Continuous Tensor Network States for Quantum Fields

Antoine Tilloy, with J. Ignacio Cirac
Max Planck Institute of Quantum Optics, Garching, Germany

MPQ Theory division group workshop
Nordlingen, Germany T

October 19th, 2018 Al

jer von Humbold
Stiftung/Foundation

MPQ




Discrete vs continuum theories
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Lots of “Continuous tensor network” concepts

Tensor networks for quantum
states )

o LUV L)
MPS — cMPS
[Verstraete & Cirac 2010]

MERA — cMERA
[Haegeman et al. 2013]

PEPS — cPEPS

Tensor networks for partition
functions Z(f3)

» StatMech in d

» Euclidean quantum in d +1

[Franco-Rubio et al. 2018]



Objective

Define a continuous tensor network state for d > 2

physical degrees of fredom physical field

auxiliary field

auxiliary degrees of fredom



Objective

Why?

» Trickiness of d > 2

» Computations: the continuum
brings new methods
(perturbative expansions,
saddle point approximations,
differential equations)

» QFT: apply directly to QFT,
without discretization

physical field

» Symmetries: Implement
Euclidean / Translation
invariance exactly

auxiliary field

» Holography: (?) Construct
better toy models



Matrix product states

) = Z Ciyyigyin 11y "+ 5 i)

Myipy e yin=21
Matrix Product States (MPS)
ALR = Y (LA (1)AL(2) - A, (MIR) liz, -+ in)
1525+ yin

» A;, i ==+1 are D x D complex matrices
» Aisa2x D x D tensor [Alx,
» |[L) and |R) are D-vectors.

& nx 2 x D? parameters instead of 2"
{ D is the bond dimension and encodes the size of the variational class
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Graphical notation
|A) L) R> - Zil,fg,---,i,,<L‘Af1 (1)A12(2) e Aln(n)|R> ‘il, e )in>

Notation: [A/lx, = —l— and k—— /=3 by gives:

R = b LLLLLLLL UL L

Example: computation of correlations

(AIO(i)O(ip)|A) - { %

can be done by iteration 2 maps:

CD:I and (Do:z

Contraction for a d =1 system ~ open-system dynamics in d = 0.
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Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS
_LLugu IR

» the bond dimension D stays fixed
» the local physical dimension explodes C?°®---® C? — .Z (L?([x,x+dx])).
— Spins become fields — (~ central limit theorem)

» A cMPS is a quantum field state parameterized by finite dimensional
matrices



Continuous Matrix Product States
Type of ansatz

> Matrices A;, (x) = —W— where the index i, corresponds to
e/ 24T (x)[0) = T (x)/0)

in physical space.



Continuous Matrix Product States

Type of ansatz
» Matrices A;, —W— where the index i, corresponds to
e /?al (x)]0) = 1 (x)[0)

in physical space.

Informal cMPS definition

Fixed by:
Ap=1+¢€Q » Finite particle number
A]_ =¢R
000
(eR)? &»—«ﬁ—ﬂb—ﬂé « 1
Az ﬁ 00 0
&»—é—l—é—é—é « e
o (eR)" » Consistency

v Ly

so we go from oo to 2 matrices



Continuous Matrix Product States

Definition

L
1Q, Ry w) = <wL|ﬂ>exp{J dx Q1+ R@lwm} lw) [0)
0
» Q,R are D x D matrices,

» |w,) and |wg) are boundary vectors € CP,

> [(x), bi(y)] =8(x—y)



Continuous Matrix Product States

Definition

L
1Q, R, w) = (wy[Pexp {J dx Q&1+ R@lwm} lwr) [0)

0

» Q,R are D x D matrices,
» |w,) and |wg) are boundary vectors € CP,

> [(x), bi(y)] =8(x—y)

Idea:

A(x) ~ Al + A (x)
~1@1+eQe1+eRV(x)
~exple (Q® 1+ R®1I)T(x))]



Continuous Matrix Product States

Definition

L

1Q, Ry w) = <wL|ﬂ>exp{J dx Q1+ R@lwm} lw) [0)
0

» Q,R are D x D matrices,

» |w,) and |wg) are boundary vectors € CP,

> [(x), bi(y)] =8(x—y)

Computations
ldea: Thermodynamic limit
~ 1
Alx) =~ Aol + AT (x) (0(x)0(y)) =tr (Do - e YT Dy - par)
~1®1+eQ®1+eR® VP (x)

ith T=Q®1+1®Q+R®R
~exple (QO1+R®VI(x))] wit Qe1+12Q+R®

. 4 L 4




Extending continuous matrix product states

L
1Q, R, w) = (wy[Pexp {J Qe+ R®¢*(xJ} wr) [0)
0

Besides that, it is possible to extend this formalism to
2-dimensional continuum systems using the formalism of PEPS [8].
In that case, the auxiliary bond dimension has to be interpreted as
representing an auxiliary field, and the judicious choice of tensors Q
and R allows to develop a consistent formalism for describing

2 + 1 dimensional field theories [10].

