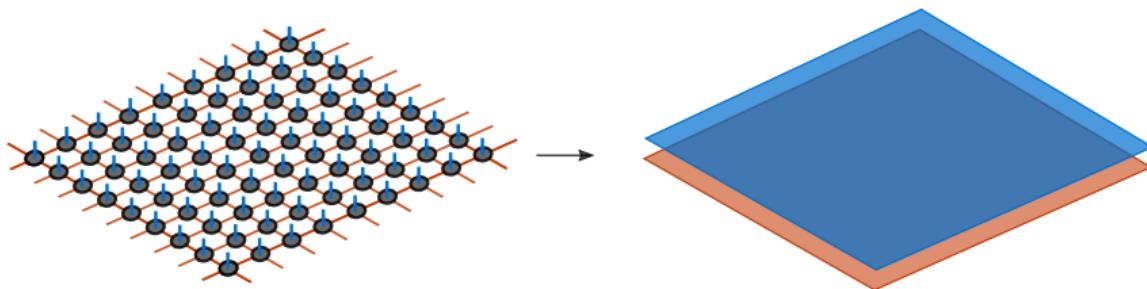


Towards tensor network methods for QFT

and other quantum inquiries

Antoine Tilloy

Max Planck Institute of Quantum Optics, Garching, Germany



Concours chargé de recherche CNRS
Institut Henri Poincaré, Paris, France
March 28th, 2019

Alexander von Humboldt
Stiftung / Foundation

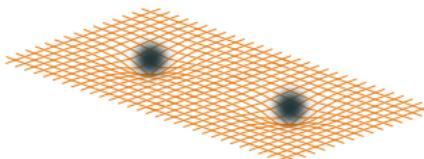
3 questions in quantum mechanics

Continuous measurement

How to gently measure and control quantum systems?

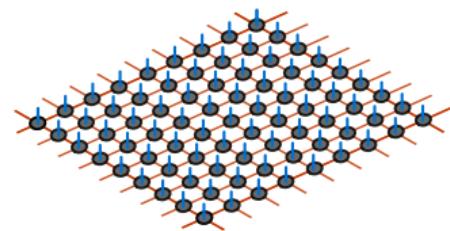
Gravity and quantum

Could gravity, in principle, not be quantum?



Many-body & QFT

How to efficiently parameterize many-body and QFT states



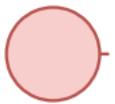
PhD

PhD

Postdoc

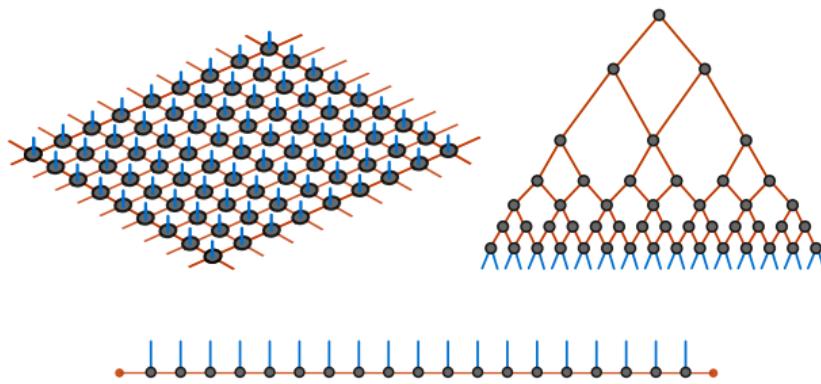
Postdoc

Project



Project

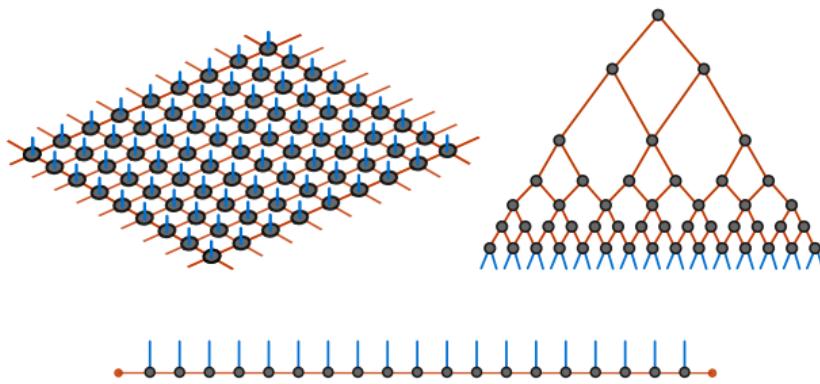
Tensor network states: a tool



Applications

- ▶ Quantum information theory
- ▶ Statistical Mechanics
- ▶ Quantum gravity
- ▶ Many-body quantum

Tensor network states: a tool



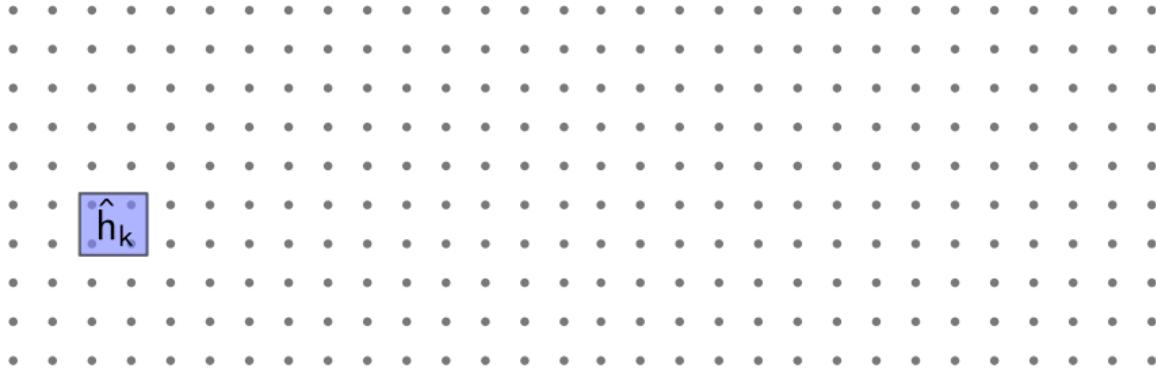
Applications

- ▶ Quantum information theory
- ▶ Statistical Mechanics
- ▶ Quantum gravity
- ▶ Many-body quantum

Negative theology

- ▶ **Not** covariant/geometric objects $g_{\mu\nu}$ or $R_{\mu\nu\kappa}^{\sigma}$
- ▶ **Not** tensor **models**
[Rivasseau, Gurau, ...]

