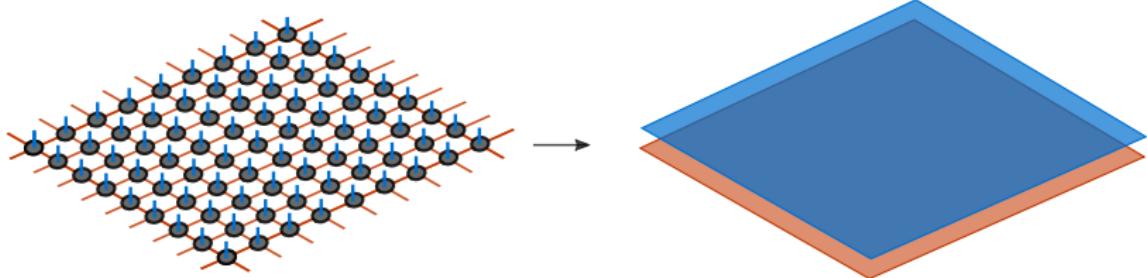


Continuous Tensor Network States for Quantum Fields

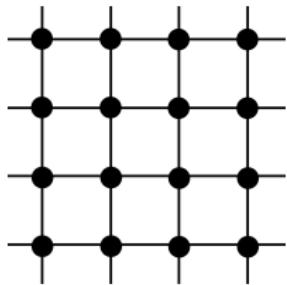
Antoine Tilloy, with J. Ignacio Cirac
Max Planck Institute of Quantum Optics, Garching, Germany



MPQ Theory division group workshop
Nordlingen, Germany
October 19th, 2018

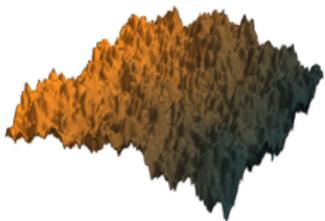
Alexander von Humboldt
Stiftung / Foundation

Discrete vs continuum theories



$$Z(\beta) = \sum_s e^{-\beta E(s)}$$

$$\text{with } E(s) = \sum_{k,\ell} S_k S_\ell$$



$$Z(\beta) = \int \mathcal{D}\phi e^{-\int \mathcal{L}(\phi)}$$

$$\text{with } \mathcal{L}(\phi) = \frac{(\nabla\phi)^2}{2} + \frac{m^2\phi^2}{2} + \lambda\phi^4$$

Lots of “Continuous tensor network” concepts

Tensor networks for quantum states $|\Psi\rangle$

$\text{MPS} \rightarrow \text{cMPS}$

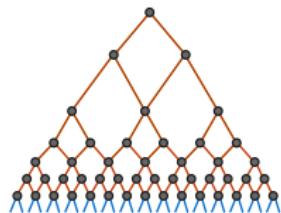
[Verstraete & Cirac 2010]

Lots of “Continuous tensor network” concepts

Tensor networks for quantum states $|\Psi\rangle$

MPS \rightarrow cMPS

[Verstraete & Cirac 2010]



MERA \rightarrow cMERA

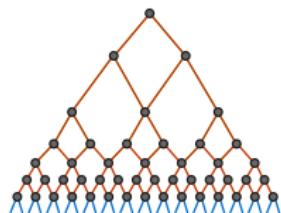
[Haegeman et al. 2013]

Lots of “Continuous tensor network” concepts

Tensor networks for quantum states $|\Psi\rangle$

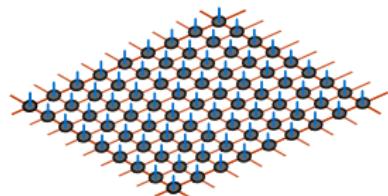
MPS \rightarrow cMPS

[Verstraete & Cirac 2010]



MERA \rightarrow cMERA

[Haegeman et al. 2013]



PEPS \rightarrow cPEPS

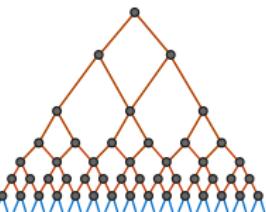
Lots of “Continuous tensor network” concepts

Tensor networks for quantum states $|\psi\rangle$

- ▶

$\text{MPS} \rightarrow \text{cMPS}$

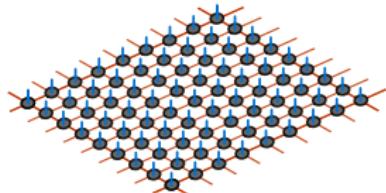
[Verstraete & Cirac 2010]



- ▶

$\text{MERA} \rightarrow \text{cMERA}$

[Haegeman et al. 2013]



