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Objective

auxiliary field

physical field

auxiliary degrees of fredom

physical degrees of fredom

|V , α〉 =
∫
Dφ exp

{
−

∫
Ω

ddx 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)] ψ̂†(x)
}

|0〉



Objective

Why?
I Trickiness of d > 2
I Computations: the continuum brings

new methods (perturbative
expansions, saddle point
approximations, differential equations)

I QFT: apply directly to QFT, without
discretization

I Symmetries: Implement Euclidean /
Translation invariance exactly

I Holography: (?) Construct better
toy models

auxiliary field

physical field



Problem
Many-body states are complicated.

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,in |i1, · · · , in〉

2n parameters ci1,i2,··· ,in .

Typical many-body Hamiltonians are simple.

H =

n∑
k=1

hk

∼ const× n parameters.

All states

Interesting states

Variational optimization
To find the ground state:

|ground〉 = min
|ψ〉∈S

〈ψ|H |ψ〉
〈ψ|ψ〉

Can we find a subspace S s. t.:
I |S | ∝ nk � en

I S approximates well interesting states
I bonus 〈ψ|O(x)|ψ〉 is computable
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An idea popular in many fields

I Mean field approximation (of which TNS are an extension)

ψ(x1, x2, · · · , xn) = ψ1(x1)ψ2(x2) · · ·ψn(xn)

I Special variational wave functions in Quantum chemistry (whole industry of ansatz)
I Moore-Read wavefunctions in the study of the quantum Hall effect

ψ(x1, x2, · · · , xn) =
〈
φ̂(x1)φ̂(x2) · · · φ̂(xn)

〉
CFT

I Fully connected and convolutional neural networks used in machine learning



Matrix product states

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,in |i1, · · · , in〉

Matrix Product States (MPS)

|A, L,R〉 =
∑

i1,i2,··· ,in

〈L|Ai1(1)Ai2(2) · · ·Ain(n)|R〉 |i1, · · · , in〉

I Ai are D × D complex matrices
I A is a 2× D × D tensor [Ai ]k,l
I |L〉 and |R〉 are D-vectors.

Remark: actually equivalent
with the density matrix
renormalization group
(DMRG)

♦ n × 2× D2 parameters instead of 2n

♦ D is the bond dimension and encodes the size of the variational class
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Graphical notation
|A, L,R〉 =

∑
i1,i2,··· ,in〈L|Ai1(1)Ai2(2) · · ·Ain(n)|R〉 |i1, · · · , in〉

Notation: [Ai ]k,l = and k l =
∑
δk,l gives:

|A, L,R〉 =

Example: computation of correlations

〈A|O(ik)O(i`)|A〉 =

can be done efficiently by iterating 2 maps:

Φ = and ΦO =

The contraction for a d = 1 system, can be seen as an open-system dynamics in d = 0.
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Generalizations: different tensor networks

Matrix Product States (MPS)

Projected Entangled Pair States
(PEPS)

Multi-scale Entanglement
Renormalization Ansatz (MERA)



Some facts

A list of theorems [very colloquially]:
I Expressiveness [trivial] Tensor Network States cover H when D ∝ 2n

I Area law The entanglement of a subregion of space scales as its area for a TNS
I Efficiency [gapped] Matrix Product States approximate well the ground states of gapped

systems in 1 spatial dimension
I Efficiency [critical] Multi-scale Entanglement Renormalization Ansatz (MERA)

approximate well the ground states of critical systems in 1 spatial dimension.
I Symmetries Physical symmetries can be implemented locally on the bond space
I Inverse problem TNS are the ground state of a local parent Hamiltonian



Successes and limits

Successes

♥ Arbitrary precision for 1d quantum systems
♥ Classification of topological phases in 1d and 2d
♥ Progress on non-Abelian lattice Gauge theories
♥ AdS/CFT toy models

Limits

♠ Hard to contract in d > 2
♠ No continuum limit in d > 2
♠ Lack of analytic techniques

Can one apply tensor network techniques directly in the continuum, to QFT?
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Lots of “Continuous tensor network” concepts
Tensor networks for quantum states |ψ〉

I

MPS → cMPS
[Verstraete & Cirac 2010]

I

MERA −→ cMERA
[Haegeman et al. 2013]