Many-body problem



Problem

Finding low energy states of

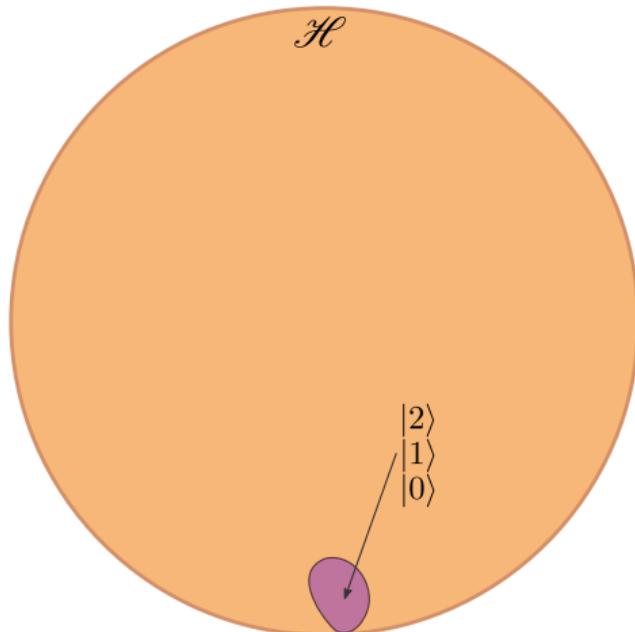
$$\hat{H} = \sum_{k=1}^N \hat{h}_k$$

is **hard** because $\dim \mathcal{H} \propto D^N$

Possible solutions

- ▶ Perturbation theory
- ▶ Monte Carlo
- ▶ Bootstrap IR fixed point
- ▶ **Variational optimization** (e.g. Mean Field, TCSA, tensor networks)

Variational optimization



Generic (spin $D/2$) state $\in \mathcal{H}$:

$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_N} |i_1, \dots, i_N\rangle$$

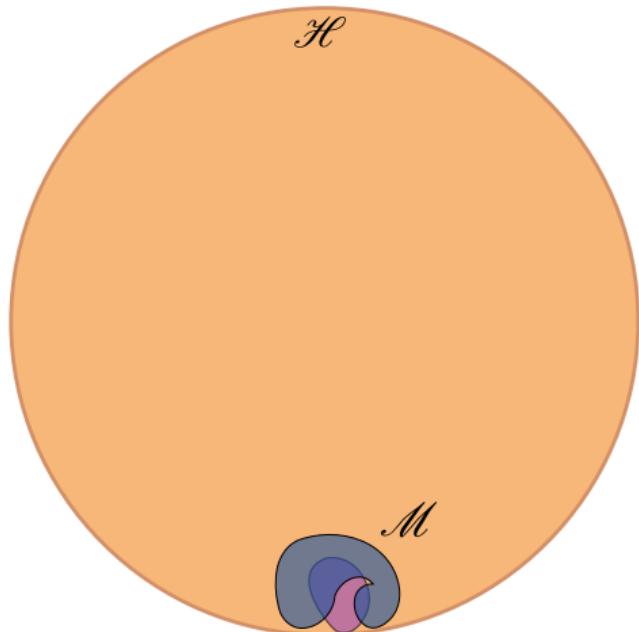
Exact variational optimization

To find the ground state:

$$|0\rangle = \min_{|\Psi\rangle \in \mathcal{H}} \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

► $\dim \mathcal{H} = D^N$

Variational optimization



Generic (spin $D/2$) state $\in \mathcal{H}$:

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} |i_1, \dots, i_N\rangle$$

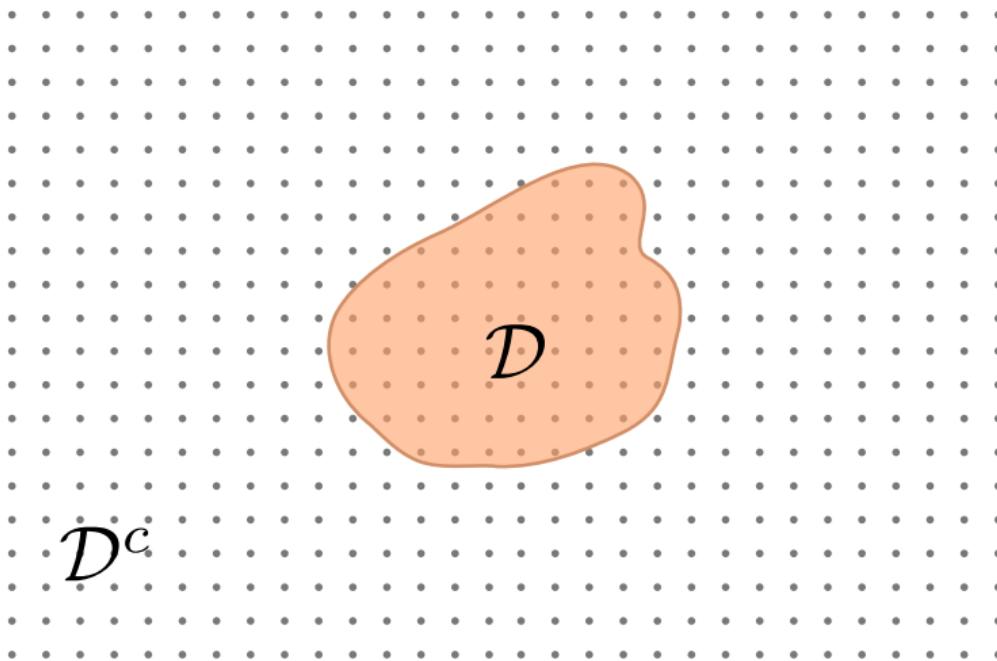
Approx. variational optimization

To find the ground state:

$$|0\rangle = \min_{|\psi\rangle \in \mathcal{M}} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

► $\dim \mathcal{M} \propto \text{Poly}(N)$ or fixed

Interesting states are weakly entangled



Low energy state

$$|\Psi\rangle = |0\rangle \text{ or } |1\rangle \dots$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\Psi\rangle\langle\Psi|]$$

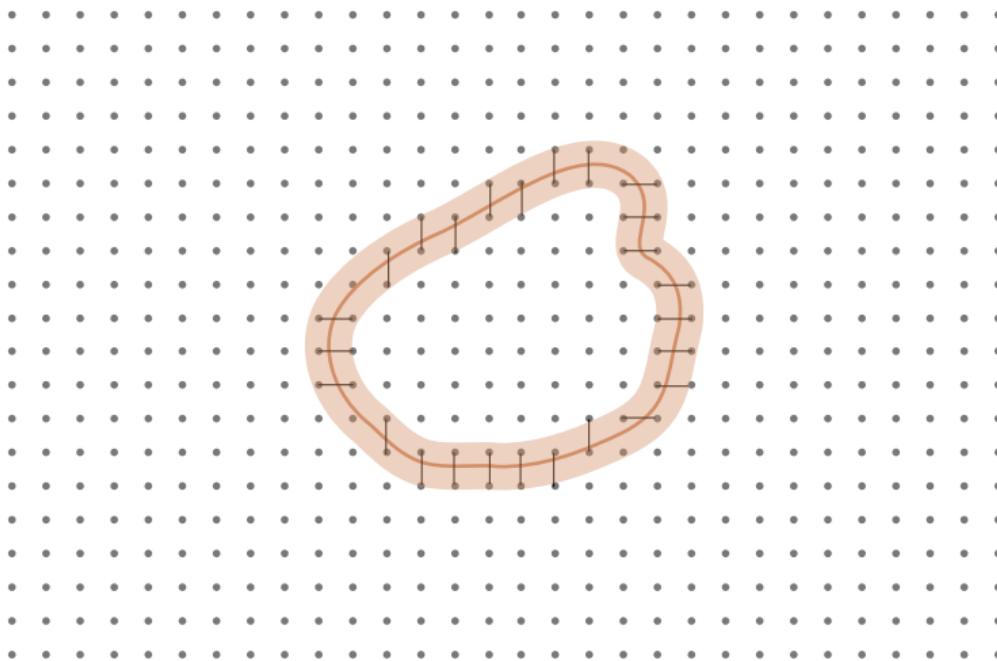
Entanglement entropy

$$S = -\text{tr}[\rho \log \rho]$$

Area law

$$S \propto |\partial \mathcal{D}|$$

Interesting states are weakly entangled



Low energy state

$$|\Psi\rangle = |0\rangle \text{ or } |1\rangle \dots$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\Psi\rangle\langle\Psi|]$$

