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Objective

Why?
» Trickiness of d > 2

» Computations: the continuum brings
new methods (perturbative
expansions, saddle point
approximations, differential equations)

» QFT: apply directly to QFT, without
discretization

» Symmetries: Implement Euclidean /
Translation invariance exactly

» Holography: (?) Construct better
toy models

physical field

auxiliary field



Problem

Many-body states are complicated.
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Typical many-body Hamiltonians are simple.
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Interesting states

Typical many-body Hamiltonians are simple.

H= ihk
k=1

~ const X n parameters.

Variational optimization

To find the ground state:

(W[HRp)

lground) = min
) e (bhb)
Can we find a subspace . s. t.:
> | x nk < e
» & approximates well interesting states
» bonus (B|O(x)) is computable



An idea popular in many fields

» Mean field approximation (of which TNS are an extension)

Px1y X2y -+, Xn) = P1(x1) Ya(x2) - - - Palxy)

» Special variational wave functions in Quantum chemistry (whole industry of ansatz)
» Moore-Read wavefunctions in the study of the quantum Hall effect

b,y s x) = (BOble) - $lx) )

CFT

» Fully connected and convolutional neural networks used in machine learning

Feature maps

Convolutions i C i i Fully
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Matrix product states

) =

1502y in

Matrix Product States (MPS)

ALR) = Y (LA (1)A(2) - Ai (n)IR) |y, - --

il‘i27"')in

» A; are D x D complex matrices
> Aisa2x D x D tensor [Allx,
» [L) and |R) are D-vectors.

& nx 2 x D? parameters instead of 2"

z C”l»’.Z»"'

Sip 1Lyt )In>

Remark: actually equivalent
with the density matrix
renormalization group
(DMRG)

s in)

& D is the bond dimension and encodes the size of the variational class



Graphical notation
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Graphical notation
‘A> L) R> = Zihizy...’in<L|Ai1(1)Aiz(2) e Al,,(n)lR> |i1) T )in>

Notation: [Alx, = —l— and k—— 1= by, gives:

anr =t b LLLLLLLLLL LI LI L L

Example: computation of correlations

can be done efficiently by iterating 2 maps:

.
O = and q)o ZI
——

The contraction for a d = 1 system, can be seen as an open-system dynamics in d = 0.




Generalizations: different tensor networks

Matrix Product States (MPS)

SAVVLLLLLLLL L L L

Projected Entangled Pair States Multi-scale Entanglement
(PEPS) Renormalization Ansatz (MERA)




Some facts

A list of theorems [very colloquially]:

» Expressiveness [trivial] Tensor Network States cover % when D x 2"
» Area law The entanglement of a subregion of space scales as its area for a TNS

» Efficiency [gapped] Matrix Product States approximate well the ground states of gapped
systems in 1 spatial dimension

» Efficiency [critical] Multi-scale Entanglement Renormalization Ansatz (MERA)
approximate well the ground states of critical systems in 1 spatial dimension.

» Symmetries Physical symmetries can be implemented locally on the bond space
» Inverse problem TNS are the ground state of a local parent Hamiltonian



Successes and limits

Successes o
Limits
Q Arbitrary precision for 1d quantum systems .
& Hard to contract in d > 2

Q Classification of topological phases in 1d and 2d ) o
& No continuum limit in d > 2

O Progress on non-Abelian lattice Gauge theories

Lack of analytic techni
© AdS/CFT toy models # Lack of analytic techniques



Successes and limits

Successes —
Limits
Q Arbitrary precision for 1d quantum systems )
& Hard to contract in d > 2

& No continuum limit in d > 2

& Lack of analytic techniques

Q Classification of topological phases in 1d and 2d
O Progress on non-Abelian lattice Gauge theories
O AdS/CFT toy models

Can one apply tensor network techniques directly in the continuum, to QFT?
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Lots of “Continuous tensor network” concepts

Tensor networks for quantum states [\)

» JLLULLLLLLLL LU
MPS — cMPS
[Verstraete & Cirac 2010]

>
MERA — cMERA
[Haegeman et al. 2013]

PEPS — cPEPS

Tensor networks for partition functions

Z(B)

» StatMech in d

» Euclidean quantum in d +1

[Qi Hu et al. 2018]
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Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

JAiddildl
~LLdl R

» the bond dimension D stays fixed

» the local physical dimension explodes €2 ® - -- @ €2 — .Z (L2?([x, x + dx])).
= Spins become fields — (~ central limit theorem =)



Continuous Matrix Product States

Type of ansatz for bosons on a fine grained d = 1 lattice

» Matrices A; (x) where the index iy corresponds to Wi (x)|0) in physical space.