I

PEPS → cPEPS

Tensor networks for partition functions
Z (β)

I StatMech in d
I Euclidean quantum in d + 1

[Qi Hu et al. 2018]



Lots of “Continuous tensor network” concepts
Tensor networks for quantum states |ψ〉

I

MPS → cMPS
[Verstraete & Cirac 2010]

I

MERA −→ cMERA
[Haegeman et al. 2013]

I

PEPS → cPEPS

Tensor networks for partition functions
Z (β)

I StatMech in d
I Euclidean quantum in d + 1

[Qi Hu et al. 2018]



Lots of “Continuous tensor network” concepts
Tensor networks for quantum states |ψ〉

I

MPS → cMPS
[Verstraete & Cirac 2010]

I

MERA −→ cMERA
[Haegeman et al. 2013]

I

PEPS → cPEPS

Tensor networks for partition functions
Z (β)

I StatMech in d
I Euclidean quantum in d + 1

[Qi Hu et al. 2018]



Lots of “Continuous tensor network” concepts
Tensor networks for quantum states |ψ〉

I

MPS → cMPS
[Verstraete & Cirac 2010]

I

MERA −→ cMERA
[Haegeman et al. 2013]

I

PEPS → cPEPS

Tensor networks for partition functions
Z (β)

I StatMech in d
I Euclidean quantum in d + 1

[Qi Hu et al. 2018]



Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

UV

IR

I the bond dimension D stays fixed
I the local physical dimension explodes C2 ⊗ · · · ⊗ C2 −→ F (L2([x , x + dx ])).

=⇒ Spins become fields – (' central limit theorem ')
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Continuous Matrix Product States

Type of ansatz for bosons on a fine grained d = 1 lattice
I Matrices Aik (x) where the index ik corresponds to ψ†ik (x)|0〉 in physical space.

Informal cMPS definition

A0 = 1+ εQ
A1 = εR

A2 =
(εR)2
√

2
· · ·

An =
(εR)n
√

n
· · ·

so we go from ∞ to 2 matrices

Fixed by:
I Finite particle number

I Consistency



Continuous Matrix Product States

Definition

|Q,R,ω〉 = 〈ωL|P exp
{∫L

0
dx Q ⊗ 1+ R ⊗ψ†(x)

}
|ωR〉 |0〉

I Q,R are D × D matrices,
I |ωL〉 and |ωR〉 are boundary vectors ∈ CD , for p.b.c. 〈ωL| · |ωR〉 → tr[ · ]
I [ψ(x), ψ†(y)] = δ(x − y)

Idea:

A(x) ' A01+ A1ψ
†(x)

' 1⊗ 1+ εQ ⊗ 1+ εR ⊗ψ†(x)
' exp

[
ε
(
Q ⊗ 1+ R ⊗ψ†(x)

)]
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Computations
Some correlation functions 〈

ψ̂(x)†ψ̂(x)
〉
= Tr

[
eTL(R ⊗ R)

]
〈
ψ̂(x)†ψ̂(0)†ψ̂(0)ψ̂(x)

〉
= Tr

[
eT(L−x)(R ⊗ R)eTx (R ⊗ R)

]
〈
ψ̂(x)†

[
−

d2

dx2

]
ψ̂(x)

〉
= Tr

[
eTL([Q,R]⊗ [Q,R])

]
with T = Q ⊗ 1+ 1⊗ Q̄ + R ⊗ R̄

Example
Lieb-Liniger Hamiltonian

H =

∫+∞
−∞ dx

[
dψ̂†(x)

dx
dψ̂(x)

dx + cψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x)
]

Solve by minimizing:
〈Q,R | H |Q,R〉 = f (Q,R)

with fixed particle density 〈Q,R |ψ†(x)ψ(x) |Q,R〉.