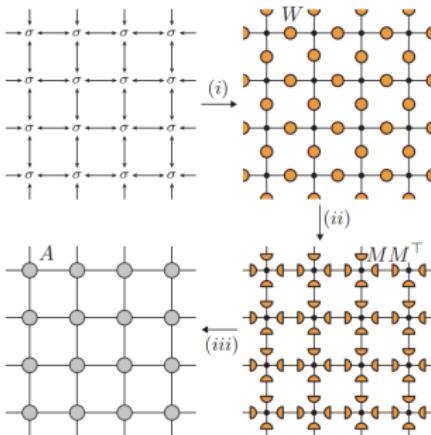
- ▶

$\text{PEPS} \rightarrow \text{cPEPS}$

Tensor networks for partition functions $Z(\beta)$

- ▶ StatMech in d

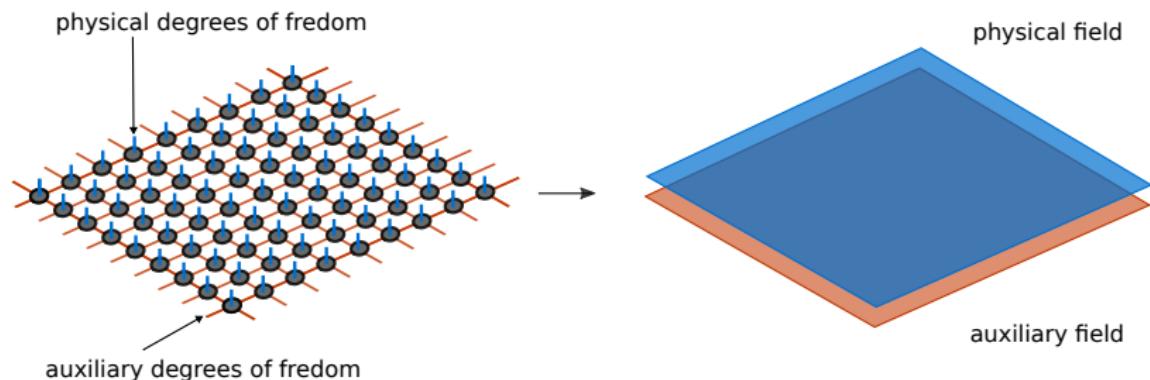
- ▶ Euclidean quantum in $d + 1$



[Franco-Rubio et al. 2018]

Objective

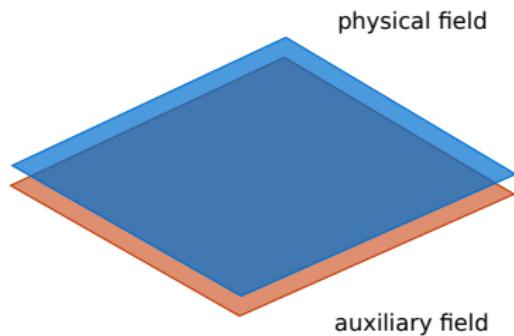
Define a **continuous** tensor network **state** for $d \geq 2$



Objective

Why?

- ▶ Trickiness of $d \geq 2$
- ▶ Computations: the continuum brings new methods (perturbative expansions, saddle point approximations, differential equations)
- ▶ QFT: apply directly to QFT, without discretization
- ▶ Symmetries: Implement Euclidean / Translation invariance exactly
- ▶ Holography: (?) Construct better toy models



Matrix product states

$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_n = \pm 1} c_{i_1, i_2, \dots, i_n} |i_1, \dots, i_n\rangle$$

Matrix Product States (MPS)

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

- A_i , $i = \pm 1$ are $D \times D$ complex matrices
- A is a $2 \times D \times D$ tensor $[A_i]_{k,l}$
- $|L\rangle$ and $|R\rangle$ are D -vectors.

- ◊ $n \times 2 \times D^2$ parameters instead of 2^n
- ◊ D is the **bond dimension** and encodes the size of the variational class

Graphical notation

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

Notation: $[A_i]_{k,l} =$ and $k \cdots l = \sum \delta_{k,l}$ gives:

$$|A, L, R\rangle =$$

Graphical notation

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

Notation: $[A_i]_{k,l} = \text{_____}$ and $k \text{ --- } l = \sum \delta_{k,l}$ gives:

$$|A, L, R\rangle = \dots \text{ (15 dots)} \dots$$

Example: computation of correlations

$$\langle A | \mathcal{O}(i_k) \mathcal{O}(i_\ell) | A \rangle =$$

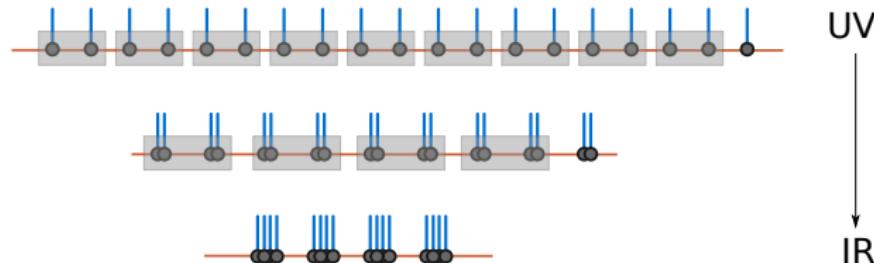
can be done by iteration 2 maps:

$$\Phi = \begin{array}{c} \text{---} \\ | \\ \text{---} \\ | \\ \text{---} \end{array} \quad \text{and} \quad \Phi_{\mathcal{O}} = \begin{array}{c} \text{---} \\ | \\ \text{---} \\ | \\ \text{---} \end{array}$$

Contraction for a $d = 1$ system \sim open-system dynamics in $d = 0$.

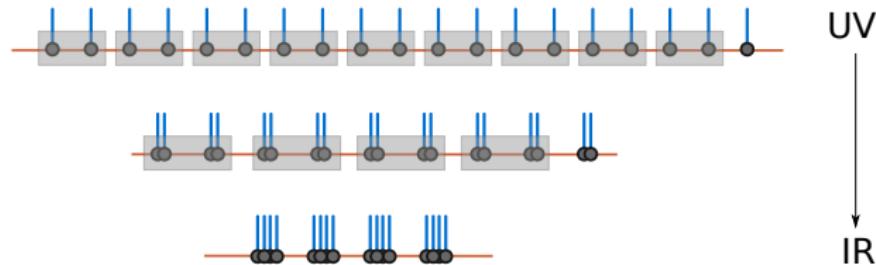
Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS



Continuous Matrix Product States (cMPS)

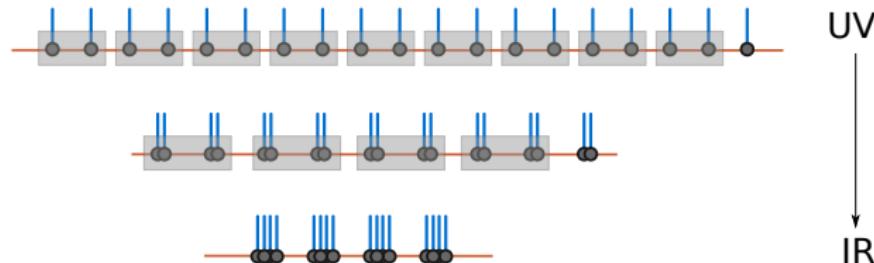
Taking the continuum limit of a MPS



- ▶ the bond dimension D stays fixed

Continuous Matrix Product States (cMPS)

