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3 questions in quantum mechanics

Continuous measurement

How to gently measure and
control quantum systems?
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Gravity and quantum
Could gravity, in principle,
not be quantum?

Many-body & QFT
How to efficiently parameterize
many-body and QFT states
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Observation
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Motivation

“We know that the moon is demonstrably not there when
nobody looks”

David Mermin 1981



Introduction

Measurement postulate

For a system “described” by [\p) € 5# and a measurement
of projectors TT; such that ) . TT; = 1:
& Born rule : Result i with probability P[i] = (U[IT;[)

& Collapse : [V) — n]‘PlIE,>]

Max Born John von Neumann
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Measurement postulate

For a system “described” by [\p) € 5# and a measurement
of projectors TT; such that ) . TT; = 1:

& Born rule : Result i with probability P[i] = (U[IT;[)

& Collapse : [V) — H]Lllf,>]

Max Born John von Neumann

What is a measurement?

» When can the postulate be applied?
» Can measurement be deduced from other postulates?

Albert Einstein John S. Bell
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Limit between the system, obeying the Schrédinger equation and the observer who can apply
the measurement postulate.
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Continuous observation
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Repeated interactions

Discrete quantum trajectories

A sequence of p,) or p, (random) and the corresponding
measurement results 6, = £1.
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Repeated interactions

Discrete quantum trajectories

A sequence of [\b,) or p, (random) and the corresponding
measurement results 6, = £1.

» Make the interaction between system and probe smoother Uyt = 1 4 iy/e Agys @ Bprope

» Increase the frequency at which probes are sent: T o €

Continuous quantum trajectories

A continuous map [\¢) or p; (random) and the corresponding 7

continuous measurement signal y; o< /e >, dx. Typically: %J
i

di,) = [—iH dt + V(A — (A))dW, — %(A —(A))? dt} W)

where W; Brownian A\ Essentially a central limit theorem result A\



In practice

» Discrete situations “LKB style”, with actual
repeated interactions

» Almost “true” continuous measurement
settings (quantum optics, quantum dots)
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Example 0

Situation considered
Pure continuous measurement of a qubit:
» for the population: p; = [(1 [b:)[?
» one can show: dp; = /¥ p:(1 — p;) dW;
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Situation considered
Pure continuous measurement of a qubit:
» for the population: p; = [(1 [b:)[?
» one can show: dp; = /Y p:(1 — p;) dW;




Questions

Measurement is now dynamical with a time scale y~1. Hence one can:
& Optimize it
& Study its competition with (few-body) unitary dynamics o w;

& Exploit it for real-time “soft” control



Questions

Measurement is now dynamical with a time scale y~1. Hence one can:
& Optimize it
& Study its competition with (few-body) unitary dynamics o w;

& Exploit it for real-time “soft” control

Strong continuous observation vy > w; Weak continuous observation vy~ w;
» Non-demolition measurement » Optimization
» Quantum jumps » Control
» Quantum spikes » Continuous quantum error correction
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath
» p; ground state population
» Thermal bath p, — pBo'tzmann

‘
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» Continuous energy measurement p; — 0 or 1

No measurement, y =0A
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath
» p; ground state population
» Thermal bath p, — pBo'tzmann

» Continuous energy measurement p; — 0 or 1

Weak measurement, y = 0.1A
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath
» p; ground state population
» Thermal bath p, — pBo'tzmann

e
(
\
N

1 4 B I ——

» Continuous energy measurement p; — 0 or 1

Pretty strong measurement, y = 100 A
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath
» p; ground state population
» Thermal bath p, — pBo'tzmann

» Continuous energy measurement p; — 0 or 1

Strong measurement, y = 1000 A
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath
» p; ground state population
» Thermal bath p, — pBeftzmann

» Continuous energy measurement p; — 0 or 1

Very strong measurement, y = 10% A
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Strong measurement limit: example 1

Situation considered
Qubit coupled to a thermal bath

» p; ground state population

» Thermal bath p; — pBoltzmann

» Continuous energy measurement p; — 0 or 1

Uber strong measurement, y = 10° A
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Strong measurement limit: example 1

Situation considered

Qubit coupled to a thermal bath
» p: ground state population
» Thermal bath p, — pBeltzmann

