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3 questions in quantum mechanics

Continuous measurement

How to gently measure and
control quantum systems?
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Gravity and quantum
Could gravity, in principle,
not be quantum?

Many-body & QFT
How to efficiently parameterize
many-body and QFT states

PhD

__________ Q Postdoc

Project



Tensor network states: a tool

Applications

» Quantum information theory
» Statistical Mechanics

» Quantum gravity

» Many-body quantum




Tensor network states: a tool

Applications

» Quantum information theory
» Statistical Mechanics
» Quantum gravity

» Many-body quantum

Negative theology

» Not covariant/geometric
objects guv or R,

» Not tensor models
[Rivasseau, Gurau, ...]



Many-body problem

Possible solutions

Problem

» Perturbation theory

Finding low energy states of

» Monte Carlo

» Bootstrap IR fixed point

» Variational optimization (e.g. Mean
Field, TCSA, tensor networks)

is hard because dim . « DV



Variational optimization

Generic (spin D/2) state € -
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Exact variational optimization
To find the ground state:
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Variational optimization

Generic (spin D/2) state € J#-

W)= D Capyin Ity i)
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Approx. variational optimization
To find the ground state:
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» dim.# o Poly(N) or fixed



Interesting states are weakly entangled

Low energy state
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Reduced density matrix
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Entanglement entropy
S =—tr[plogp]

Area law

S x [0D]
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Typical states are strongly entangled

Random state

b)

Unaar|trivial)

Reduced density matrix

Entanglement entropy

—tr[plog p]

S:

Volume law

S x |D]




Constructing weakly entangled states



Constructing weakly entangled states

1. Put auxiliar
® ® ® ® ® maximally }clentangled
states between sites
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Constructing weakly entangled states

1. Put auxiliary
maximally entangled
states between sites

X

o-0=) W

j=1

2. Map to initial Hilbert
space on each site

‘:A:C“X—)CD




Tensor network states: definition

Why “tensor” network?
y . iz i I3
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with tensor contractions on links



Tensor network states: definition

Why “tensor” network?
iz i I3

88 - i " =

I Ja

. (MAX d i
AT =0 — Ay _ . .
with tensor contractions on links

Optimization
Find best A for fixed x (D x x* coeff.)
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for example go down



Some facts

d =1 spatial dimension

Theorems (colloquially)

1. For gapped H, tensor network states |A)
approximate well |0) with x fixed

2. All |A) are ground states of gapped H



Some facts

d = 1 spatial dimension d > 2 spatial dimension

Theorems (colloquially) Folklore
1. For gapped H, tensor network states |A) 1. For gapped H, tensor r]etwork states |A)
approximate well |0) with x fixed approximate well |0) with x fixed

2. All |A) are ground states of gapped H 2. Most |A) are ground states of gapped H



Limitations

Hard to contract in d > 2
In d > 2 one can have:
> |A) known

> (AI@;@j|A> hard to compute exactly
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Expressive but opaque
Generally hard to interpret
» Tensor carries [R-irrelevant information

» Hard to constrain long distance behavior



Limitations

Hard to contract in d > 2 Expressive but opaque

In d > 2 one can have: Generally hard to interpret
> |A) known » Tensor carries IR-irrelevant information
> (AI@;@j|A> hard to compute exactly » Hard to constrain long distance behavior

= Go to the continuum and QFT: Major objective and challenge

discrete tensor network continuum description ?7



Continuous Matrix Product states

[Verstraete & Cirac 2010]: continuum limit of Matrix Product States (d = 1 tensor networks)

dAdddllll
- R

Works for Lieb-Liniger model (boson with contact interactions), ¢*

Best method on the market for 1 +1 QFT

, etc.