Verstraete & Cirac, PRL 2010



Extending continuous matrix product states

L
1Q, R, w) = (w;|Pexp {J dx Q1+ R®1])T(x)} lwg) [0)
0

Besides that, it is possible to extend this formalism to
2-dimensional continuum systems using the formalism of PEPS [8].
In that case, the auxiliary bond dimension has to be interpreted as
representing an auxiliary field, and the judicious choice of tensors Q
and R allows to develop a consistent formalism for describing

2 + 1 dimensional field theories [10].

Verstraete & Cirac, PRL 2010

[9] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963)

[10] F. Verstraete and J. I. Cirac, in preparation.

[11] G.E. Astraharchik and S. Giorgini, Phys. Rev. A 68,
031602 (2003)
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Continuous Tensor Networks: blocking

Upon blocking:
& The physical Hilbert space

dimension d increases
(idem cMPS = physical
field)

& The bond dimension D
increases too

2



Foreshadowing

physical degrees of fredom

physical field

auxiliary field

auxiliary degrees of fredom

Ve = [ D0 oxp {- 4% 3 19000 + Vi) - alot) v/ )} 10

o)
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Choice of trivial tensor
For MPS, not much choice:

4

1210 +eQ®1[0) + eR®PT|0)
+ £

For TNS in d > 2, many options:

1. Take a & between all legs ~ GHZ state T(® = ><
= trivial geometry

2. Take two identities T(©) =
— breakdown of Euclidean invariance

3. Take the sum of pairs of identities in both directions
© — .. ~—
o> s

We will consider a softer modification of the first version:




Ansatz

1 — Take a “Trivial” tensor:
62) 4B
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The indices ¢ are in R (and not 1,---, D)



Ansatz

1 — Take a “Trivial” tensor:
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) /,_
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"\
b(4)
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~exp { C (1) — )2 — [6(2) — (3]
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The indices ¢ are in R (and not 1,---, D)
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exp {—*V [d(1),---, d(4)] + (1), -+, b4 YT (x)}



Ansatz

1 — Take a “Trivial” tensor:

6o 9B)

SYEIRICIRIE IR B = A
o(1) b(4)

~exp { C (1) — )2 — [6(2) — (3]
_1$(3) — G — [p(4) — ¢(1n2}

The indices ¢ are in R (and not 1,---, D)

2 — And add a “correction”:

exp {—*V [d(1),---, d(4)] + (1), -+, b4 YT (x)}

3 — Realize tensor contraction = functional integral and trivial tensor gives free
field measure.



Functional integral definition

IV, B, a)

physical indices

boundary tensor ¢

Continuous tensor network state (cTNS)

A cTNS is a state parameterized by 2 functions V, « and a functional B:

1

D
V,8,) = [0 Bloha)exp {-] % 5 3 (Vo
k=1

+ VIO0)] — sl (x)] uﬂ(x)} 0)



Operator definition

laux;) |V,B,a)
|in) |out)
m - h
x IO 0ut

Continous tensor network state (cTNS)

T AN /N
|V, B, &) = tr {@‘J'exp <—J dTJ dx ﬁk(x)zﬁk(x) + V(bk(x)2Vd>k(x)
o Js

VIH(x)] — xld(x)] ﬂ)*(T,X))] [0)

where:

> E]\)k( ) and A, (x) are k indep\endeni canonically conjugated pairs of
(auxmary) field operators: [by(x), di(y)] =0, [R(x)x, R)(y)] =0, and
[d)k( ), i (y)] = idk, &(x — y) acting on a space of d —1 dimensions.



Operator definition

laux;) |V, B, a)
lin) l |out)

0Qin Q 0Qout

Continous tensor network state (cTNS)

GACILACIN Vi (x) Vi (x)
2

VIS ()] — alb(x)] uﬂ(r,x))] 0)

.
|V,B,«) = tr[é T exp (—J dTJ dx
0 S

N

where:
> Morally: @ ~ 2ebdReb0 | Youb)Veelk) 4 v/[(x)] and R ~ al(x)]




Wave-function definition

A generic state [¥) in Fock space can be written:
+oo

N

n!
n=0 "

where @, is a symmetric n-particle wave-function

- T(x,) [0)



Wave-function definition

A generic state [V) in Fock space can be written:

= Y[ el i)y 0)

n!
n=0 "

where @, is a symmetric n-particle wave-function

Physical wave-function correlation function of the auxiliary field:

@ (x1, %0,y xp) = (& (x1)] ol (x2)] - - - X[ (x,)] )

Operator representation
> (&) =tr [@Jo}
> (&)=[Dd e Sb) g > aldp(x)] = (x[c/l\)(x)} in (imaginary time)

interaction representation

Functional integral representation

Q Extension of Moore-Read



Expressivity and stability

How big are cTNS?