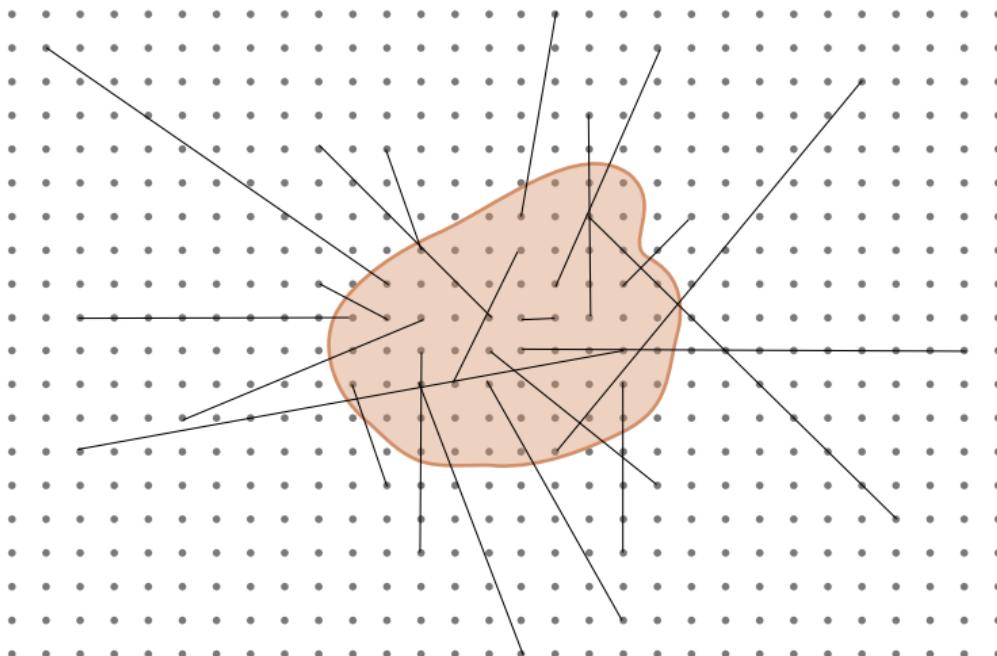
Entanglement entropy

$$S = -\text{tr}[\rho \log \rho]$$

Area law

$$S \propto |\partial \mathcal{D}|$$

Typical states are strongly entangled



Random state

$$|\Psi\rangle = U_{\text{Haar}}|\text{trivial}\rangle$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\Psi\rangle\langle\Psi|]$$

Entanglement entropy

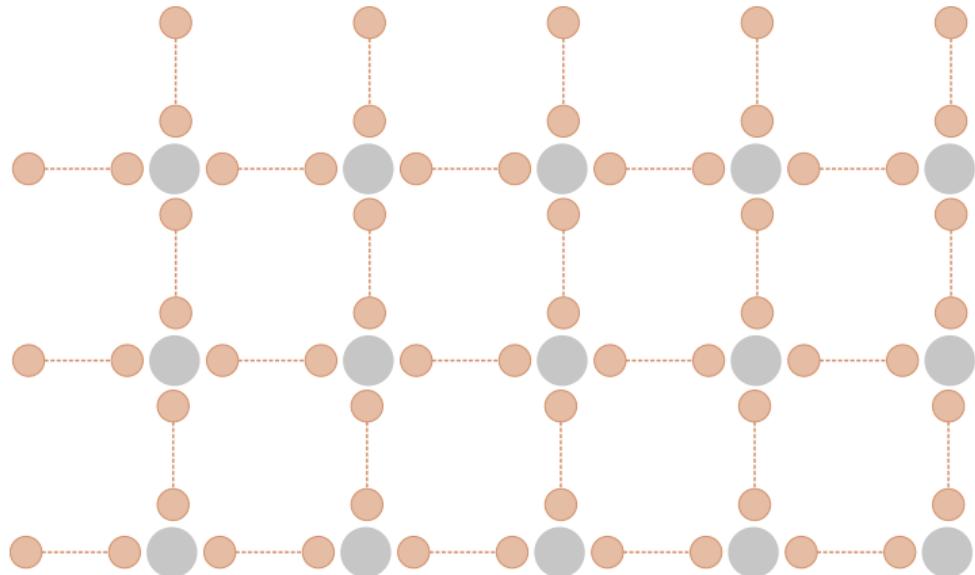
$$S = -\text{tr}[\rho \log \rho]$$

Volume law

$$S \propto |\mathcal{D}|$$

Constructing weakly entangled states

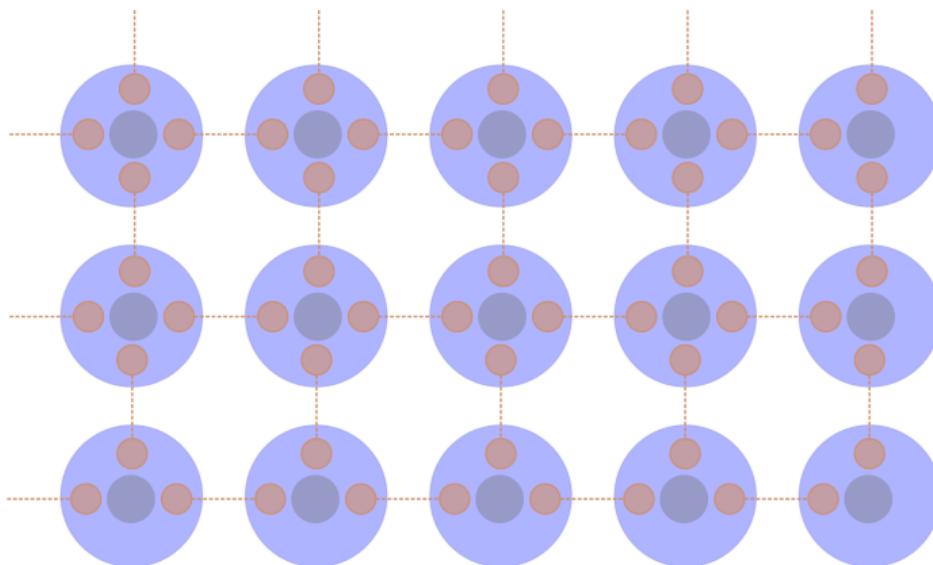
Constructing weakly entangled states



1. Put auxiliary maximally entangled states between sites

$$\text{---} = \sum_{j=1}^x |j\rangle\langle j|$$

Constructing weakly entangled states



1. Put auxiliary maximally entangled states between sites

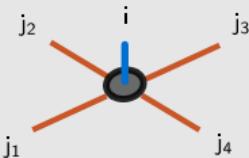
$$\bullet \cdots \bullet = \sum_{j=1}^x |j\rangle |j\rangle$$

2. Map to initial Hilbert space on each site

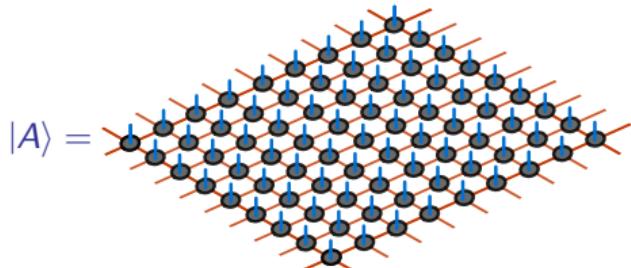
$$= A : \mathbb{C}^{4x} \rightarrow \mathbb{C}^D$$

Tensor network states: definition

Why “tensor” network?