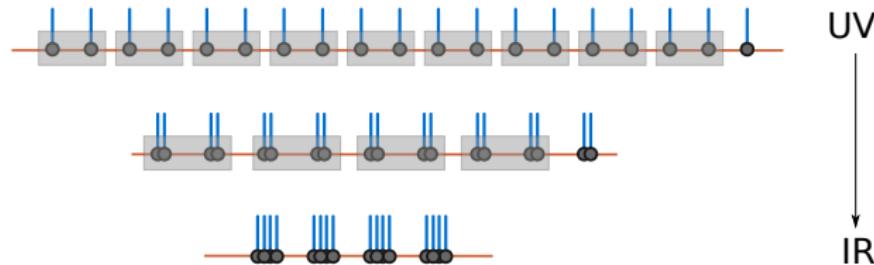
Taking the continuum limit of a MPS



- ▶ the bond dimension D stays fixed
- ▶ the local physical dimension explodes $\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 \longrightarrow \mathcal{F}(L^2([x, x+dx]))$.
 \implies Spins become fields – (\simeq central limit theorem)

Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS



- ▶ the bond dimension D stays fixed
- ▶ the local physical dimension explodes $\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 \longrightarrow \mathcal{F}(L^2([x, x+dx]))$.
 \implies Spins become fields – (\simeq central limit theorem)
- ▶ A cMPS is a quantum field state parameterized by finite dimensional matrices

Continuous Matrix Product States

Type of ansatz

- Matrices $A_{i_k}(x) =$ where the index i_k corresponds to

$$\varepsilon^{-i_k/2} a^{\dagger i_k}(x) |0\rangle = \psi^{\dagger i_k}(x) |0\rangle$$

in **physical space**.

Continuous Matrix Product States

Type of ansatz

- Matrices $A_{i_k}(x) = \text{---} \bullet \bullet \bullet \text{---}$ where the index i_k corresponds to

$$\varepsilon^{-i_k/2} a^{\dagger i_k}(x) |0\rangle = \psi^{\dagger i_k}(x) |0\rangle$$

in physical space.

Informal cMPS definition

$$A_0 = 1 + \varepsilon Q$$

$$A_1 = \varepsilon R$$

$$A_2 = \frac{(\varepsilon R)^2}{\sqrt{2}}$$

...

$$A_n = \frac{(\varepsilon R)^n}{\sqrt{n}}$$

...

so we go from ∞ to 2 matrices

Fixed by:

- Finite particle number

$$\begin{array}{cccccccc} 0 & 0 & 0 & 0 & 0 & 0 \\ \square & \square & \square & \square & \square & \square \end{array} \propto 1$$

$$\begin{array}{cccccccc} 0 & 1 & 0 & 0 & 0 & 0 \\ \square & \square & \square & \square & \square & \square \end{array} \propto \varepsilon$$

- Consistency

$$\begin{array}{cc} \begin{array}{c} 1 \\ \square \end{array} & \begin{array}{c} 1 \\ \square \end{array} \end{array} \simeq \begin{array}{cc} \begin{array}{c} 2 \\ \square \end{array} & \begin{array}{c} 0 \\ \square \end{array} \end{array}$$

Continuous Matrix Product States

Definition

$$|Q, R, \omega\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x) \right\} | \omega_R \rangle |0\rangle$$

- Q, R are $D \times D$ matrices,
- $|\omega_L\rangle$ and $|\omega_R\rangle$ are boundary vectors $\in \mathbb{C}^D$,
- $[\psi(x), \psi^\dagger(y)] = \delta(x - y)$

Continuous Matrix Product States

Definition

$$|Q, R, \omega\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x) \right\} | \omega_R \rangle |0\rangle$$

- Q, R are $D \times D$ matrices,
- $|\omega_L\rangle$ and $|\omega_R\rangle$ are boundary vectors $\in \mathbb{C}^D$,
- $[\psi(x), \psi^\dagger(y)] = \delta(x - y)$

Idea:

$$\begin{aligned} A(x) &\simeq A_0 \mathbb{1} + A_1 \psi^\dagger(x) \\ &\simeq \mathbb{1} \otimes \mathbb{1} + \varepsilon Q \otimes \mathbb{1} + \varepsilon R \otimes \psi^\dagger(x) \\ &\simeq \exp [\varepsilon (Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x))] \end{aligned}$$

Continuous Matrix Product States

Definition

$$|Q, R, \omega\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x) \right\} | \omega_R \rangle |0\rangle$$

- Q, R are $D \times D$ matrices,
- $|\omega_L\rangle$ and $|\omega_R\rangle$ are boundary vectors $\in \mathbb{C}^D$,
- $[\psi(x), \psi^\dagger(y)] = \delta(x - y)$

Idea:

$$\begin{aligned} A(x) &\simeq A_0 \mathbb{1} + A_1 \psi^\dagger(x) \\ &\simeq \mathbb{1} \otimes \mathbb{1} + \varepsilon Q \otimes \mathbb{1} + \varepsilon R \otimes \psi^\dagger(x) \\ &\simeq \exp [\varepsilon (Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x))] \end{aligned}$$

Computations

Thermodynamic limit

$$\langle \mathcal{O}(x) \mathcal{O}(y) \rangle = \text{tr} (\Phi_{\mathcal{O}} \cdot e^{-(y-x)T} \Phi_{\mathcal{O}} \cdot \rho_{\text{stat}})$$

$$\text{with } T = Q \otimes \mathbb{1} + \mathbb{1} \otimes \bar{Q} + R \otimes \bar{R}$$

Extending continuous matrix product states

$$|Q, R, \omega\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x) \right\} | \omega_R \rangle |0\rangle$$

Besides that, it is possible to extend this formalism to 2-dimensional continuum systems using the formalism of PEPS [8]. In that case, the auxiliary bond dimension has to be interpreted as representing an auxiliary field, and the judicious choice of tensors Q and R allows to develop a consistent formalism for describing 2+1 dimensional field theories [10].