» Continuous energy measurement p; — 0 or 1

Uber strong measurement, y = 10° A
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Strong measurement limit: example 2

System considered
Qubit in a magnetic field | measurement basis

> pe = (el 1)

» H = %0, Rabi oscillations p; ~ cos(wt)

» Measurement p; — 0 or 1

No measurement, y = 0w
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System considered
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> pr = [(Wel 1)
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Strong measurement limit: example 2

System considered

Qubit in a magnetic field | measurement basis

> pe = (e 1), @ -

» H = %0, Rabi oscillations p; ~ cos(wt)

» Measurement p; — 0 or 1
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System considered

Qubit in a magnetic field | measurement basis

> pr = (el 1)
» H = o0, Rabi oscillations p; ~ cos(wt)

» Measurement p; — 0 or 1
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1

Ol it
" |

20



Strong measurement limit: example 2

System considered

Qubit in a magnetic field | measurement basis

> pr = (el 1)
» H = o0, Rabi oscillations p; ~ cos(wt)

» Measurement p; — 0 or 1

Pretty strong measurement, y = 30 w
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System considered

Qubit in a magnetic field | measurement basis

> pr = |<l~|)t| T>z|2
» H = %0, Rabi oscillations p; ~ cos(wt)
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Strong measurement limit: example 2

System considered

Qubit in a magnetic field | measurement basis

> pr = |<l~|)t| T>z|2

» H = %0, Rabi oscillations p; ~ cos(wt)

» Measurement p; — 0 or 1

Very strong measurement, y = 300 w
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Strong measurement limit: example 2

System considered

Qubit in a magnetic field 1. measurement basis

> pr = (el ).
» H = %o, Rabi oscillations p; ~ cos(wt)

» Measurement p; — 0 or 1

Uber strong measurement, y = 1000 w
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Theorem: jumps

1. Markovian evolution £(p:) = L(p¢) — i [H, p¢]
2. Continuous measurement of O = Y, A¢|k) (k|

Quantum jumps

When vy — +00, p; converges to a Markov p
chain with transition matrix M:

“incoherent” contribution ; ’H—JWB
M= 15+ ‘ Ay
i—j — -jj o
4’Y A,'—)\j
SY—

“coherent” contribution



A subtlety: spikes
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A subtlety: spikes
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» Remain in the limit
» Are Levy distributed

» Are univeral

Spikes:

» Are experimentally relevant (e.g. for control)

Carrying computations rigorously, one discovers things people did not expect and thought were
experimental mistakes



Some results

Strong continuous measurement

1. Jumps

Pe

° @
®
T| “ L“;.J.J. i °

{> M Bauer, D Bernard, AT JPA 2015
{ AT, M Bauer, D Bernard PRA 2015
{ M Bauer, D Bernard, AT JPA 2016

| | “ L“;.J.L d 2.

Others
1.

Control
< A T, M Bauer, D Bernard EPL 2014

Optimal measurement
<> AT, PRA 2016

Exact results
{ AT, PRA-Rapid 2018
Non-Markovian exploration

< AT, Quantum 2017

Many-body exploration
< X Cao, AT, A De Luca, 2018



Future

Fast transition in the field in the last 2 — 3 years: new questions

Non-Markovianity
How to include it in the
theory?

» N-M feedback

» N-M measurement

1 - 0
(Gex(DAldga(2) (Gea(4)| Alga(4))

& Non-Markovian Monte-Carlo
AT, Quantum 2017

Many-body
Joining measurement and
MB dynamics

» For integrable models

» KPZ universality class?

©OOO00000
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A arXiv:1804.04638
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Tensor network states: a tool

Applications

» Quantum information theory
» Statistical Mechanics

» Quantum gravity

» Many-body quantum




Tensor network states: a tool

Applications

» Quantum information theory
» Statistical Mechanics
» Quantum gravity

» Many-body quantum

Negative theology

» Not covariant/geometric
objects guv or R,

» Not tensor models
[Rivasseau, Gurau, ...]



