
Continuous Tensor Network States for Quantum Fields

Antoine Tilloy, with J. Ignacio Cirac
Max Planck Institute of Quantum Optics, Garching, Germany

MPQ Theory division group workshop
Nordlingen, Germany
October 19th, 2018



Discrete vs continuum theories

Z (β) =
∑

s
e−βE(s)

with E (s) =
∑

k,` Sk S`

Z (β) =

∫
Dφe−

∫
L(φ)

with L(φ) = (∇φ)2

2 + m2φ2

2 + λφ4



Lots of “Continuous tensor network” concepts

Tensor networks for quantum
states |ψ〉

I

MPS → cMPS
[Verstraete & Cirac 2010]

I

MERA → cMERA
[Haegeman et al. 2013]

I

PEPS → cPEPS

Tensor networks for partition
functions Z (β)

I StatMech in d
I Euclidean quantum in d + 1

[Franco-Rubio et al. 2018]
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Objective

Define a continuous tensor network state for d > 2

auxiliary field

physical field

auxiliary degrees of fredom

physical degrees of fredom



Objective

Why?
I Trickiness of d > 2
I Computations: the continuum

brings new methods
(perturbative expansions,
saddle point approximations,
differential equations)

I QFT: apply directly to QFT,
without discretization

I Symmetries: Implement
Euclidean / Translation
invariance exactly

I Holography: (?) Construct
better toy models

auxiliary field

physical field



Matrix product states

|ψ〉 =
∑

i1,i2,··· ,in=±1
ci1,i2,··· ,in |i1, · · · , in〉

Matrix Product States (MPS)

|A,L,R〉 =
∑

i1,i2,··· ,in

〈L|Ai1(1)Ai2(2) · · ·Ain (n)|R〉 |i1, · · · , in〉

I Ai , i = ±1 are D ×D complex matrices
I A is a 2×D ×D tensor [Ai ]k,l

I |L〉 and |R〉 are D-vectors.

♦ n × 2×D2 parameters instead of 2n

♦ D is the bond dimension and encodes the size of the variational class



Graphical notation

|A,L,R〉 =
∑

i1,i2,··· ,in 〈L|Ai1(1)Ai2(2) · · ·Ain (n)|R〉 |i1, · · · , in〉

Notation: [Ai ]k,l = and k l =
∑
δk,l gives:

|A,L,R〉 =

Example: computation of correlations

〈A|O(ik)O(i`)|A〉 =

can be done by iteration 2 maps:

Φ = and ΦO =

Contraction for a d = 1 system ∼ open-system dynamics in d = 0.
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Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

UV

IR

I the bond dimension D stays fixed
I the local physical dimension explodes C2⊗· · ·⊗C2 −→ F (L2([x , x +dx ])).

=⇒ Spins become fields – (' central limit theorem)
I A cMPS is a quantum field state parameterized by finite dimensional

matrices
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Continuous Matrix Product States
Type of ansatz

I Matrices Aik (x) = where the index ik corresponds to

ε−ik/2a†ik (x)|0〉 = ψ†ik (x)|0〉

in physical space.

Informal cMPS definition

A0 = 1+ εQ
A1 = εR

A2 =
(εR)2
√

2
· · ·

An =
(εR)n
√

n
· · ·

so we go from ∞ to 2 matrices

Fixed by:
I Finite particle number

I Consistency
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Continuous Matrix Product States

Definition

|Q,R,ω〉 = 〈ωL|P exp
{∫L

0
dx Q ⊗ 1+ R ⊗ψ†(x)

}
|ωR〉 |0〉

I Q,R are D ×D matrices,
I |ωL〉 and |ωR〉 are boundary vectors ∈ CD ,
I [ψ(x), ψ†(y)] = δ(x − y)

Idea:

A(x) ' A01+ A1ψ
†(x)

' 1⊗ 1+ εQ ⊗ 1+ εR ⊗ψ†(x)
' exp

[
ε
(
Q ⊗ 1+ R ⊗ψ†(x)

)]

Computations
Thermodynamic limit

〈O(x)O(y)〉 = tr
(
ΦO · e−(y−x)TΦO · ρstat

)
with T = Q ⊗ 1+ 1⊗ Q̄ + R ⊗ R̄
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Extending continuous matrix product states

|Q,R,ω〉 = 〈ωL|P exp
{∫L

0
dx Q ⊗ 1+ R ⊗ψ†(x)

}
|ωR〉 |0〉

Besides that, it is possible to extend this formalism to
2-dimensional continuum systems using the formalism of PEPS [8].
In that case, the auxiliary bond dimension has to be interpreted as
representing an auxiliary field, and the judicious choice of tensors Q
and R allows to develop a consistent formalism for describing
2 + 1 dimensional field theories [10].