Verstraete & Cirac, PRL 2010

Extending continuous matrix product states

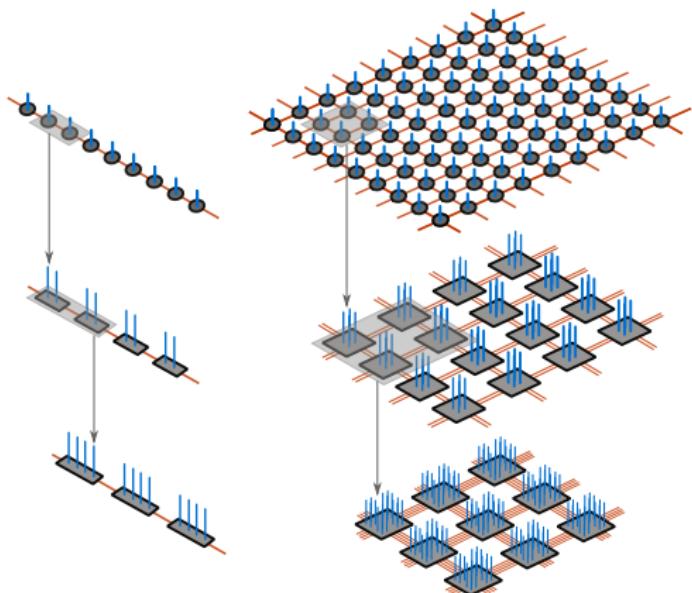
$$|Q, R, \omega\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x) \right\} | \omega_R \rangle |0\rangle$$

Besides that, it is possible to extend this formalism to 2-dimensional continuum systems using the formalism of PEPS [8]. In that case, the auxiliary bond dimension has to be interpreted as representing an auxiliary field, and the judicious choice of tensors Q and R allows to develop a consistent formalism for describing 2+1 dimensional field theories [10].

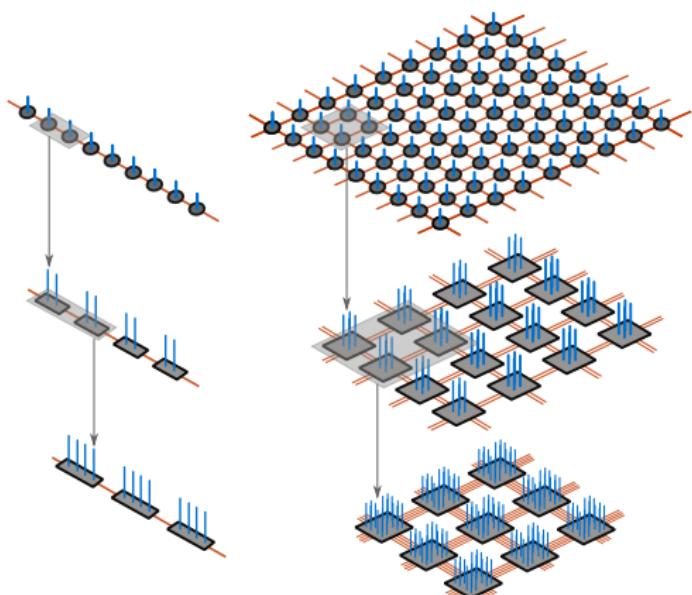
Verstraete & Cirac, PRL 2010

- [9] E. H. Lieb and W. Liniger, *Phys. Rev.* **130**, 1605 (1963)
- [10] F. Verstraete and J. I. Cirac, in preparation.
- [11] G.E. Astraharchik and S. Giorgini, *Phys. Rev. A* **68**, 031602 (2003)

Continuous Tensor Networks: blocking



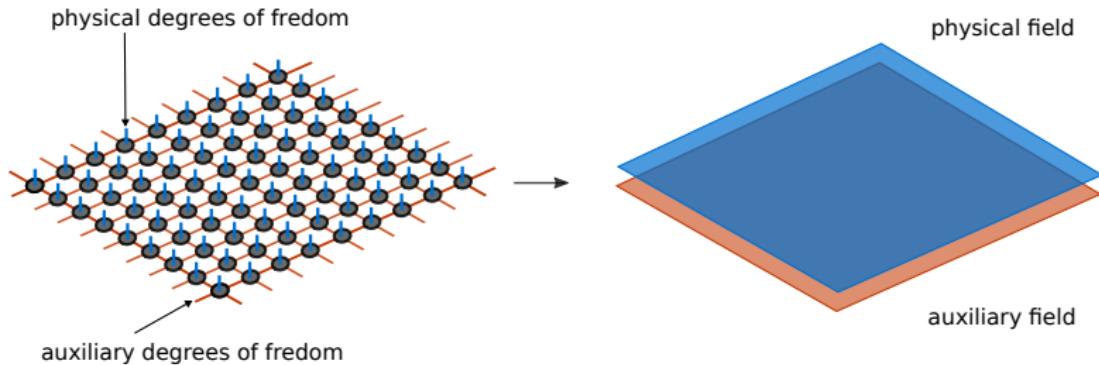
Continuous Tensor Networks: blocking



Upon blocking:

- ♣ The **physical** Hilbert space dimension d increases (idem cMPS \implies physical field)
- ♣ The **bond** dimension D increases too

Foresighting



$$|V, \alpha\rangle = \int \mathcal{D}\phi \exp \left\{ - \int_{\Omega} d^d x \frac{1}{2} [\nabla \phi(x)]^2 + V[\phi(x)] - \alpha[\phi(x)] \psi^\dagger(x) \right\} |0\rangle$$

Choice of trivial tensor

For MPS, not much choice:

$$\begin{aligned} \text{---} \bullet \text{---} &= \mathbb{1} \otimes \mathbb{1} |0\rangle + \varepsilon Q \otimes \mathbb{1} |0\rangle + \varepsilon R \otimes \psi^\dagger |0\rangle \\ &= \text{---} + \varepsilon \dots \end{aligned}$$