Many-body problem

Possible solutions

Problem

» Perturbation theory

Finding low energy states of

» Monte Carlo

» Bootstrap IR fixed point

» Variational optimization (e.g. Mean
Field, TCSA, tensor networks)

is hard because dim . « DV



Variational optimization

Generic (spin D/2) state € -

) = Y Gy bty i)

15725+ yin

Exact variational optimization
To find the ground state:

min LRI
wyexr (bhb)

10) =

» dims# = DN



Variational optimization

Generic (spin D/2) state € J#-

W)= D Capyin Ity i)

iyi2y e yin

Approx. variational optimization
To find the ground state:

(WIH[)

0} = | i, =)

» dim.# o Poly(N) or fixed



An idea popular in many fields

» Mean field approximation (of which TNS are an extension)

Px1y X2y -+, Xn) = P1(x1) Ya(x2) - - - Palxy)

» Special variational wave functions in Quantum chemistry (whole industry of ansatz)
» Moore-Read wavefunctions in the study of the quantum Hall effect

b,y s x) = (BOble) - $lx) )

CFT

» Fully connected and convolutional neural networks used in machine learning

Feature maps

Convolutions i C i i Fully




Interesting states are weakly entangled

Low energy state

b)) =0) or [1) ..

Reduced density matrix

p = troe [[) (W]

Entanglement entropy
S =—tr[plogp]

Area law

S x [0D]



Interesting states are weakly entangled

Low energy state

b)) =0) or [1) ..

Reduced density matrix

p = troe ) (]

Entanglement entropy
S =—tr[plogp]

Area law

S x [0D]



Typical states are strongly entangled

Random state

b)

Unaar|trivial)

Reduced density matrix

Entanglement entropy

—tr[plog p]

S:

Volume law

S x |D]




Constructing weakly entangled states



Constructing weakly entangled states

1. Put auxiliar
® ® ® ® ® maximally }clentangled
states between sites
@ @ @ @ [ 4
(] TRl T3] T T3] | R §U>U>
O O O O O =
[ 4 @ [ 4 @ [ 4
(Bl TR 2] T2 T3] |
¢ ¢ ¢ ¢ ¢



Constructing weakly entangled states

1. Put auxiliary
maximally entangled
states between sites

X

o-0=) W

j=1

2. Map to initial Hilbert
space on each site

‘:A:C“X—)CD




Tensor network states: definition

Why “tensor” network?
//" . J2 i
88 - i
!/'// I Ja

. (MAXx d i
A:C* = C Ajl 25J32Ja

with tensor contractions on links



Tensor network states: definition

Why “tensor” network?

J2 i i3

- e

1 Ja

. (MAXx d i
A:C* = C Ajl 25J32Ja

Optimization
Find best A for fixed x (D x x* coeff.)

. (AAIA)
Eo = min (AIA)

oE

3AT
aAj1 22503 5J4

for example go down

with tensor contractions on links




Some facts

d =1 spatial dimension

Theorems (colloquially)

1. For gapped H, tensor network states |A)
approximate well |0) with x fixed

2. All |A) are ground states of gapped H



Some facts

d = 1 spatial dimension d > 2 spatial dimension

Theorems (colloquially) Folklore
1. For gapped H, tensor network states |A) 1. For gapped H, tensor r]etwork states |A)
approximate well |0) with x fixed approximate well |0) with x fixed

2. All |A) are ground states of gapped H 2. Most |A) are ground states of gapped H



Limitations

Hard to contract in d > 2
In d > 2 one can have:
> |A) known

> (AI@;@j|A> hard to compute exactly
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Limitations

Hard to contract in d > 2 Expressive but opaque

In d > 2 one can have: Generally hard to interpret
> |A) known » Tensor carries IR-irrelevant information
> (AI@;@j|A> hard to compute exactly » Hard to constrain long distance behavior

= Go to the continuum and QFT: Major objective and challenge

discrete tensor network continuum description ?7



Continuous Matrix Product states

[Verstraete & Cirac 2010]: continuum limit of Matrix Product States (d = 1 tensor networks)

dAdddllll
- R

Works for Lieb-Liniger model (boson with contact interactions), ¢*

Best method on the market for 1 +1 QFT

, etc.