Stability

The sum of two cTNS of bond field
dimension D; and D, is a cTNS
with bond field dimension

D < D; + D, +1:

Vi, 00) + [Va, aa) = |W, B)

Expressiveness
All states in the Fock space can be
approximated by cTNS:

» A field coherent state is a
cTNS with D=0

» Stability allows to get all sums
of field coherent states

Note: expressiveness can also be obtained with D = 1. Flexibility in D makes
the expressivity higher for V' and « fixed degree.



Computations

D

V\B,0) = [0 Blbha)exp {-] ' 3 3 (Vo

k=1

VIO — (%] uﬁ(x)} 0)

Gaussian cTNS
If:

V(9) = VO + ViV + V7 drcde
() = o + g

then |V, &, B) is a Gaussian state



Redundancies

Discrete redundancy

Different elementary tensors are
equivalent, they give the same state:




Redundancies

Discrete redundancy Continuum redundancy

Different elementary tensors are V() = V() + V- Flx, d(x)]

equivalent, they give the same state:
Just Stokes' theorem. If Q has a

boundary 0Q:

Dld) exp {3€ 49 1x F[x, ()] - n(x)}
00




Renormalization / scaling

C(le' o )Xn) - <T(1)|O(Xl) c O(Xn)lT(1)>a

the objective is to find a tensor T(A) of new parameters such that:

CO\XI) to ))\Xn) X <T(}\)|O(X1) te O(Xn)‘ TO‘))
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Renormalization / scaling

Clay %) = (T(LIO0a) - O(x,) I T(1)),
the objective is to find a tensor T(A) of new parameters such that:
CAxiy -+ Ax,) o< (TA)O(xa) -+ - O(x,)I T (A)).
Doable exactly:

V5 AVoAT and a = Afaor’T

— d =2, All powers of the field in V and « yield relevant couplings

— d =3, The powers p=1,2,3,4,5 of the field in V yield relevant A > 0
couplings. p =6 is marginal in V. For &, p =1,2 are relevant and p =3
is marginal. All other p are irrelevant.



Getting back cMPS

One can get back cMPS with finite bond dimension by:
1. Compactification Take d — 1 dimensions out of d to be very small

D &2

|V,B,oc):tr{f‘3‘3’exp(j Y P vigg [&]wf(ﬂ)]|o>

k=1

= Hilbert space of a quantum particle in D space dimensions.



Getting back cMPS

One can get back cMPS with finite bond dimension by:

1. Compactification Take d — 1 dimensions out of d to be very small

D &2

|V,B,oc):tr{f‘3‘3’exp(j Y P vigg [&]wf(ﬂ)]|o>

k=1
= Hilbert space of a quantum particle in D space dimensions.

2. Quantization Take V with D deep minima to force the auxiliary field to
take only D possibilities



Generalization
For a general Riemanian manifold M with boundary 0M, define:
1V,B,0) = [D0 Bldlonc)exp { - [ty (£ e
+ VI, Vol - ald, VoI ¥ ) }|0>

i.e. add curvature and possible anisotropies in V and «



Generalization

For a general Riemanian manifold M with boundary 0M, define:
Y0, bk0y
1V,B,0) = [D0 Bldlonc)exp { - [ty (£ e
M
+ VI, Vol - ald, VoI ¥ ) }|0>

i.e. add curvature and possible anisotropies in V and «

Example: «[x, ¢, V] localized on the boundary
and hyberbolic metrix g:

— cMERA in d — 1 dimensions
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Open questions

» Is our cMERA really a cMERA
Conformal invariance on the boundary?

» Entanglement
Area law for entanglement entropy in Gaussian case?

» Regularity
In what situations are the things we compute well defined, when is a
regulator needed?

» Other bosonic/fermionic mixes
Physical and/or auxiliary fermions

» Gauge invariant states

» Non-trivial Non-Gaussian states?



Summary

|V,B, &) = JDd) exp {—J dx

) L (P07 + Vibe) - a[q)(x)mﬁ(x)} 0)

Continuous tensor network states are natural continuum limits of tensor
network states and natural higher d extensions of continuous matrix product
states.

1.

LAl S

Obtained from discrete tensor networks

Can be made Euclidean invariant

Have functional and operator representations

Have a geometrical equivalent of the discrete gauge redundancies

Have an exact and explicit “renormalization” flow