Choice of trivial tensor

For **MPS**, not much choice:

$$\begin{aligned} \text{---} \bullet \text{---} &= \mathbb{1} \otimes \mathbb{1} |0\rangle + \varepsilon Q \otimes \mathbb{1} |0\rangle + \varepsilon R \otimes \psi^\dagger |0\rangle \\ &= \text{---} + \varepsilon \dots \end{aligned}$$

For **TNS** in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \text{---} \times \text{---}$
 \implies trivial geometry

Choice of trivial tensor

For **MPS**, not much choice:

$$\begin{aligned} \text{---} \bullet \text{---} &= \mathbb{1} \otimes \mathbb{1} |0\rangle + \varepsilon Q \otimes \mathbb{1} |0\rangle + \varepsilon R \otimes \psi^\dagger |0\rangle \\ &= \text{---} + \varepsilon \dots \end{aligned}$$

For **TNS** in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \cancel{\text{---}}$
 \implies trivial geometry
2. Take two identities $T^{(0)} = \cancel{\text{---}} \times \cancel{\text{---}}$
 \implies breakdown of Euclidean invariance

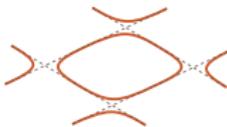
Choice of trivial tensor

For MPS, not much choice:

$$\begin{aligned} \text{---} \bullet \text{---} &= \mathbb{1} \otimes \mathbb{1} |0\rangle + \varepsilon Q \otimes \mathbb{1} |0\rangle + \varepsilon R \otimes \psi^\dagger |0\rangle \\ &= \text{---} + \varepsilon \dots \end{aligned}$$

For TNS in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \cancel{\text{---}}$
 \implies trivial geometry
2. Take two identities $T^{(0)} = \text{---} \times \text{---}$
 \implies breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions

$$T^{(0)} = \text{---} \times \text{---} + \text{---} \times \text{---}$$


Choice of trivial tensor

For MPS, not much choice:

$$\begin{aligned} \text{---} \bullet \text{---} &= \mathbb{1} \otimes \mathbb{1} |0\rangle + \varepsilon Q \otimes \mathbb{1} |0\rangle + \varepsilon R \otimes \psi^\dagger |0\rangle \\ &= \text{---} + \varepsilon \dots \end{aligned}$$

For TNS in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \cancel{\text{---}}$
 \implies trivial geometry
2. Take two identities $T^{(0)} = \text{---} \times \text{---}$
 \implies breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions

$$T^{(0)} = \text{---} \times \text{---} + \text{---} \times \text{---}$$

We will consider a softer modification of the first version:

$$T^{(0)} \sim \text{---} \times \text{---}$$

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagdown \quad \diagup \\ \times \times \times \times \\ \diagup \quad \diagdown \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ - [\phi(1) - \phi(2)]^2 - [\phi(2) - \phi(3)]^2 - [\phi(3) - \phi(4)]^2 - [\phi(4) - \phi(1)]^2 \right\}$$

The indices ϕ are in \mathbb{R} (and **not** $1, \dots, D$)

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagdown \quad \diagup \\ \times \times \times \times \\ \diagup \quad \diagdown \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ - [\phi(1) - \phi(2)]^2 - [\phi(2) - \phi(3)]^2 - [\phi(3) - \phi(4)]^2 - [\phi(4) - \phi(1)]^2 \right\}$$

The indices ϕ are in \mathbb{R} (and **not** $1, \dots, D$)

2 – And add a “correction”:

$$\exp \left\{ -\varepsilon^2 V[\phi(1), \dots, \phi(4)] + \varepsilon^2 \alpha[\phi(1), \dots, \phi(4)] \psi^\dagger(x) \right\}$$

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagdown \quad \diagup \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ - [\phi(1) - \phi(2)]^2 - [\phi(2) - \phi(3)]^2 - [\phi(3) - \phi(4)]^2 - [\phi(4) - \phi(1)]^2 \right\}$$

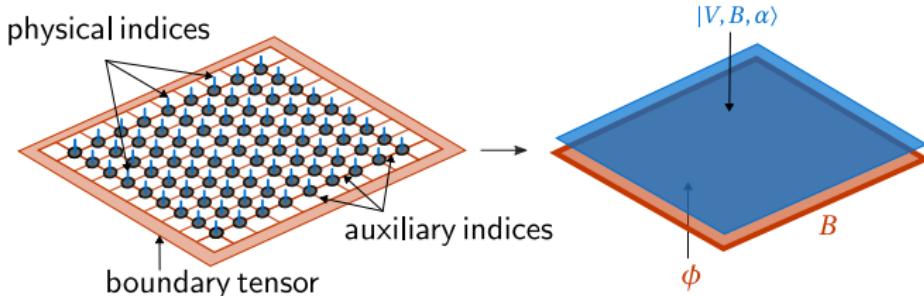
The indices ϕ are in \mathbb{R} (and **not** $1, \dots, D$)

2 – And add a “correction”:

$$\exp \left\{ -\varepsilon^2 V[\phi(1), \dots, \phi(4)] + \varepsilon^2 \alpha[\phi(1), \dots, \phi(4)] \psi^\dagger(x) \right\}$$

3 – Realize tensor contraction = functional integral and trivial tensor gives free field measure.