But no version for d +1 QFT, even “no-go” theorems



Continuous Tensor Networks: blocking

Upon blocking:

¢ The physical Hilbert space
dimension D increases

¢ The bond (auxiliary space)
dimension x increases too




Result

physical degrees of fredom physical field

auxiliary field

auxiliary degrees of fredom

AT, J. I. Cirac, Phys. Rev. X 2019 (in print)



Result

physical degrees of fredom physical field

auxiliary field

auxiliary degrees of fredom

AT, J. I. Cirac, Phys. Rev. X 2019 (in print)

Continuous tensor network state (heuristically)

State o) of d + 1 QFT from an auxiliary d dimensional theory of random fields ¢:

o) = 20 e { ~ [ 21001 - atore) @*(x)} )

creation

1. Genuine continuum limit of discrete tensor networks
2. The toolbox is translated to the continuum
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Reopens the field after 8 years of only d =1
So far, success expected from success in the discrete and continuous d =1
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Future

Reopens the field after 8 years of only d =1
So far, success expected from success in the discrete and continuous d =1

New non-perturbative method, how will it fare?
Continuous tensor network states (cTNS) for dimensional reduction

laux;) |V, B, a)
lin) lout)

L e 1 . —
| i [ {
X _ 0Qin Q 0Qout
T
Contracting a cTNS in 2d = Solving X field theories in 1d = Optimizing x cTNS in 1d

One can trade a dimension for a variational optimization



Summary: 2 fields, 2 main results

Continuous quantum measurement Tensor networks for QFT

T

P

||1,L " .|.L L”
10
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10
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5

Mathematical understanding of stochastic

. Extend a powerful variational method from the
dynamics to help control quantum systems

lattice to the continuum

in the lab
Main results: Main results:
» Quantum jumps » An ansatz of continuous tensor network state

> Spikes » Promising non-perturbative methods for QFT



Bonus slides



Matrix product states

N)) = Z Ciyyiny--yin il)"' )in>
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Matrix product states

WYy =D Ciyriy liny -

1502y in

Matrix Product States (MPS)

ALRY =Y (LA (1)A,(2) -~ A (n)IR) ity - -+ in)

il‘i27"')in

» A; are D x D complex matrices
> Aisa2x D x D tensor [Allx,
» [L) and |R) are D-vectors.

yin)
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il‘i27"')in

» A; are D x D complex matrices
> Aisa2x D x D tensor [Allx,
» [L) and |R) are D-vectors.
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Remark: actually equivalent
with the density matrix
renormalization group
(DMRG)



Matrix product states

) =

1502y in

Matrix Product States (MPS)

ALR) = Y (LA (1)A(2) - Ai (n)IR) |y, - --

il‘i27"')in

» A; are D x D complex matrices
> Aisa2x D x D tensor [Allx,
» [L) and |R) are D-vectors.

& nx 2 x D? parameters instead of 2"

z C”l»’.Z»"'

Sip 1Lyt )In>

Remark: actually equivalent
with the density matrix
renormalization group
(DMRG)

s in)

& D is the bond dimension and encodes the size of the variational class



Graphical notation
AL R) =3 i (LA (DAL (2) - A (n)IR) liny -+ i)

Notation: [Alx, = —l— and k—— 1= by, gives:

anr =t b LLLLLLLLLL LI LI L L
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Example: computation of correlations



Graphical notation
‘A> L) R> = Zihizy...’in<L|Ai1(1)Aiz(2) e Al,,(n)lR> |i1) T )in>

Notation: [Alx, = —l— and k—— 1= by, gives:

anr =t b LLLLLLLLLL LI LI L L

Example: computation of correlations

can be done efficiently by iterating 2 maps:

.
O = and q)o ZI
——

The contraction for a d = 1 system, can be seen as an open-system dynamics in d = 0.




Generalizations: different tensor networks

Matrix Product States (MPS)

SAVVLLLLLLLL L L L

Projected Entangled Pair States Multi-scale Entanglement
(PEPS) Renormalization Ansatz (MERA)




Some facts

A list of theorems [very colloquially]:

» Expressiveness [trivial] Tensor Network States cover % when D x 2"
» Area law The entanglement of a subregion of space scales as its area for a TNS

» Efficiency [gapped] Matrix Product States approximate well the ground states of gapped
systems in 1 spatial dimension

» Efficiency [critical] Multi-scale Entanglement Renormalization Ansatz (MERA)
approximate well the ground states of critical systems in 1 spatial dimension.