Continuous Tensor Networks: blocking

Upon blocking:
♣ The physical Hilbert space

dimension d increases (idem
cMPS =⇒ physical field)

♣ The bond dimension D increases
too
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Choice of trivial tensor

For MPS, not much choice:

= + ε · · ·
= 1⊗ |0〉+ εQ ⊗ |0〉+ εR ⊗ψ†(x)|0〉

For TNS in d > 2, many options:
1. Take a δ between all legs ∼ GHZ state T (0) =

=⇒ trivial geometry
2. Take two identities T (0) =

=⇒ breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions T (0) = +
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Ansatz

1 – Take a “Trivial” tensor:

T (0)
φ(1),φ(2),φ(3),φ(4) =

∼ exp
{
−1
2

D∑
k=1

[φk(1) − φk(2)]2 + [φk(2) − φk(3)]2

+ [φk(3) − φk(4)]2 + [φk(4) − φk(1)]2
}

The indices φ are in RD (and not 1, · · · ,D)

2 – And add a “correction”:

exp
{
−ε2V [φ(1), · · · , φ(4)] + ε2α [φ(1), · · · , φ(4)]ψ†(x)

}
3 – Realize tensor contraction = functional integral and trivial tensor gives free field measure.
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Functional integral definition

|V , α〉 =
∫
Dφ exp

{
−

∫
Ω

ddx 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)] ψ̂†(x)
}

|0〉



Functional integral definition

|V ,B, α〉 =
∫
DφB(φ|∂Ω) exp

{
−

∫
Ω

ddx 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)]ψ†(x)
}

|0〉



Operator definition

|V , α〉 =

tr
[
T exp

(
−

∫T

0
dτ
∫

S
dx π̂k(x)π̂k(x)

2 +
∇φ̂k(x)∇φ̂k(x)

2 + V [φ̂(x)] − α[φ̂(x)]ψ†(τ, x)
)]

|0〉

where:
I φ̂k(x) and π̂k(x) are k independent canonically conjugated pairs of (auxiliary) field

operators: [φ̂k(x), φ̂l(y)] = 0, [π̂(x)k , π̂l(y)] = 0, and [φ̂k(x), π̂l(y)] = iδk,l δ(x − y) acting
on a space of d − 1 dimensions.
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Wave-function definition

A generic state |Ψ〉 in Fock space can be written:

|Ψ〉 =
+∞∑
n=0

∫
Ωn

ϕn(x1, · · · , xn)

n! ψ†(x1) · · ·ψ†(xn) |0〉

where φn is a symmetric n-particle wave-function

Functional integral representation

ϕn(x1, · · · , xn) = 〈α[φ(x1)] · · ·α[φ(xn)] 〉aux

with:

〈·〉aux =

∫
Dφ · B(φ|∂Ω) exp

[
−

1
2

∫
Ω

ddx [∇φk(x)]2 + V [φ(x)]
]

I ∼ Moore-Read wave-function for Quantum Hall, but generic QFT



Expressivity and stability

How big are cTNS?

Stability
The sum of two cTNS of bond field
dimension D1 and D2 is a cTNS with bond
field dimension D 6 D1 + D2 + 1:

|V1, α1〉+ |V2, α2〉 = |W , β〉

Expressiveness
All states in the Fock space can be
approximated by cTNS:

I A field coherent state is a cTNS with
D = 0

I Stability allows to get all sums of field
coherent states

Note: expressiveness can also be obtained with D = 1 but it is less natural. Flexibility in D
makes the expressivity higher for restricted classes of V and α.



Computations
Define generating functional for normal ordered correlation functions

Zj ′,j =
1

〈V , α|V , α〉 〈V , α| exp
(∫

dx j ′(x)ψ†(x)
)

exp
(∫

dx j(x)ψ(x)
)
|V , α〉

Operator representation

Zj′j = tr
[

B ⊗ B∗T exp
{∫T/2

−T/2

(
Tj′j −

∫
S

j · j ′
)}]

with transfer matrix:

Tj′j =

∫
S

dx H(x)⊗ 1+ 1⊗H∗(x) +
(
α[φ̂(x)] + j ′(x)

)
⊗
(
α[φ̂(x)]∗ + j(x)

)
and

H(x) =
D∑

k=1

[π̂k(x)]2 +
[
∇φ̂k(x)

]2

2 + V [φ̂(x)]

=⇒ cMPS brought us from 1 to 0, cTNS bring us from d to d − 1.