Functional integral definition

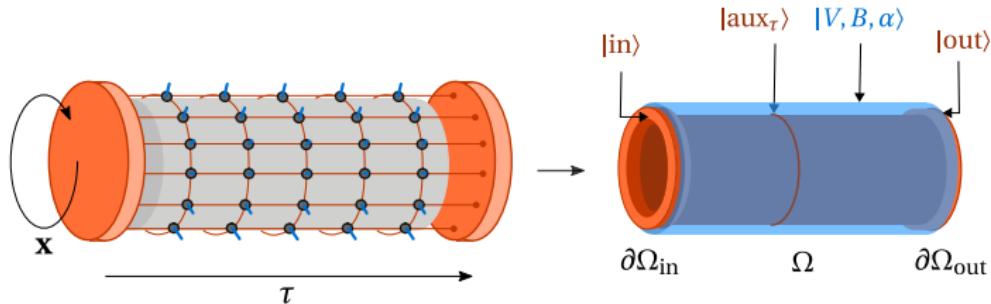


Continuous tensor network state (cTNS)

A cTNS is a state parameterized by 2 functions V , α and a functional B :

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi \, B(\phi|_{\partial\Omega}) \exp \left\{ - \int_{\Omega} d^d x \frac{1}{2} \sum_{k=1}^D [\nabla \phi_k(x)]^2 + V[\phi(x)] - \alpha[\phi(x)] \psi^\dagger(x) \right\} |0\rangle$$

Operator definition



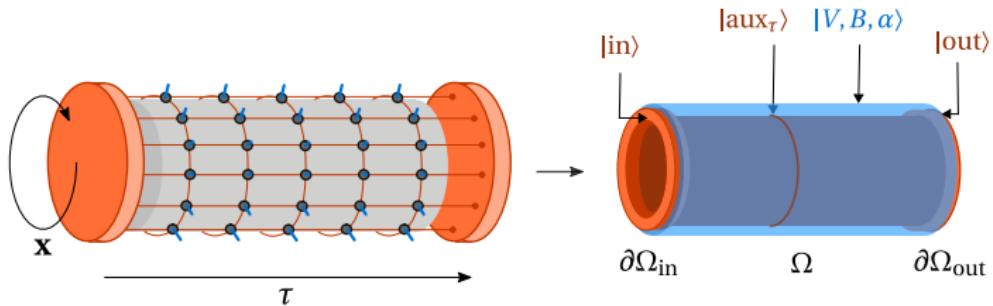
Continuous tensor network state (cTNS)

$$|V, B, \alpha\rangle = \text{tr} \left[\hat{B} \mathcal{T} \exp \left(- \int_0^T d\tau \int_S dx \frac{\hat{\pi}_k(x) \hat{\pi}_k(x)}{2} + \frac{\nabla \hat{\phi}_k(x) \nabla \hat{\phi}_k(x)}{2} + V[\hat{\phi}(x)] - \alpha[\hat{\phi}(x)] \psi^\dagger(\tau, x) \right) \right] |0\rangle$$

where:

- $\hat{\phi}_k(x)$ and $\hat{\pi}_k(x)$ are k independent canonically conjugated pairs of (auxiliary) field operators: $[\hat{\phi}_k(x), \hat{\phi}_l(y)] = 0$, $[\hat{\pi}_k(x), \hat{\pi}_l(y)] = 0$, and $[\hat{\phi}_k(x), \hat{\pi}_l(y)] = i\delta_{k,l} \delta(x - y)$ acting on a space of $d - 1$ dimensions.

Operator definition



Continuous tensor network state (cTNS)

$$|V, B, \alpha\rangle = \text{tr} \left[\hat{B} \mathcal{T} \exp \left(- \int_0^T d\tau \int_S dx \frac{\hat{\pi}_k(x)\hat{\pi}_k(x)}{2} + \frac{\nabla \hat{\phi}_k(x) \nabla \hat{\phi}_k(x)}{2} + V[\hat{\phi}(x)] - \alpha[\hat{\phi}(x)] \psi^\dagger(\tau, x) \right) \right] |0\rangle$$

where:

- Morally: $Q \sim \frac{\hat{\pi}_k(x)\hat{\pi}_k(x)}{2} + \frac{\nabla \hat{\phi}_k(x) \nabla \hat{\phi}_k(x)}{2} + V[\hat{\phi}(x)]$ and $R \sim \alpha[\hat{\phi}(x)]$

Wave-function definition

A generic state $|\Psi\rangle$ in Fock space can be written:

$$|\Psi\rangle = \sum_{n=0}^{+\infty} \int_{\Omega^n} \frac{\varphi_n(x_1, \dots, x_n)}{n!} \psi^\dagger(x_1) \dots \psi^\dagger(x_n) |0\rangle$$

where φ_n is a symmetric n -particle wave-function

Wave-function definition

A generic state $|\Psi\rangle$ in Fock space can be written:

$$|\Psi\rangle = \sum_{n=0}^{+\infty} \int_{\Omega^n} \frac{\varphi_n(x_1, \dots, x_n)}{n!} \psi^\dagger(x_1) \dots \psi^\dagger(x_n) |0\rangle$$

where φ_n is a symmetric n -particle wave-function

Physical wave-function correlation function of the auxiliary field:

$$\varphi(x_1, x_2, \dots, x_n) = \langle \alpha[\phi(x_1)] \alpha[\phi(x_2)] \dots \alpha[\phi(x_n)] \rangle$$

Operator representation

Functional integral representation

$$\blacklozenge \langle \clubsuit \rangle = \int \mathcal{D}\phi e^{-S(\phi)} \clubsuit$$

♥ Extension of Moore-Read

$$\blacklozenge \langle \clubsuit \rangle = \text{tr} [\hat{B} \clubsuit]$$

► $\alpha[\phi(x)] = \alpha[\hat{\phi}(x)]$ in (imaginary time) interaction representation

Expressivity and stability

How big are cTNS?

Stability

The sum of two cTNS of bond field dimension D_1 and D_2 is a cTNS with bond field dimension $D \leq D_1 + D_2 + 1$:

$$|V_1, \alpha_1\rangle + |V_2, \alpha_2\rangle = |W, \beta\rangle$$

Expressiveness

All states in the Fock space can be approximated by cTNS:

- ▶ A field coherent state is a cTNS with $D = 0$
- ▶ Stability allows to get all sums of field coherent states

Note: expressiveness can also be obtained with $D = 1$. Flexibility in D makes the expressivity higher for V and α fixed degree.