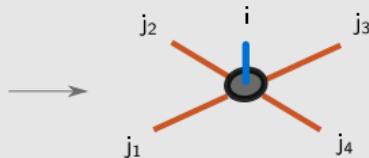
$$A : \mathbb{C}^{4x} \rightarrow \mathbb{C}^d \quad \rightarrow \quad A_{j_1, j_2, j_3, j_4}^i$$



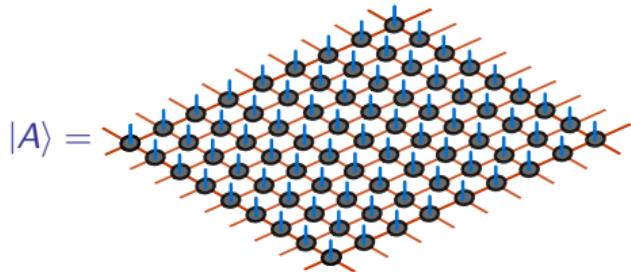
with tensor contractions on links

Tensor network states: definition

Why “tensor” network?



$$A : \mathbb{C}^{4x} \rightarrow \mathbb{C}^d \quad \rightarrow \quad A_{j_1, j_2, j_3, j_4}^i$$



with tensor contractions on links

Optimization

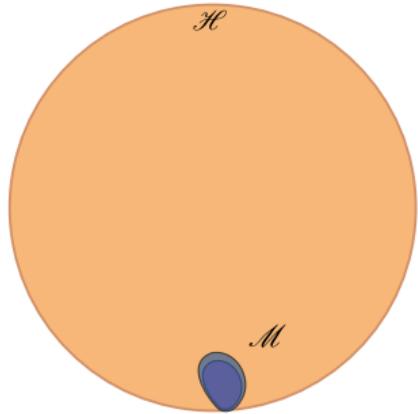
Find best A for fixed x ($D \times x^4$ coeff.)

$$E_0 \simeq \min_A \frac{\langle A | \hat{H} | A \rangle}{\langle A | A \rangle}$$

for example go down $\frac{\partial E}{\partial A_{j_1, j_2, j_3, j_4}^i}$

Some facts

$d = 1$ spatial dimension

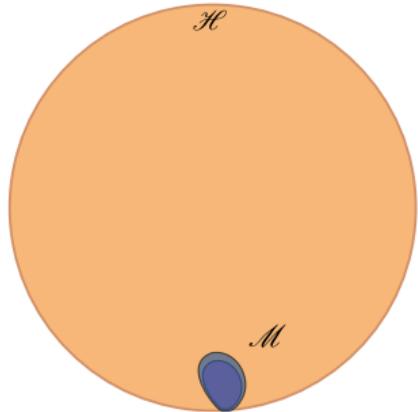


Theorems (colloquially)

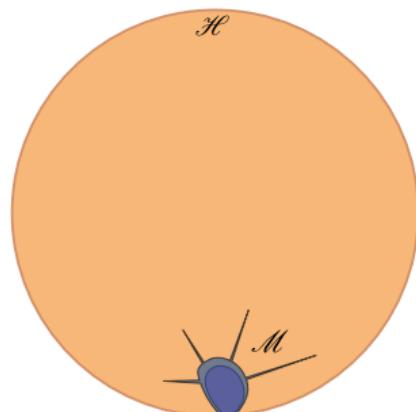
1. For gapped H , tensor network states $|A\rangle$ approximate well $|0\rangle$ with χ fixed
2. All $|A\rangle$ are ground states of gapped H

Some facts

$d = 1$ spatial dimension



$d \geq 2$ spatial dimension



Theorems (colloquially)

1. For gapped H , tensor network states $|A\rangle$ approximate well $|0\rangle$ with x fixed
2. **All** $|A\rangle$ are ground states of gapped H

Folklore

1. For gapped H , tensor network states $|A\rangle$ approximate well $|0\rangle$ with x fixed
2. **Most** $|A\rangle$ are ground states of gapped H

Limitations

Hard to contract in $d \geq 2$

In $d \geq 2$ one can have:

- ▶ $|A\rangle$ known
- ▶ $\langle A|\hat{\Theta}_i\hat{\Theta}_j|A\rangle$ hard to compute exactly

Limitations

Hard to contract in $d \geq 2$

In $d \geq 2$ one can have:

- ▶ $|A\rangle$ known
- ▶ $\langle A|\hat{\theta}_i\hat{\theta}_j|A\rangle$ hard to compute exactly

Expressive but opaque

Generally hard to interpret

- ▶ Tensor carries IR-irrelevant information
- ▶ Hard to constrain long distance behavior

Limitations

Hard to contract in $d \geq 2$

In $d \geq 2$ one can have:

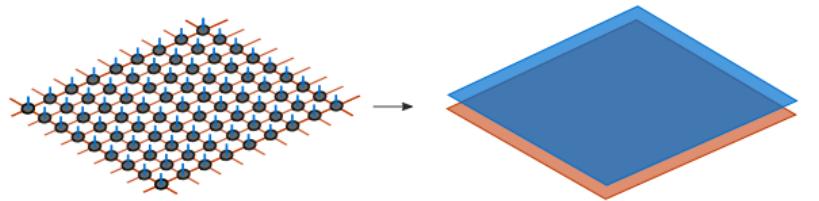
- ▶ $|A\rangle$ known
- ▶ $\langle A|\hat{\theta}_i\hat{\theta}_j|A\rangle$ hard to compute exactly

Expressive but opaque

Generally hard to interpret

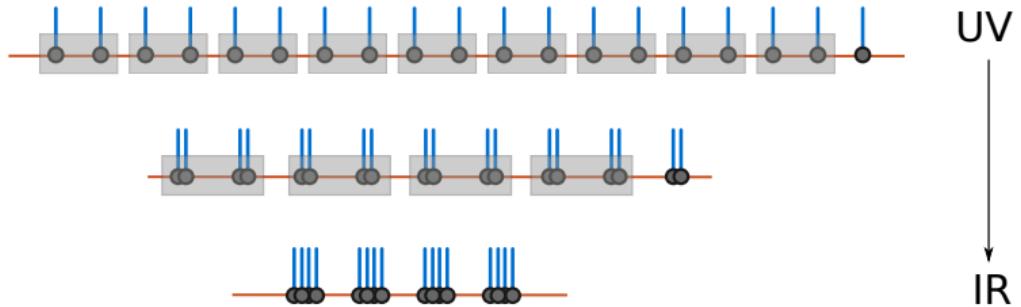
- ▶ Tensor carries IR-irrelevant information
- ▶ Hard to constrain long distance behavior

⇒ Go to the continuum and **QFT**: Major objective and challenge



Continuous Matrix Product states

[Verstraete & Cirac 2010]: continuum limit of Matrix Product States ($d = 1$ tensor networks)