But no version for d +1 QFT, even “no-go” theorems



Continuous Tensor Networks: blocking

Upon blocking:

¢ The physical Hilbert space
dimension D increases

¢ The bond (auxiliary space)
dimension x increases too




Result

physical degrees of fredom physical field

auxiliary field

auxiliary degrees of fredom

AT, J. I. Cirac, Phys. Rev. X 2019 (in print)



Result

physical degrees of fredom physical field

auxiliary field

auxiliary degrees of fredom

AT, J. I. Cirac, Phys. Rev. X 2019 (in print)

Continuous tensor network state (heuristically)

State o) of d + 1 QFT from an auxiliary d dimensional theory of random fields ¢:

o) = 20 e { ~ [ 21001 - atore) @*(x)} )

creation

1. Genuine continuum limit of discrete tensor networks
2. The toolbox is translated to the continuum



Future

Reopens the field after 8 years of only d =1
So far, success expected from success in the discrete and continuous d =1
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Future

Reopens the field after 8 years of only d =1
So far, success expected from success in the discrete and continuous d =1

New non-perturbative method, how will it fare?
Continuous tensor network states (cTNS) for dimensional reduction

laux;) |V, B, a)
lin) lout)

L e 1 . —
| i [ {
X _ 0Qin Q 0Qout
T
Contracting a cTNS in 2d = Solving X field theories in 1d = Optimizing x cTNS in 1d

One can trade a dimension for a variational optimization



Summary: 3 fields, 3 main results

Quantum measurement
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Mathematical understanding
of stochastic dynamics to
help control quantum
systems in the lab

Main results:
» Quantum jumps

» Spikes

Understand if
gravity could
be not
quantized

M. Results:

> Toy
models

Tensor networks for QFT

Extend a powerful variational method from the
lattice to the continuum

Main results:
» An ansatz of continuous tensor network state

» Promising non-perturbative methods for QFT



Observation: Continuous quantum measurement and control

Experimentally:
Ubiquitous

“EZ5 QN

Theoretically:
Non-linear stochastic modifications of the Schrédinger equation

QPC

dib:) = {_"Hdt"‘ﬁ(A_<A>)th—%(A—<A>)2dt hbe) ‘i?

Hilbert space



Observation: Continuous quantum measurement and control
Prototypical study

Qubit in a magnetic field | measurement basis
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Observation: Continuous quantum measurement and control

Prototypical study
Qubit in a magnetic field | measurement basis
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» Measurement < Z N
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Weak measurement
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Observation: Continuous quantum measurement and control

Prototypical study
Qubit in a magnetic field 1. measurement basis

» Ho X . ; <

» Measurement x Z N

> pe = (Wl 1) ~—

Average measurement
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Observation: Continuous quantum measurement and control

Prototypical study
Qubit in a magnetic field 1. measurement basis

> Hox X . ; ,\/

» Measurement x Z AN
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Strong measurement

(. | ‘; W

1

Py




Observation: Continuous quantum measurement and control

Prototypical study

Qubit in a magnetic field 1. measurement basis /U

» Ho X . Yo
N
» Measurement o< Z \
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Observation: Continuous quantum measurement and control

Prototypical study

Qubit in a magnetic field 1. measurement basis |:|
» Ho X . >
» Measurement ox Z
> pe = (e 1)

Very strong measurement
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Observation: Continuous quantum measurement and control

Prototypical study

Qubit in a magnetic field 1. measurement basis U
» Ho X ‘ >
» Measurement ox Z
> pe = (e 1)

Very strong measurement
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Results

Strong continuous measurement

1. Jump theorem

1.

Pe

| “ b L 2.

2. Spike theorem
i F

‘R ° 4.
[ T | “ L“;.J.J. i °

{> M Bauer, D Bernard, AT JPA 2015
{ AT, M Bauer, D Bernard PRA 2015
{ M Bauer, D Bernard, AT JPA 2016

Others

Control

< A T, M Bauer, D Bernard EPL 2014
Optimal measurement

& AT, PRA 2016

Exact results

& AT, PRA-Rapid 2018
Non-Markovian exploration

< AT, Quantum 2017

Many-body exploration
< X Cao, AT, A De Luca, 2018



Summary: 3 fields, 3 main results
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Tensor networks for QFT
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