Computations

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi \, B(\phi|_{\partial\Omega}) \exp \left\{ - \int_{\Omega} d^d x \, \frac{1}{2} \sum_{k=1}^D [\nabla \phi_k(x)]^2 \right. \\ \left. + V[\phi(x)] - \alpha[\phi(x)] \psi^\dagger(x) \right\} |0\rangle$$

Gaussian cTNS

If:

$$V(\phi) = V^{(0)} + V_k^{(1)} \phi_k + V_{k\ell}^{(2)} \phi_k \phi_\ell \\ \alpha(\phi) = \alpha^{(0)} + \alpha_k^{(1)} \phi_k$$

then $|V, \alpha, B\rangle$ is a Gaussian state

Redundancies

Discrete redundancy

Different elementary tensors are **equivalent**, they give the same state:

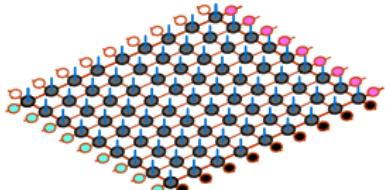
when

\sim

$=$ and

$=$

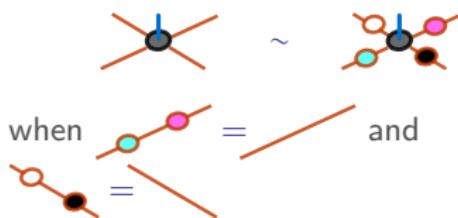
up to **boundary** terms:



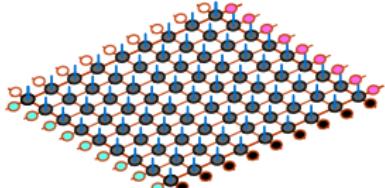
Redundancies

Discrete redundancy

Different elementary tensors are **equivalent**, they give the same state:



up to **boundary** terms:

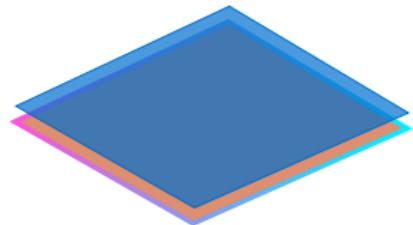


Continuum redundancy

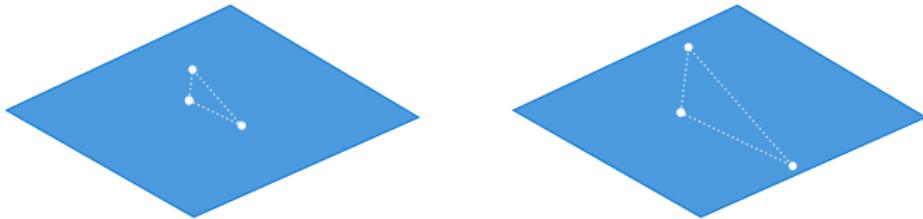
$$V(\phi) \rightarrow V(\phi) + \nabla \cdot \mathcal{F}[x, \phi(x)]$$

Just Stokes' theorem. If Ω has a boundary $\partial\Omega$:

$$\mathcal{D}[\phi] \exp \left\{ \int_{\partial\Omega} d^{d-1}x \mathcal{F}[x, \phi(x)] \cdot \mathbf{n}(x) \right\}$$



Renormalization / scaling

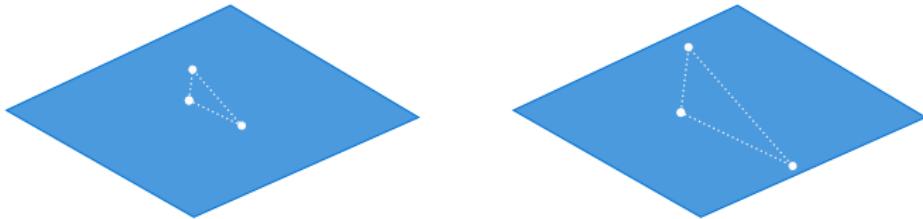


$$C(x_1, \dots, x_n) = \langle T(1)|\mathcal{O}(x_1) \dots \mathcal{O}(x_n)|T(1)\rangle,$$

the objective is to find a tensor $T(\lambda)$ of new parameters such that:

$$C(\lambda x_1, \dots, \lambda x_n) \propto \langle T(\lambda)|\mathcal{O}(x_1) \dots \mathcal{O}(x_n)|T(\lambda)\rangle.$$

Renormalization / scaling



$$C(x_1, \dots, x_n) = \langle T(1)|\mathcal{O}(x_1) \dots \mathcal{O}(x_n)|T(1)\rangle,$$

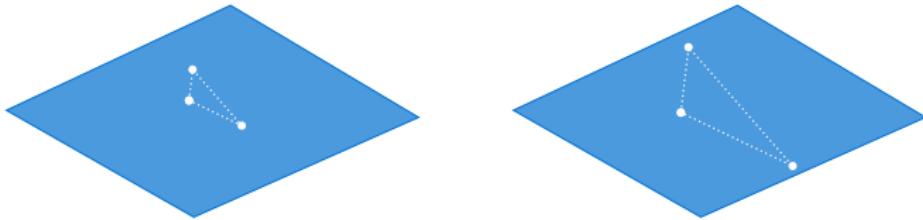
the objective is to find a tensor $T(\lambda)$ of new parameters such that:

$$C(\lambda x_1, \dots, \lambda x_n) \propto \langle T(\lambda)|\mathcal{O}(x_1) \dots \mathcal{O}(x_n)|T(\lambda)\rangle.$$

Doable exactly:

$$V \rightarrow \lambda^d V \circ \lambda^{\frac{2-d}{2}} \quad \text{and} \quad \alpha \rightarrow \lambda^{\frac{d}{2}} \alpha \circ \lambda^{\frac{2-d}{2}}$$

Renormalization / scaling



$$C(x_1, \dots, x_n) = \langle T(1)|\mathcal{O}(x_1) \dots \mathcal{O}(x_n)|T(1)\rangle,$$

the objective is to find a tensor $T(\lambda)$ of new parameters such that:

$$C(\lambda x_1, \dots, \lambda x_n) \propto \langle T(\lambda)|\mathcal{O}(x_1) \dots \mathcal{O}(x_n)|T(\lambda)\rangle.$$

Doable exactly:

$$V \rightarrow \lambda^d V \circ \lambda^{\frac{2-d}{2}} \quad \text{and} \quad \alpha \rightarrow \lambda^{\frac{d}{2}} \alpha \circ \lambda^{\frac{2-d}{2}}$$

- $d = 2$, All powers of the field in V and α yield relevant couplings
- $d = 3$, The powers $p = 1, 2, 3, 4, 5$ of the field in V yield relevant $\Delta > 0$ couplings. $p = 6$ is marginal in V . For α , $p = 1, 2$ are relevant and $p = 3$ is marginal. All other p are irrelevant.