Informal cMPS definition

Fixed by:
Ao =1+¢eQ » Finite particle number
A =¢R 000000
Az Sk 01000 0 o
v2 L1238l . .
A (eR)" » Consistency

so we go from oo to 2 matrices



Continuous Matrix Product States

Definition

L
[ 2 ) — sl {L dx Qo1+R® uﬂ(x)} lwr) [0)

> Q, R are D x D matrices,
» |w;) and |wg) are boundary vectors € CP, for p.b.c. {wy|-|wg) — tr[-]

> (), Pi(y)] =8(x—y)

Idea:



Continuous Matrix Product States

Definition

L
[ 2 ) — sl {L dx Qo1+R® uﬂ(x)} lwr) [0)

> Q, R are D x D matrices,
» |w;) and |wg) are boundary vectors € CP, for p.b.c. {wy|-|wg) — tr[-]

> (), Pi(y)] =8(x—y)

Idea:
A(x) = Aol + AT (x)
~1@1+eQ®1+eR2P(x)
~ exp [e (Q® 1+ R®1bT(x))]



Computations

Some correlation functions

with T=Q®1+1®Q+R®R
Example

Lieb-Liniger Hamiltonian

= J o [dwx} R L+ 10 BB )
S dx dx

Solve by minimizing:

with fixed particle density (Q, R| W (x)(x) @, R).



Continuous Tensor Networks: blocking




Continuous Tensor Networks: blocking

Upon blocking:

& The physical Hilbert space
dimension d increases (idem
cMPS = physical field)

& The bond dimension D increases
too
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Choice of trivial tensor

For MPS, not much choice:

i Lo

=1®0)+eQ®10) +eR®V(x)0)

For TNS in d > 2, many options:
1. Take a & between all legs ~ GHZ state T(©) = ><
= trivial geometry

2. Take two identities T(0) =
— breakdown of Euclidean invariance

3. Take the sum of pairs of identities in both directions T(®) = >< + /\‘\/



Ansatz

1 — Take a “Trivial” tensor:
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Ansatz

1 — Take a “Trivial” tensor:

¢2)  ¢B)
Td(>0()1),d>(2),¢(3)‘¢,(4) = - ;;2575.-—'
o) o)
-1 D
~ exp {2 Z[d)k(l) — dr(2)]% + [br(2) — dr(3)]?
k=1

10x(3) — br(@) + [dr(4) — mm?}

The indices ¢ are in RP (and not 1,---, D)

2 — And add a “correction”:

exp {—e2V [d(1),--, d(4)] + 2ad(1),- -, d(H] YT (x)}

3 — Realize tensor contraction = functional integral and trivial tensor gives free field measure.



Functional integral definition

¢

[

— X



Functional integral definition

|V, B, )

boundary tensor

physical indices



Operator definition

g

Vo) =
T N\ N\
tr[:rexp (_LdTde ﬁk(")fk(x) n Vd’k(")j‘“(x) VBT — albx)] 01 (T, x)ﬂ 0)
where:

» &x(x) and Ry(x) are k independent canonically conjugated pairs of (auxiliary) field

operators: [i(x), $i(y)] = 0, [R(x)x, Ri(y)] = 0, and [P (x), Ai(y)] = ik, 8(x —y) acting
on a space of d — 1 dimensions.



Operator definition

laux;) |V,B,a)
lin) lout)
/DG .
X > aQin Q aQout
T
IV, B, o) =
T N N
tr [@‘J’exp (—Ld'tde ﬁk(x)fk(x) + Vd)k(x)2Vd)k(x) + V[dA)(X)] — a[a\)(X)] II)T(T,X))] 0)

where:

> f]\)k(x) and 7Rt (x) are k mdependent canonically conjugated pairs of (auxiliary) field

operators: [Gx(x), $i(y)] =0, [R(X), Ri(y)] = 0, and [Hx(x), Ri(y)] = idk,; 8(x —y) acting
on a space of d —1 dlmen5|ons



Wave-function definition

A generic state [¥) in Fock space can be written:

+oo

Wy = ZJ @nlx1y- -y xn) Wixa) Wi (x,) [0)

I
n:O n n.
where ¢, is a symmetric n-particle wave-function
Functional integral representation

(Pn(XI) co )Xn) - < O([(I)(X]_)] e oc[(])(x,,)] >au><
with:

(Yo =JD¢ . B(dloa) exp [—% JQ d9x [V P + VI(x)]

» ~ Moore-Read wave-function for Quantum Hall, but generic QFT



Expressivity and stability

How big are cTNS?