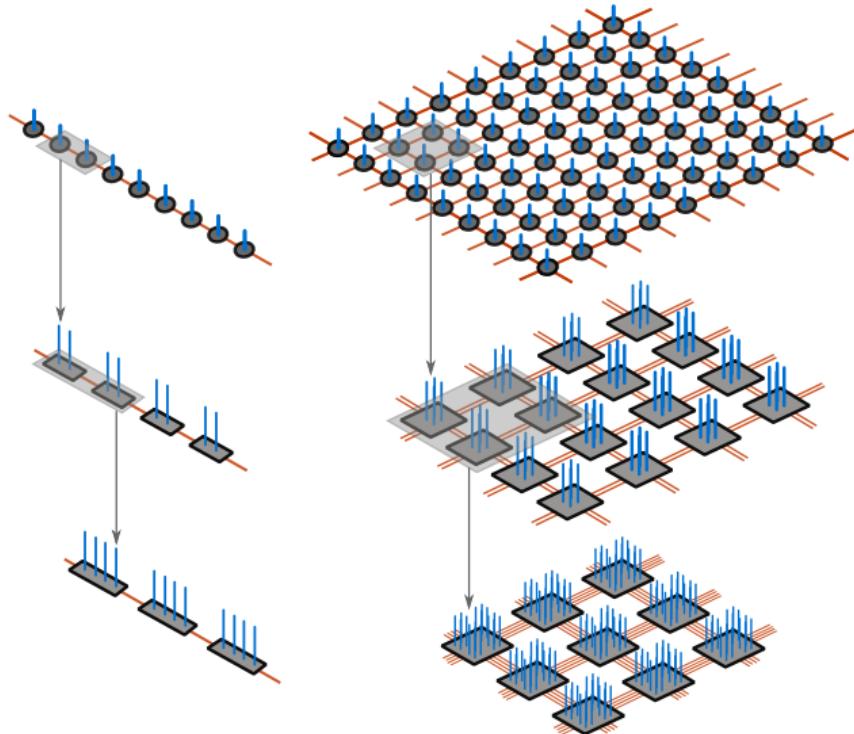


Works for Lieb-Liniger model (boson with contact interactions), ϕ^4 , etc.

Best method on the market for $1+1$ QFT

But no version for $d+1$ QFT, even “no-go” theorems

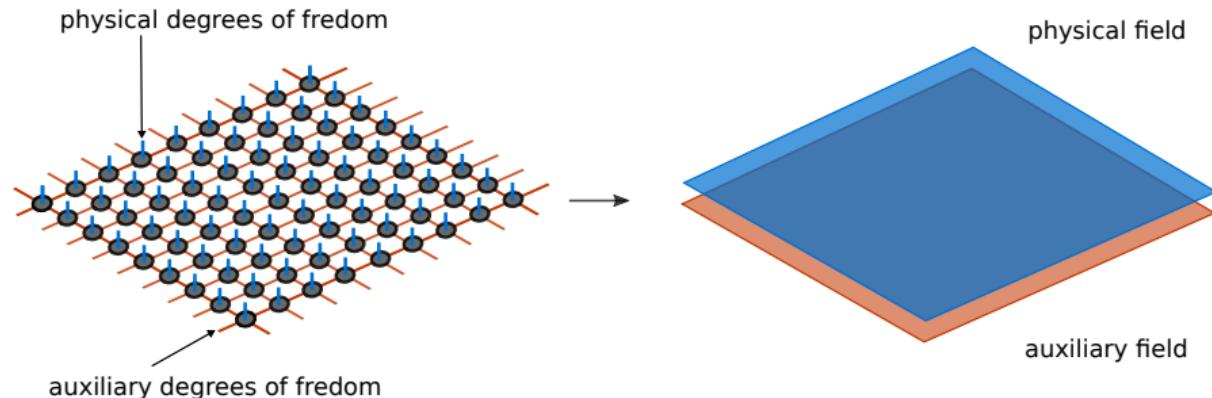
Continuous Tensor Networks: blocking



Upon **blocking**:

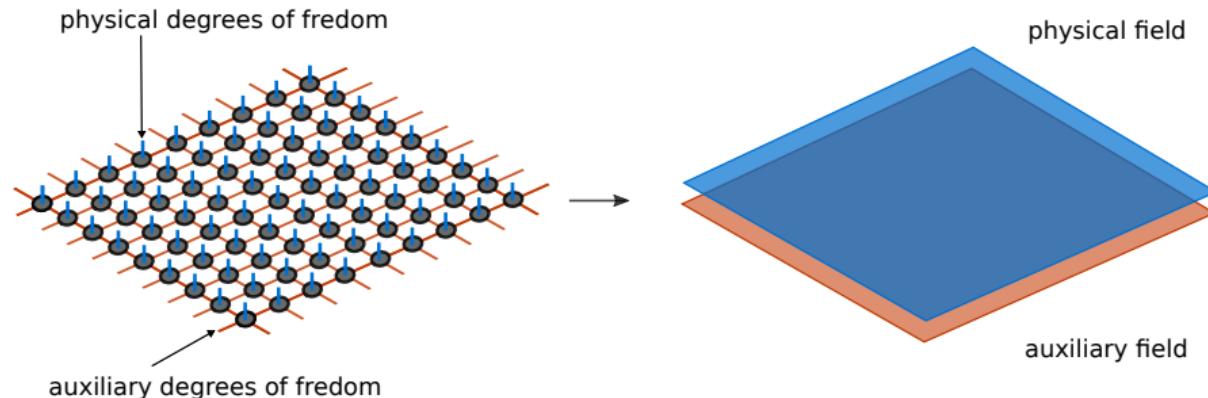
- ◊ The **physical** Hilbert space dimension D increases
- ◊ The **bond** (auxiliary space) dimension x increases too

Result



AT, J. I. Cirac, *Phys. Rev. X* 2019 (in print)

Result



AT, J. I. Cirac, *Phys. Rev. X* 2019 (in print)

Continuous tensor network state (heuristically)

State $|\alpha\rangle$ of $d+1$ QFT from an auxiliary d dimensional theory of random fields ϕ :

$$|\alpha\rangle = \int \mathcal{D}\phi \exp \left\{ - \int d^d x \mathcal{L}[\phi(x)] - \alpha[\phi(x)] \hat{\psi}^\dagger(x) \right\} |\Omega\rangle$$

1. Genuine continuum limit of discrete tensor networks
2. The toolbox is translated to the continuum

Future

Reopens the field after 8 years of only $d = 1$

So far, success **expected** from success in the discrete and continuous $d = 1$

Future

Reopens the field after 8 years of only $d = 1$

So far, success **expected** from success in the discrete and continuous $d = 1$

New **non-perturbative** method, how will it fare?

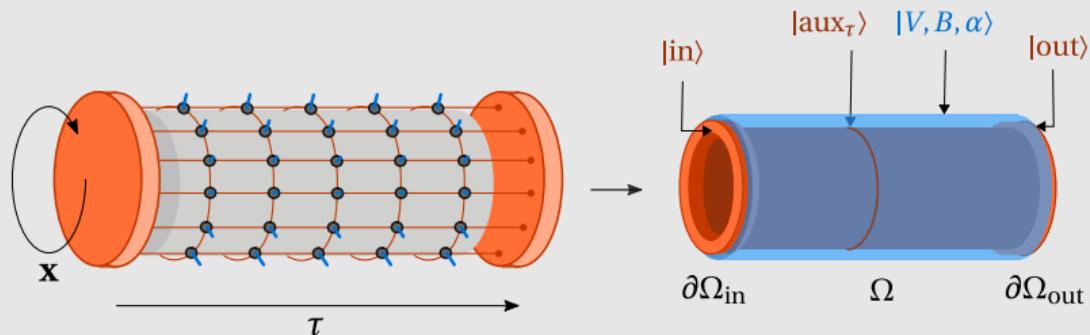
Future

Reopens the field after 8 years of only $d = 1$

So far, success **expected** from success in the discrete and continuous $d = 1$

New **non-perturbative** method, how will it fare?

