)

}
3 – Realize tensor contraction = functional integral and trivial tensor gives free field measure.



Functional integral definition

In the continuum limit:

|V , α〉 =
∫
Dφ exp

{
−

∫
Ω

dd x 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)]ψ†(x)
}

|0〉



Functional integral definition

In the continuum limit:

|V ,B, α〉 =
∫
DφB(φ|∂Ω) exp
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−

∫
Ω

dd x 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)]ψ†(x)
}

|0〉



Operator definition

|V , α〉 =

tr
[
T exp

(
−

∫T

0
dτ
∫

S
dx π̂k(x)π̂k(x)

2 +
∇φ̂k(x)∇φ̂k(x)

2 + V [φ̂(x)] − α[φ̂(x)]ψ†(τ, x)
)]

|0〉

where:
I φ̂k(x) and π̂k(x) are k independent canonically conjugated pairs of (auxiliary) field

operators: [φ̂k(x), φ̂l(y)] = 0, [π̂(x)k , π̂l(y)] = 0, and [φ̂k(x), π̂l(y)] = iδk,l δ(x − y)
acting on a space of d − 1 dimensions.
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Expressivity and stability

How big are cTNS?

Stability
The sum of two cTNS of bond field
dimension D1 and D2 is a cTNS with bond
field dimension D 6 D1 + D2 + 1:

|V1, α1〉+ |V2, α2〉 = |W , β〉

Expressivity
All states in the Fock space can be
approximated by cTNS:
I A field coherent state is a cTNS with

D = 0
I Stability allows to get all sums of field

coherent states

Note: expressivity can also be obtained with D = 1 but it is less natural. Flexibility in D
makes the expressivity higher for restricted classes of V and α.



Computations

Define generating functional for normal ordered correlation functions

Zj ′,j =
1

〈V , α|V , α〉 〈V , α| exp
(∫

dx j ′(x)ψ†(x)
)

exp
(∫

dx j(x)ψ(x)
)
|V , α〉

Functional integral representation

I Use formula for overlap of field
coherent states

〈β|α〉 = exp
(∫

dx β∗(x)α(x)
)

I Compute with Gaussian
integration + Feynman diagrams
or Monte Carlo

Operator representation
Similar to cMPS
I Transfer matrix

〈O(x)O(y)〉 = tr
(
ΦO · e−(y−x)TΦO · ρstat

)
with T = Q ⊗ 1+ 1⊗ Q̄ + R ⊗ R̄ with

Q = −

∫
π̂k(x)2 + [∇φ̂k(x)]2

2 + V (φ̂(x))

and R ⊗ R̄ =
∫

V (φ̂(x))⊗ V (φ̂(x))†



Redundancies

Discrete redundancy

Different elementary tensors are equivalent,
they give the same state:

∼

when = and =

up to boundary terms:

Continuum redundancy

V (φ)→ V (φ) +∇ ·F [x , φ(x)]

Just Stokes’ theorem. If Ω has a boundary ∂Ω:

D[φ]→ D[φ] exp
{∮
∂Ω

dd−1x F [x , φ(x)] · n(x)
}



Renormalization

C(x1, · · · , xn) = 〈T (1)|O(x1) · · ·O(xn)|T (1)〉,
the objective is to find a tensor T (λ) of new parameters such that:

C(λx1, · · · , λxn) ∝ 〈T (λ)|O(x1) · · ·O(xn)|T (λ)〉.
Doable exactly:

V → λd V ◦ λ 2−d
2 and α→ λ

d
2α ◦ λ 2−d

2

– d = 2, All powers of the field in V and α yield relevant couplings
– d = 3, The powers p = 1, 2, 3, 4, 5 of the field in V yield relevant ∆ > 0 couplings. The

power p = 6 is marginal in V . For α, the powers p = 1, 2 are relevant and p = 3 is
marginal. All other powers are irrelevant.



Getting back cMPS

One can get back cMPS with finite bond dimension by:
1. Compactification Take d − 1 dimensions out of d to be very small

|V ,B, α〉 ' tr
[

B̂ T exp
(
−

∫T

0
dτ

D∑
k=1

P̂2
k

2 + V [X̂ ] − α[X̂ ]ψ†(τ)

)]
|0〉

=⇒ Hilbert space of a quantum particle in D space dimensions.
2. Quantization Take V with D deep minima to force the auxiliary field to take only D

possibilities



Generalization

For a general Riemanian manifold M with boundary ∂M, define:

|V ,B, α〉 =
∫
DφB(φ|∂M) exp

{
−

∫
M

dd x√g
(gµν∂µφk∂νφk

2 + V [φ,∇φ] − α[φ,∇φ]ψ†
)}

|0〉

i.e. add curvature and possible anisotropies in V and α

Example: α[x , φ,∇φ] localized on the boundary and
hyberbolic metrix g :

→ cMERA in d − 1 dimensions



Summary

|V ,B, α〉 =
∫
DφB(φ|∂Ω) exp

{
−

∫
Ω

dd x 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)]ψ†(x)
}

|0〉

Continuous tensor network states are natural continuum limits of tensor network states and
natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks
2. Can be made Euclidean invariant
3. Have functional and operator representations
4. Have a geometrical equivalent of the discrete gauge redundancies
5. Have an exact and explicit renormalization flow