Redundancies

Discrete redundancy

Different elementary tensors are equivalent,
they give the same state:

∼

when = and =

up to boundary terms:

Continuum redundancy

V (φ)→ V (φ) +∇ ·F [x , φ(x)]

Just Stokes’ theorem. If Ω has a boundary ∂Ω:

D[φ]→ D[φ] exp
{∮
∂Ω

dd−1x F [x , φ(x)] · n(x)
}
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Rescaling

C(x1, · · · , xn) = 〈T (1)|O(x1) · · ·O(xn)|T (1)〉,
the objective is to find a tensor T (λ) of new parameters such that:

C(λx1, · · · , λxn) ∝ 〈T (λ)|O(x1) · · ·O(xn)|T (λ)〉.

Doable exactly:
V → λdV ◦ λ 2−d

2 and α→ λ
d
2α ◦ λ

2−d
2

– d = 2, All powers of the field in V and α yield relevant couplings
– d = 3, The powers p = 1, 2, 3, 4, 5 of the field in V yield relevant ∆ > 0 couplings. p = 6

is marginal in V . For α, p = 1, 2 are relevant and p = 3 is marginal. All other p are
irrelevant.
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C(λx1, · · · , λxn) ∝ 〈T (λ)|O(x1) · · ·O(xn)|T (λ)〉.

Doable exactly:
V → λdV ◦ λ 2−d

2 and α→ λ
d
2α ◦ λ

2−d
2

– d = 2, All powers of the field in V and α yield relevant couplings
– d = 3, The powers p = 1, 2, 3, 4, 5 of the field in V yield relevant ∆ > 0 couplings. p = 6

is marginal in V . For α, p = 1, 2 are relevant and p = 3 is marginal. All other p are
irrelevant.



Renormalization

Scaling

– d = 2, All powers of the field in V and α yield relevant couplings
– d = 3, The powers p = 1, 2, 3, 4, 5 of the field in V yield relevant ∆ > 0 couplings. p = 6

is marginal in V . For α, p = 1, 2 are relevant and p = 3 is marginal. All other p are
irrelevant.

For finite bond field dimension in d = 3, finite number of parameters for renormalized cTNS:

V (φ) = Aφ+ Bφφ+ Cφφφ+ Dφφφφ+ Eφφφφφ+ Fφφφφφφ
α(φ) = Xφ+ Yφφ+ Zφφφ

Proper renormalization procedure not checked yet



Getting back cMPS

One can get back cMPS with finite bond dimension by:
1. Compactification Take d − 1 dimensions out of d to be very small

|V ,B, α〉 ' tr
[
B̂ T exp

(
−

∫T

0
dτ

D∑
k=1

P̂2
k

2 + V [X̂ ] − α[X̂ ]ψ†(τ)

)]
|0〉

=⇒ Hilbert space of a quantum particle in D space dimensions.
2. Quantization Take V with D deep minima to force the auxiliary field to take only D

possibilities



Generalization

For a general Riemanian manifold M with boundary ∂M, define:

|V ,B, α〉 =
∫
DφB(φ|∂M) exp

{
−

∫
M

ddx√g
(gµν∂µφk∂νφk

2 + V [φ,∇φ] − α[φ,∇φ]ψ†
)}

|0〉

i.e. add curvature and possible anisotropies in V and α

Example: α[x , φ,∇φ] localized on the boundary and
hyberbolic metrix g :

→ cMERA-like in d − 1 dimensions
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DφB(φ|∂M) exp

{
−

∫
M

ddx√g
(gµν∂µφk∂νφk

2 + V [φ,∇φ] − α[φ,∇φ]ψ†
)}

|0〉

i.e. add curvature and possible anisotropies in V and α

Example: α[x , φ,∇φ] localized on the boundary and
hyberbolic metrix g :

→ cMERA-like in d − 1 dimensions



Future

Limitations and work for the future
I Quite formal out of the Gaussian regime
I Computation through dimensional reduction not trivial
I Limited to bosonic field theories (so far)
I Gauge invariant states
I Can one say anything about topology?



Summary

|V ,B, α〉 =
∫
DφB(φ|∂Ω) exp

{
−

∫
Ω

ddx 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)]ψ†(x)
}

|0〉

Continuous tensor network states are natural continuum limits of tensor network states and
natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks
2. Can be made Euclidean invariant
3. Motto of tensor networks: trade a dimension for a variational optimization
4. Still need to be properly renormalized (in perturbative and RG sense)
5. Still needs to be used to approximate non-trivial non-Gaussian ground states