Continuous tensor network states (cTNS) for dimensional reduction

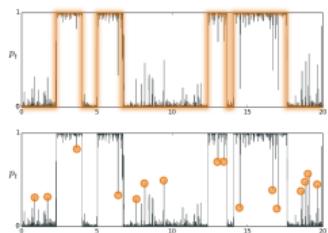


Contracting a cTNS in $2d$ = Solving \mathbf{x} field theories in $1d$ = Optimizing \mathbf{x} cTNS in $1d$

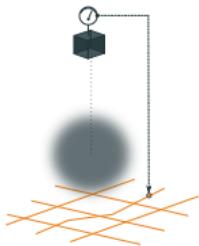
One can trade a dimension for a variational optimization

Summary: 3 fields, 3 main results

Quantum measurement



Gravity

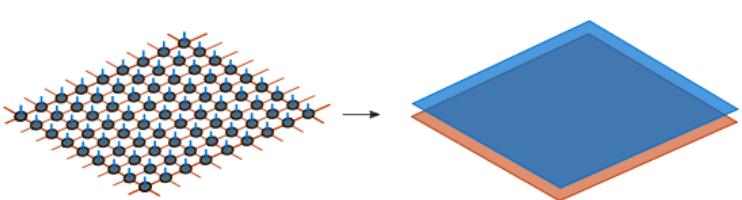


Mathematical understanding of stochastic dynamics to help control quantum systems in the lab

Main results:

- ▶ Quantum jumps
- ▶ Spikes

Tensor networks for QFT



Understand if gravity could be **not** quantized

M. Results:

- ▶ Toy models

Extend a powerful **variational method** from the lattice to the continuum

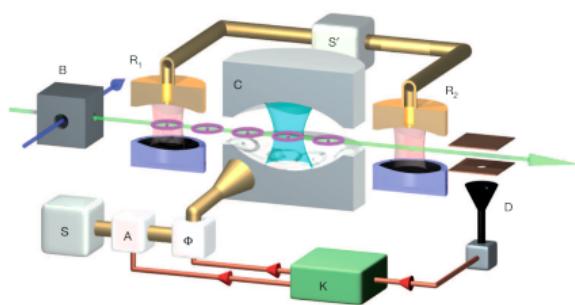
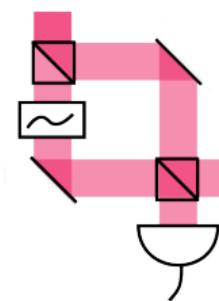
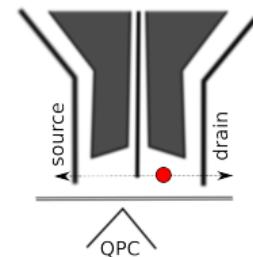
Main results:

- ▶ An ansatz of continuous tensor network state
- ▶ Promising non-perturbative methods for QFT

Observation: Continuous quantum measurement and control

Experimentally:

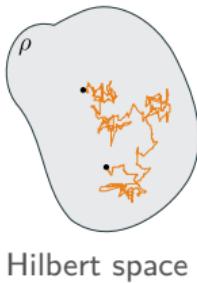
Ubiquitous



Theoretically:

Non-linear stochastic modifications of the Schrödinger equation

$$d|\Psi_t\rangle = \left[-iH dt + \sqrt{\gamma}(A - \langle A \rangle) dW_t - \frac{\gamma}{2}(A - \langle A \rangle)^2 dt \right] |\Psi_t\rangle$$

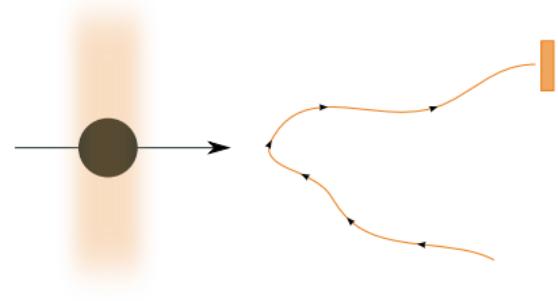


Observation: Continuous quantum measurement and control

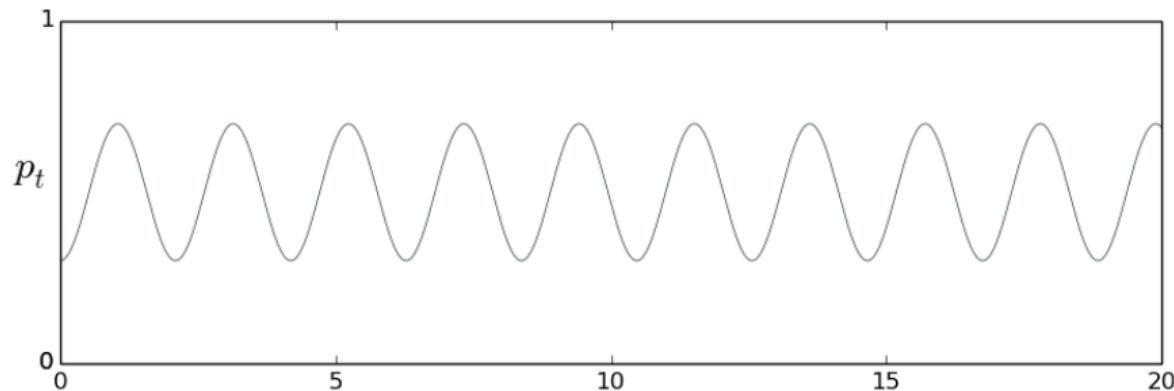
Prototypical study

Qubit in a magnetic field \perp measurement basis

- ▶ $H \propto X$
- ▶ Measurement $\propto Z$
- ▶ $p_t = |\langle \Psi_t | \uparrow \rangle_z|^2$



No measurement

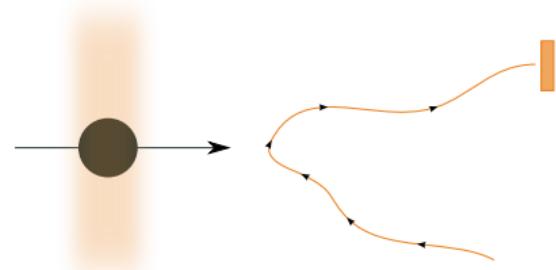


Observation: Continuous quantum measurement and control

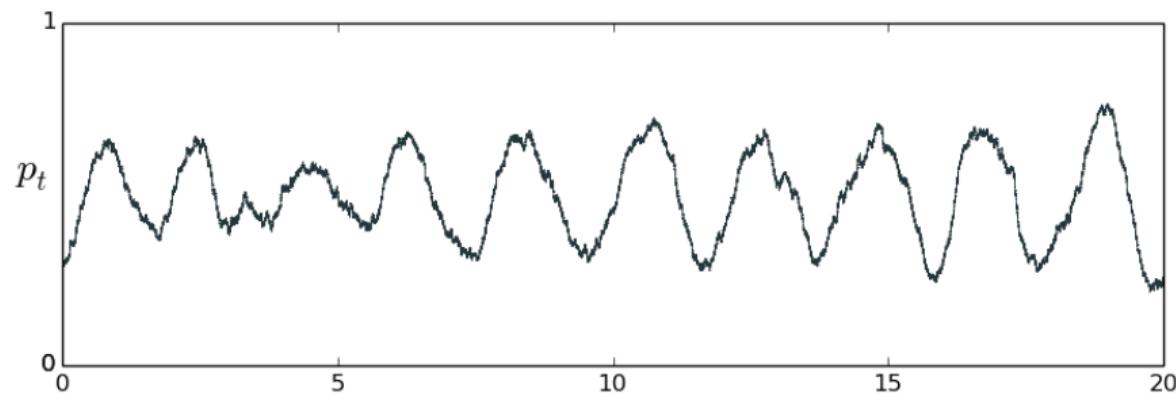
Prototypical study

Qubit in a magnetic field \perp measurement basis

- ▶ $H \propto X$
- ▶ Measurement $\propto Z$
- ▶ $p_t = |\langle \Psi_t | \uparrow \rangle_z|^2$