Verstraete & Cirac, PRL 2010
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Continuous Tensor Networks: blocking

Upon blocking:
♣ The physical Hilbert space

dimension d increases
(idem cMPS =⇒ physical
field)

♣ The bond dimension D
increases too
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Foreshadowing

auxiliary field

physical field

auxiliary degrees of fredom

physical degrees of fredom

|V , α〉 =
∫
Dφ exp

{
−

∫
Ω

dd x 1
2 [∇φ(x)]2 + V [φ(x)] − α[φ(x)]ψ†(x)

}
|0〉



Choice of trivial tensor
For MPS, not much choice:

= 1⊗ 1 |0〉+ εQ ⊗ 1 |0〉 + εR ⊗ψ† |0〉
= + ε · · ·

For TNS in d > 2, many options:

1. Take a δ between all legs ∼ GHZ state T (0) =

=⇒ trivial geometry

2. Take two identities T (0) =

=⇒ breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions

T (0) = +

We will consider a softer modification of the first version:

T (0) ∼
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Ansatz

1 – Take a “Trivial” tensor:

T (0)
φ(1),φ(2),φ(3),φ(4) =

∼ exp
{
− [φ(1) − φ(2)]2 − [φ(2) − φ(3)]2

− [φ(3) − φ(4)]2 − [φ(4) − φ(1)]2
}

The indices φ are in R (and not 1, · · · ,D)

2 – And add a “correction”:

exp
{
−ε2V [φ(1), · · · , φ(4)] + ε2α [φ(1), · · · , φ(4)]ψ†(x)

}
3 – Realize tensor contraction = functional integral and trivial tensor gives free
field measure.
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Functional integral definition

Continuous tensor network state (cTNS)

A cTNS is a state parameterized by 2 functions V , α and a functional B:

|V ,B, α〉 =
∫
DφB(φ|∂Ω) exp

{
−

∫
Ω

dd x 1
2

D∑
k=1

[∇φk(x)]2

+ V [φ(x)] − α[φ(x)]ψ†(x)
}

|0〉



Operator definition

Continous tensor network state (cTNS)

|V ,B, α〉 = tr
[

B̂ T exp
(
−

∫T

0
dτ
∫

S
dx π̂k(x)π̂k(x)

2 +
∇φ̂k(x)∇φ̂k(x)

2

+ V [φ̂(x)] − α[φ̂(x)]ψ†(τ, x)
)]

|0〉

where:
I φ̂k(x) and π̂k(x) are k independent canonically conjugated pairs of

(auxiliary) field operators: [φ̂k(x), φ̂l(y)] = 0, [π̂(x)k , π̂l(y)] = 0, and
[φ̂k(x), π̂l(y)] = iδk,l δ(x − y) acting on a space of d − 1 dimensions.



Operator definition

Continous tensor network state (cTNS)

|V ,B, α〉 = tr
[

B̂ T exp
(
−

∫T

0
dτ
∫

S
dx π̂k(x)π̂k(x)

2 +
∇φ̂k(x)∇φ̂k(x)

2

+ V [φ̂(x)] − α[φ̂(x)]ψ†(τ, x)
)]

|0〉

where:
I Morally: Q ∼

π̂k (x)π̂k (x)
2 + ∇φ̂k (x)∇φ̂k (x)

2 + V [φ̂(x)] and R ∼ α[φ̂(x)]



Wave-function definition

A generic state |Ψ〉 in Fock space can be written:

|Ψ〉 =
+∞∑
n=0

∫
Ωn

ϕn(x1, · · · , xn)

n! ψ†(x1) · · ·ψ†(xn) |0〉

where ϕn is a symmetric n-particle wave-function

Physical wave-function correlation function of the auxiliary field:

ϕ(x1, x2, · · · , xn) = 〈α[φ(x1)]α[φ(x2)] · · ·α[φ(xn)] 〉

Functional integral representation

I 〈♣ 〉 =
∫
Dφ e−S(φ)♣

Operator representation
I 〈♣ 〉 = tr

[
B̂♣

]
I α[φ(x)] = α[φ̂(x)] in (imaginary time)

interaction representation
♥ Extension of Moore-Read
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Expressivity and stability

How big are cTNS?