Getting back cMPS

One can get back cMPS with finite bond dimension by:

1. **Compactification** Take $d - 1$ dimensions out of d to be very small

$$|V, B, \alpha\rangle \simeq \text{tr} \left[\hat{B} \mathcal{T} \exp \left(- \int_0^T d\tau \sum_{k=1}^D \frac{\hat{P}_k^2}{2} + V[\hat{X}] - \alpha[\hat{X}] \psi^\dagger(\tau) \right) \right] |0\rangle$$

⇒ Hilbert space of a quantum particle in D space dimensions.

Getting back cMPS

One can get back cMPS with finite bond dimension by:

1. **Compactification** Take $d - 1$ dimensions out of d to be very small

$$|V, B, \alpha\rangle \simeq \text{tr} \left[\hat{B} \mathcal{T} \exp \left(- \int_0^T d\tau \sum_{k=1}^D \frac{\hat{P}_k^2}{2} + V[\hat{X}] - \alpha[\hat{X}] \psi^\dagger(\tau) \right) \right] |0\rangle$$

⇒ Hilbert space of a quantum particle in D space dimensions.

2. **Quantization** Take V with D deep minima to force the auxiliary field to take only D possibilities

Generalization

For a general Riemannian manifold \mathcal{M} with boundary $\partial\mathcal{M}$, define:

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi B(\phi|_{\partial\mathcal{M}}) \exp \left\{ - \int_{\mathcal{M}} d^d x \sqrt{g} \left(\frac{g^{\mu\nu} \partial_\mu \phi_k \partial_\nu \phi_k}{2} + V[\phi, \nabla \phi] - \alpha[\phi, \nabla \phi] \psi^\dagger \right) \right\} |0\rangle$$

i.e. add curvature and possible anisotropies in V and α

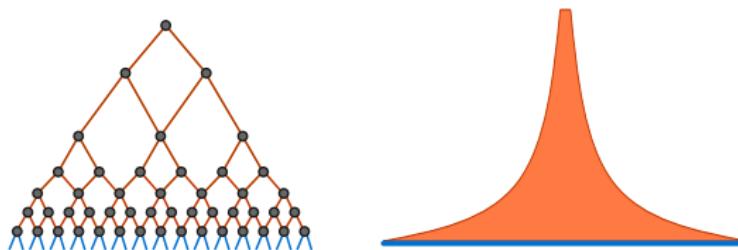
Generalization

For a general Riemannian manifold \mathcal{M} with boundary $\partial\mathcal{M}$, define:

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi B(\phi|_{\partial\mathcal{M}}) \exp \left\{ - \int_{\mathcal{M}} d^d x \sqrt{g} \left(\frac{g^{\mu\nu} \partial_\mu \phi_k \partial_\nu \phi_k}{2} + V[\phi, \nabla \phi] - \alpha[\phi, \nabla \phi] \psi^\dagger \right) \right\} |0\rangle$$

i.e. add curvature and possible anisotropies in V and α

Example: $\alpha[x, \phi, \nabla \phi]$ localized on the boundary and hyperbolic metric g :



→ cMERA in $d - 1$ dimensions

Open questions

- ▶ **Is our cMERA really a cMERA**
Conformal invariance on the boundary?

Open questions

- ▶ **Is our cMERA really a cMERA**
Conformal invariance on the boundary?
- ▶ **Entanglement**
Area law for entanglement entropy in Gaussian case?

Open questions

- ▶ **Is our cMERA really a cMERA**
Conformal invariance on the boundary?
- ▶ **Entanglement**
Area law for entanglement entropy in Gaussian case?
- ▶ **Regularity**
In what situations are the things we compute well defined, when is a regulator needed?

Open questions

- ▶ **Is our cMERA really a cMERA**
Conformal invariance on the boundary?
- ▶ **Entanglement**
Area law for entanglement entropy in Gaussian case?
- ▶ **Regularity**
In what situations are the things we compute well defined, when is a regulator needed?
- ▶ **Other bosonic/fermionic mixes**
Physical and/or auxiliary fermions

Open questions

- ▶ **Is our cMERA really a cMERA**
Conformal invariance on the boundary?
- ▶ **Entanglement**
Area law for entanglement entropy in Gaussian case?
- ▶ **Regularity**
In what situations are the things we compute well defined, when is a regulator needed?
- ▶ **Other bosonic/fermionic mixes**
Physical and/or auxiliary fermions
- ▶ **Gauge invariant states**

Open questions

- ▶ **Is our cMERA really a cMERA**
Conformal invariance on the boundary?
- ▶ **Entanglement**
Area law for entanglement entropy in Gaussian case?
- ▶ **Regularity**
In what situations are the things we compute well defined, when is a regulator needed?
- ▶ **Other bosonic/fermionic mixes**
Physical and/or auxiliary fermions
- ▶ **Gauge invariant states**
- ▶ **Non-trivial Non-Gaussian states?**

Summary

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi \exp \left\{ - \int_{\Omega} d^d x \frac{1}{2} [\nabla \phi(x)]^2 + V[\phi(x)] - \alpha[\phi(x)] \psi^\dagger(x) \right\} |0\rangle$$

Continuous tensor network states are natural continuum limits of tensor network states and natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks
2. Can be made Euclidean invariant
3. Have functional and operator representations
4. Have a geometrical equivalent of the discrete gauge redundancies
5. Have an exact and explicit “renormalization” flow