Weak measurement

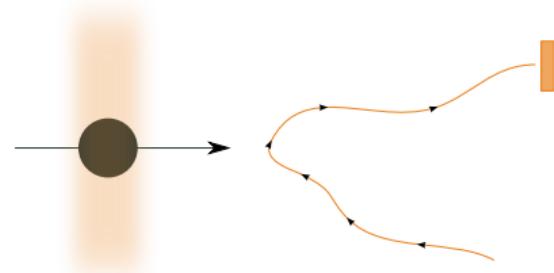


Observation: Continuous quantum measurement and control

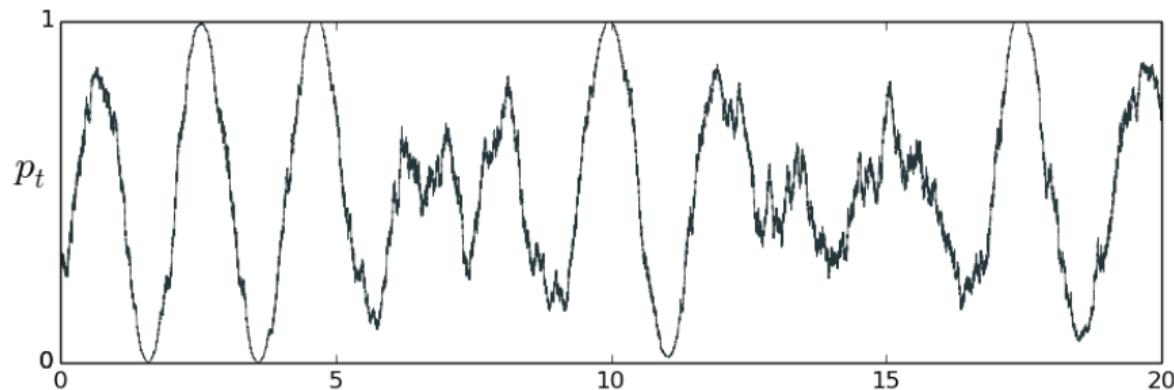
Prototypical study

Qubit in a magnetic field \perp measurement basis

- ▶ $H \propto X$
- ▶ Measurement $\propto Z$
- ▶ $p_t = |\langle \Psi_t | \uparrow \rangle_z|^2$



Average measurement

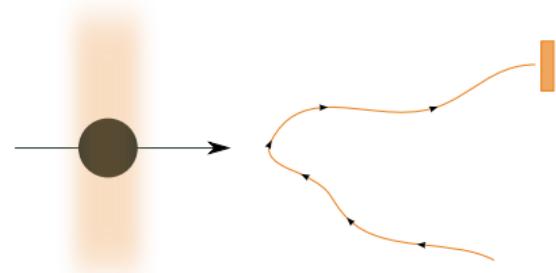


Observation: Continuous quantum measurement and control

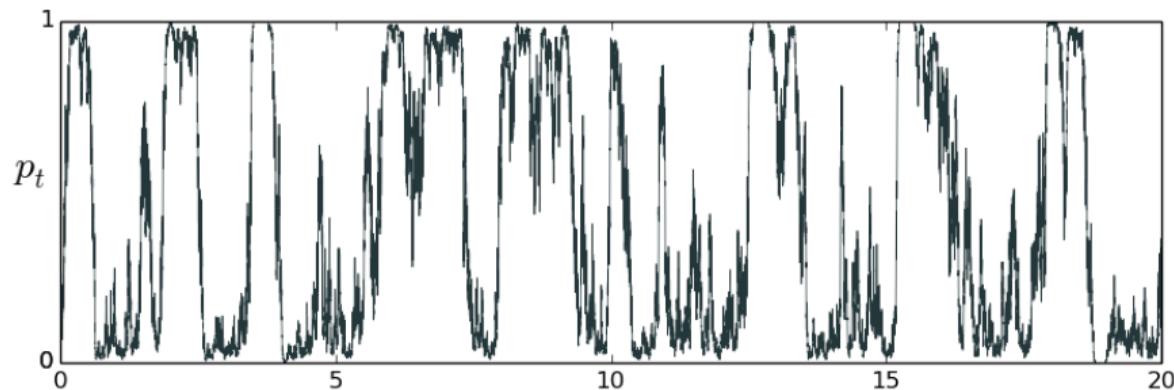
Prototypical study

Qubit in a magnetic field \perp measurement basis

- ▶ $H \propto X$
- ▶ Measurement $\propto Z$
- ▶ $p_t = |\langle \Psi_t | \uparrow \rangle_z|^2$



Strong measurement

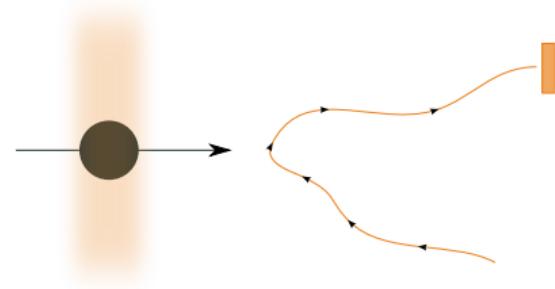


Observation: Continuous quantum measurement and control

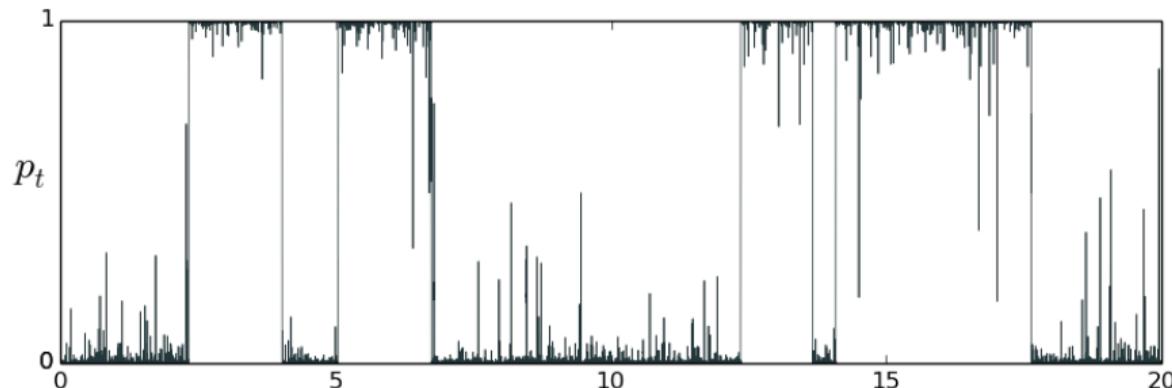
Prototypical study

Qubit in a magnetic field \perp measurement basis

- ▶ $H \propto X$
- ▶ Measurement $\propto Z$
- ▶ $p_t = |\langle \Psi_t | \uparrow \rangle_z|^2$