Stability
The sum of two cTNS of bond field
dimension D1 and D2 is a cTNS
with bond field dimension
D 6 D1 + D2 + 1:

|V1, α1〉+ |V2, α2〉 = |W , β〉

Expressiveness
All states in the Fock space can be
approximated by cTNS:

I A field coherent state is a
cTNS with D = 0

I Stability allows to get all sums
of field coherent states

Note: expressiveness can also be obtained with D = 1. Flexibility in D makes
the expressivity higher for V and α fixed degree.



Computations

|V ,B, α〉 =
∫
DφB(φ|∂Ω) exp

{
−

∫
Ω

dd x 1
2

D∑
k=1

[∇φk(x)]2

+ V [φ(x)] − α[φ(x)]ψ†(x)
}

|0〉

Gaussian cTNS
If:

V (φ) = V (0) + V (1)
k φk + V (2)

k` φkφ`

α(φ) = α(0) + α
(1)
k φk

then |V , α,B〉 is a Gaussian state



Redundancies

Discrete redundancy

Different elementary tensors are
equivalent, they give the same state:

∼

when = and

=

up to boundary terms:

Continuum redundancy

V (φ)→ V (φ) +∇ ·F [x , φ(x)]

Just Stokes’ theorem. If Ω has a
boundary ∂Ω:

D[φ] exp
{∮
∂Ω

dd−1x F [x , φ(x)] · n(x)
}
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Renormalization / scaling

C(x1, · · · , xn) = 〈T (1)|O(x1) · · ·O(xn)|T (1)〉,
the objective is to find a tensor T (λ) of new parameters such that:

C(λx1, · · · , λxn) ∝ 〈T (λ)|O(x1) · · ·O(xn)|T (λ)〉.

Doable exactly:

V → λd V ◦ λ 2−d
2 and α→ λ

d
2 α ◦ λ 2−d

2

– d = 2, All powers of the field in V and α yield relevant couplings
– d = 3, The powers p = 1, 2, 3, 4, 5 of the field in V yield relevant ∆ > 0

couplings. p = 6 is marginal in V . For α, p = 1, 2 are relevant and p = 3
is marginal. All other p are irrelevant.
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Getting back cMPS

One can get back cMPS with finite bond dimension by:
1. Compactification Take d − 1 dimensions out of d to be very small

|V ,B, α〉 ' tr
[

B̂ T exp
(
−

∫T

0
dτ

D∑
k=1

P̂2
k

2 + V [X̂ ] − α[X̂ ]ψ†(τ)

)]
|0〉

=⇒ Hilbert space of a quantum particle in D space dimensions.

2. Quantization Take V with D deep minima to force the auxiliary field to
take only D possibilities
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Generalization

For a general Riemanian manifold M with boundary ∂M, define:

|V ,B, α〉 =
∫
DφB(φ|∂M) exp

{
−

∫
M

dd x√g
(gµν∂µφk∂νφk

2

+ V [φ,∇φ] − α[φ,∇φ]ψ†
)}

|0〉

i.e. add curvature and possible anisotropies in V and α

Example: α[x , φ,∇φ] localized on the boundary
and hyberbolic metrix g :

→ cMERA in d − 1 dimensions
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Open questions

I Is our cMERA really a cMERA
Conformal invariance on the boundary?

I Entanglement
Area law for entanglement entropy in Gaussian case?

I Regularity
In what situations are the things we compute well defined, when is a
regulator needed?

I Other bosonic/fermionic mixes
Physical and/or auxiliary fermions

I Gauge invariant states
I Non-trivial Non-Gaussian states?
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Summary

|V ,B, α〉 =
∫
Dφ exp

{
−

∫
Ω

dd x 1
2 [∇φ(x)]2 + V [φ(x)] − α[φ(x)]ψ†(x)

}
|0〉

Continuous tensor network states are natural continuum limits of tensor
network states and natural higher d extensions of continuous matrix product
states.

1. Obtained from discrete tensor networks
2. Can be made Euclidean invariant
3. Have functional and operator representations
4. Have a geometrical equivalent of the discrete gauge redundancies
5. Have an exact and explicit “renormalization” flow