Stability Expressiveness
The sum of two cTNS of bond field All states in the Fock space can be
dimension D; and D, is a cTNS with bond approximated by cTNS:

field dimension D < D1 + D; + 1: » A field coherent state is a cTNS with

D=0

» Stability allows to get all sums of field
coherent states

Vi, o) + [V, 00) = [W, B)

Note: expressiveness can also be obtained with D =1 but it is less natural. Flexibility in D
makes the expressivity higher for restricted classes of V' and «.



Computations
Define generating functional for normal ordered correlation functions

Appp— (V.alesp (j dxj’(xw(x)> exp ( | dxj(x)w(x)) IV, )

(V, oV, o

Operator representation

Z,j/j =tr

T/2
B®B*‘J’exp J <Tj/j—J JJ/>
—T/2 S

Ty = L dx H(x) @ 1+ 10 I (x) + (b)) +7()) @ (€] +j(x))

with transfer matrix:

and

Al [Vdék(x)f

D
Z + VIG(x)]

k=1

= cMPS brought us from 1 to 0, cTNS bring us from d to d — 1.
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Discrete redundancy

Different elementary tensors are equivalent,
they give the same state:
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Redundancies

Discrete redundancy Continuum redundancy

Different elementary tensors are equivalent, v SV
+V.-F
they give the same state: () () b, 6]

S
when o = 7 and g =\

up to boundary terms:

Just Stokes' theorem. If QO has a boundary 9Q):

Dlp] — Dld] exp {ﬁddlx Flx, d(x)] - n(x)}

o]




Rescaling
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Renormalization

Scaling

— d =2, All powers of the field in V and « yield relevant couplings

— d =3, The powers p =1,2,3,4,5 of the field in V yield relevant A > 0 couplings. p =6
is marginal in V. For o, p = 1,2 are relevant and p = 3 is marginal. All other p are
irrelevant.

For finite bond field dimension in d = 3, finite number of parameters for renormalized cTNS:

V(p) = Ad + Bdd + Codd + Ddddd + EQdddd + FOddddd
x($) =X+ Ydd + Zodd

Proper renormalization procedure not checked yet



Getting back cMPS

One can get back cMPS with finite bond dimension by:
1. Compactification Take d — 1 dimensions out of d to be very small

T D B
|V, B, o) >~ tr {E‘Iexp (—J dTZ ?’% + VIX] - afX] IIJT(T))} 0)
0 k=1

= Hilbert space of a quantum particle in D space dimensions.

2. Quantization Take V with D deep minima to force the auxiliary field to take only D
possibilities



Generalization

For a general Riemanian manifold M with boundary 0M, define:
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i.e. add curvature and possible anisotropies in V' and «



Generalization

For a general Riemanian manifold M with boundary 0M, define:

M

V,B, &) = J"Dd) B(dlon) exp { Jddx\/_( +Vid, Vo] — ald, V] lw) }|0>

i.e. add curvature and possible anisotropies in V' and «

Example: «[x, ¢, V] localized on the boundary and
hyberbolic metrix g:

— cMERA-like in d — 1 dimensions



Future

Limitations and work for the future

v

Quite formal out of the Gaussian regime

Computation through dimensional reduction not trivial
Limited to bosonic field theories (so far)

Gauge invariant states

Can one say anything about topology?



Summary

D
V,8,60 = [ D0 Bl0laa) e {-| %% 3 3 [Vulx)? + Vigl) - alobol ' (x) | 0)
k=

1

Continuous tensor network states are natural continuum limits of tensor network states and
natural higher d extensions of continuous matrix product states.

1.

LA

Obtained from discrete tensor networks

Can be made Euclidean invariant

Motto of tensor networks: trade a dimension for a variational optimization
Still need to be properly renormalized (in perturbative and RG sense)

Still needs to be used to approximate non-trivial non-Gaussian ground states