Very strong measurement

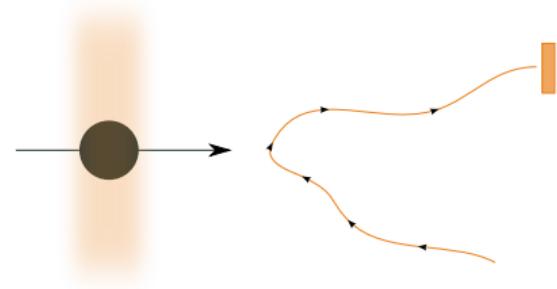


Observation: Continuous quantum measurement and control

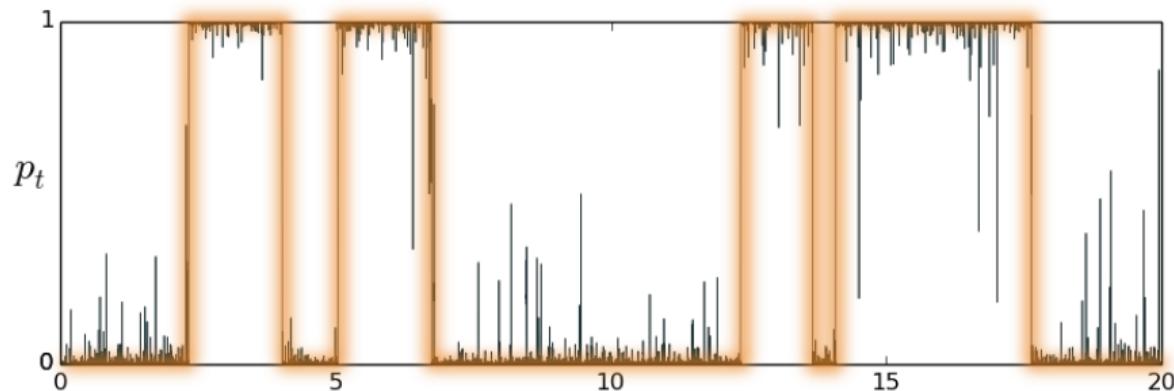
Prototypical study

Qubit in a magnetic field \perp measurement basis

- ▶ $H \propto X$
- ▶ Measurement $\propto Z$
- ▶ $p_t = |\langle \Psi_t | \uparrow \rangle_z|^2$



Very strong measurement

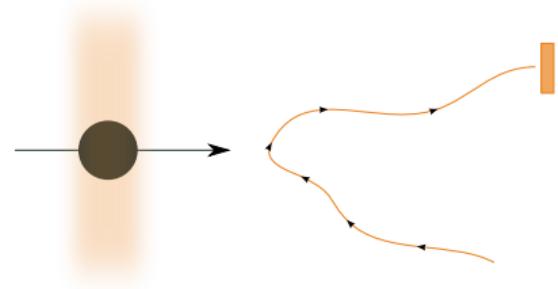


Observation: Continuous quantum measurement and control

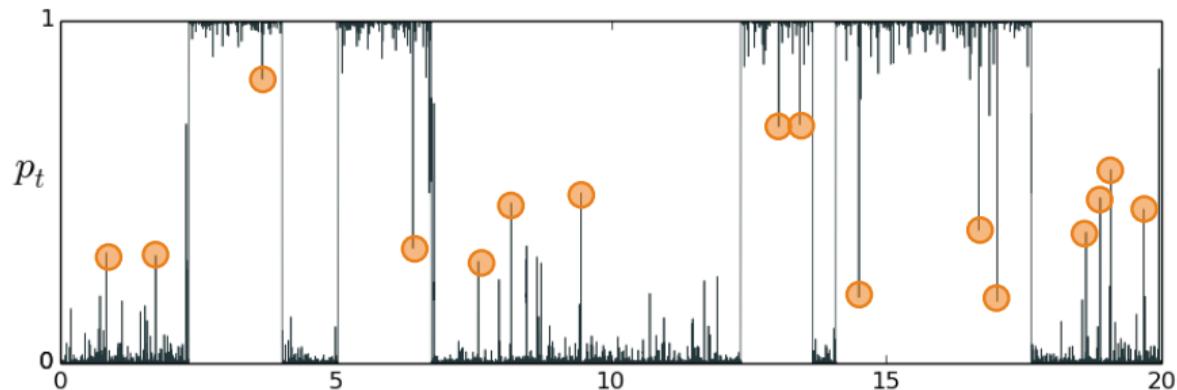
Prototypical study

Qubit in a magnetic field \perp measurement basis

- ▶ $H \propto X$
- ▶ Measurement $\propto Z$
- ▶ $p_t = |\langle \Psi_t | \uparrow \rangle_z|^2$



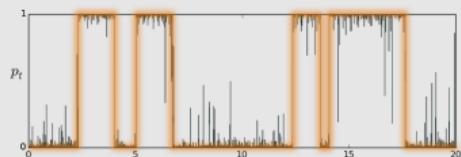
Very strong measurement



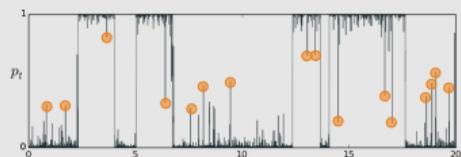
Results

Strong continuous measurement

1. Jump theorem



2. Spike theorem



◇ M Bauer, D Bernard, AT JPA 2015

◇ AT, M Bauer, D Bernard PRA 2015

◇ M Bauer, D Bernard, AT JPA 2016

Others

1. Control

◇ A T, M Bauer, D Bernard EPL 2014

2. Optimal measurement

◇ AT, PRA 2016

3. Exact results

◇ AT, PRA-Rapid 2018

4. Non-Markovian exploration

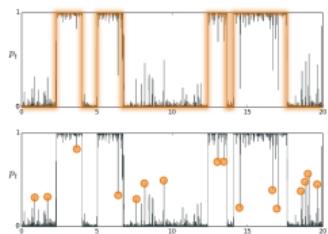
◇ AT, Quantum 2017

5. Many-body exploration

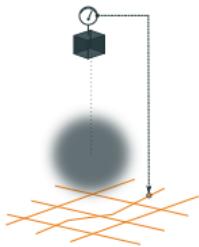
◇ X Cao, AT, A De Luca, 2018

Summary: 3 fields, 3 main results

Quantum measurement



Gravity

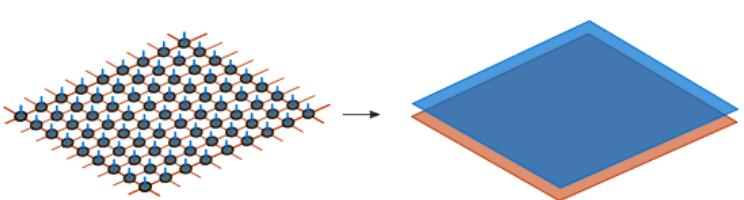


Mathematical understanding of stochastic dynamics to help control quantum systems in the lab

Main results:

- ▶ Quantum jumps
- ▶ Spikes

Tensor networks for QFT



Understand if gravity could be **not** quantized

M. Results:

- ▶ Toy models

Extend a powerful **variational method** from the lattice to the continuum

Main results:

- ▶ An ansatz of continuous tensor network state
- ▶ Promising non-perturbative methods for QFT