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Concours chargé de recherche CNRS
Institut Henri Poincaré, Paris, France
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3 questions in quantum mechanics

Continuous measurement
How to gently measure and
control quantum systems?

Gravity and quantum
Could gravity, in principle,
not be quantum?

Many-body & QFT
How to efficiently parameterize
many-body and QFT states
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Tensor network states: a tool

Applications

I Quantum information theory
I Statistical Mechanics
I Quantum gravity
I Many-body quantum

Negative theology

I Not covariant/geometric
objects gµν or Rσµνκ

I Not tensor models
[Rivasseau, Gurau, ...]
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Many-body problem

Problem

Finding low energy states of

Ĥ =

N∑
k=1

ĥk

is hard because dim H ∝ DN

Possible solutions

I Perturbation theory
I Monte Carlo
I Bootstrap IR fixed point
I Variational optimization (e.g. Mean

Field, TCSA, tensor networks)



Variational optimization

Generic (spin D/2) state ∈H :

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN〉

Exact variational optimization
To find the ground state:

|0〉 = min
|ψ〉∈H

〈ψ|H |ψ〉
〈ψ|ψ〉

I dim H = DN



Variational optimization

Generic (spin D/2) state ∈H :

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN〉

Approx. variational optimization
To find the ground state:

|0〉 = min
|ψ〉∈M

〈ψ|H |ψ〉
〈ψ|ψ〉

I dim M ∝ Poly(N) or fixed



Interesting states are weakly entangled

Low energy state
|ψ〉 = |0〉 or |1〉 ...

Reduced density matrix
ρ = trDc

[
|ψ〉〈ψ|

]
Entanglement entropy
S = −tr

[
ρ log ρ

]
Area law

S ∝ |∂D|
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Typical states are strongly entangled

Random state
|ψ〉 = UHaar|trivial〉

Reduced density matrix
ρ = trDc

[
|ψ〉〈ψ|

]
Entanglement entropy
S = −tr

[
ρ log ρ

]
Volume law

S ∝ |D|



Constructing weakly entangled states

1. Put auxiliary
maximally entangled
states between sites

=

χ∑
j=1

|j〉|j〉

2. Map to initial Hilbert
space on each site

= A : C4χ → CD
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Tensor network states: definition

Why “tensor” network?

A : C4χ → Cd −→ Ai
j1,j2,j3,j4

|A〉 =

with tensor contractions on links

Optimization
Find best A for fixed χ (D × χ4 coeff.)

E0 ' min
A

〈A|Ĥ |A〉
〈A|A〉

for example go down ∂E
∂Ai

j1,j2,j3,j4
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Some facts

d = 1 spatial dimension

Theorems (colloquially)

1. For gapped H, tensor network states |A〉
approximate well |0〉 with χ fixed

2. All |A〉 are ground states of gapped H

d > 2 spatial dimension

Folklore

1. For gapped H, tensor network states |A〉
approximate well |0〉 with χ fixed

2. Most |A〉 are ground states of gapped H
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Limitations

Hard to contract in d > 2
In d > 2 one can have:

I |A〉 known
I 〈A|Ôi Ôj |A〉 hard to compute exactly

Expressive but opaque
Generally hard to interpret

I Tensor carries IR-irrelevant information
I Hard to constrain long distance behavior

=⇒ Go to the continuum and QFT: Major objective and challenge

discrete tensor network continuum description ??
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Continuous Matrix Product states

[Verstraete & Cirac 2010]: continuum limit of Matrix Product States (d = 1 tensor networks)

UV

IR

Works for Lieb-Liniger model (boson with contact interactions), φ4, etc.
Best method on the market for 1 + 1 QFT

But no version for d + 1 QFT, even “no-go” theorems



Continuous Tensor Networks: blocking

Upon blocking:
♦ The physical Hilbert space

dimension D increases
♦ The bond (auxiliary space)

dimension χ increases too



Result

auxiliary field

physical field

auxiliary degrees of fredom

physical degrees of fredom

AT, J. I. Cirac, Phys. Rev. X 2019 (in print)

Continuous tensor network state (heuristically)

State |α〉 of d + 1 QFT from an auxiliary d dimensional theory of random fields φ:

|α〉 =
∫
Dφ exp

{
−

∫
dd x L[φ(x)] − α[φ(x)] ψ̂†(x)

creation

}
|Ω〉

1. Genuine continuum limit of discrete tensor networks
2. The toolbox is translated to the continuum
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Future

Reopens the field after 8 years of only d = 1
So far, success expected from success in the discrete and continuous d = 1

New non-perturbative method, how will it fare?

Continuous tensor network states (cTNS) for dimensional reduction

Contracting a cTNS in 2d = Solving χ field theories in 1d = Optimizing χ cTNS in 1d

One can trade a dimension for a variational optimization
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Summary: 3 fields, 3 main results

Quantum measurement Gravity Tensor networks for QFT

Mathematical understanding
of stochastic dynamics to
help control quantum
systems in the lab

Understand if
gravity could
be not
quantized

Extend a powerful variational method from the
lattice to the continuum

Main results:
I Quantum jumps
I Spikes

M. Results:

I Toy
models

Main results:
I An ansatz of continuous tensor network state
I Promising non-perturbative methods for QFT



Observation: Continuous quantum measurement and control
Experimentally:
Ubiquitous

Theoretically:
Non-linear stochastic modifications of the Schrödinger equation

d|ψt〉 =
[
−iH dt +√γ(A − 〈A〉)dWt −

γ

2 (A − 〈A〉)2 dt
]
|ψt〉

Hilbert space



Observation: Continuous quantum measurement and control

Prototypical study
Qubit in a magnetic field ⊥ measurement basis

I H ∝ X
I Measurement ∝ Z
I pt = |〈ψt | ↑〉z |2

No measurement
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Results

Strong continuous measurement

1. Jump theorem

2. Spike theorem

♦ M Bauer, D Bernard, AT JPA 2015

♦ AT, M Bauer, D Bernard PRA 2015

♦ M Bauer, D Bernard, AT JPA 2016

Others

1. Control
♦ A T, M Bauer, D Bernard EPL 2014

2. Optimal measurement
♦ AT, PRA 2016

3. Exact results
♦ AT, PRA-Rapid 2018

4. Non-Markovian exploration
♦ AT, Quantum 2017

5. Many-body exploration
♦ X Cao, AT, A De Luca, 2018
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