» Symmetries Physical symmetries can be implemented locally on the bond space
» Inverse problem TNS are the ground state of a local parent Hamiltonian



Successes and limits

Successes o
Limits
Q Arbitrary precision for 1d quantum systems .
& Hard to contract in d > 2

Q Classification of topological phases in 1d and 2d ) o
& No continuum limit in d > 2

O Progress on non-Abelian lattice Gauge theories

Lack of analytic techni
© AdS/CFT toy models # Lack of analytic techniques



Successes and limits

Successes —
Limits
Q Arbitrary precision for 1d quantum systems )
& Hard to contract in d > 2

& No continuum limit in d > 2

& Lack of analytic techniques

Q Classification of topological phases in 1d and 2d
O Progress on non-Abelian lattice Gauge theories
O AdS/CFT toy models

Can one apply tensor network techniques directly in the continuum, to QFT?
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Tensor networks for quantum states [\)
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Lots of “Continuous tensor network” concepts

Tensor networks for quantum states [\)

» JLLULLLLLLLL LU
MPS — cMPS
[Verstraete & Cirac 2010]

>
MERA — cMERA
[Haegeman et al. 2013]

PEPS — cPEPS

Tensor networks for partition functions

Z(B)

» StatMech in d

» Euclidean quantum in d +1

[Qi Hu et al. 2018]



Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS
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» the bond dimension D stays fixed



Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

JAiddildl
~LLdl R

» the bond dimension D stays fixed

» the local physical dimension explodes €2 ® - -- @ €2 — .Z (L2?([x, x + dx])).
= Spins become fields — (~ central limit theorem =)



Continuous Matrix Product States

Type of ansatz for bosons on a fine grained d = 1 lattice

» Matrices A; (x) where the index iy corresponds to Wi (x)|0) in physical space.

Informal cMPS definition

Fixed by:
Ao =1+¢eQ » Finite particle number
A =¢R 000000
Az Sk 01000 0 o
v2 L1238l . .
A (eR)" » Consistency

so we go from oo to 2 matrices



Continuous Matrix Product States

Definition

L
[ 2 ) — sl {L dx Qo1+R® uﬂ(x)} lwr) [0)

> Q, R are D x D matrices,
» |w;) and |wg) are boundary vectors € CP, for p.b.c. {wy|-|wg) — tr[-]

> (), Pi(y)] =8(x—y)

Idea:



Continuous Matrix Product States

Definition

L
[ 2 ) — sl {L dx Qo1+R® uﬂ(x)} lwr) [0)

> Q, R are D x D matrices,
» |w;) and |wg) are boundary vectors € CP, for p.b.c. {wy|-|wg) — tr[-]

> (), Pi(y)] =8(x—y)

Idea:
A(x) = Aol + AT (x)
~1@1+eQ®1+eR2P(x)
~ exp [e (Q® 1+ R®1bT(x))]



Computations

Some correlation functions

with T=Q®1+1®Q+R®R
Example

Lieb-Liniger Hamiltonian

= J o [dwx} R L+ 10 BB )
S dx dx

Solve by minimizing:

with fixed particle density (Q, R| W (x)(x) @, R).



Continuous Tensor Networks: blocking




Continuous Tensor Networks: blocking

Upon blocking:

& The physical Hilbert space
dimension d increases (idem
cMPS = physical field)

& The bond dimension D increases
too



Choice of trivial tensor

For MPS, not much choice:

i .

=120 +eQ®10) +eR @V (x)0)
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— breakdown of Euclidean invariance
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For TNS in d > 2, many options:
1. Take a & between all legs ~ GHZ state T(©) = ><
= trivial geometry

2. Take two identities T(0) =
— breakdown of Euclidean invariance

3. Take the sum of pairs of identities in both directions T(®) = >< + /\‘\/



Ansatz

1 — Take a “Trivial” tensor:
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Ansatz

1 — Take a “Trivial” tensor:

¢2)  ¢B)
Td(>0()1),d>(2),¢(3)‘¢,(4) = - ;;2575.-—'
o) o)
-1 D
~ exp {2 Z[d)k(l) — dr(2)]% + [br(2) — dr(3)]?
k=1

10x(3) — br(@) + [dr(4) — mm?}

The indices ¢ are in RP (and not 1,---, D)

2 — And add a “correction”:

exp {—e2V [d(1),--, d(4)] + 2ad(1),- -, d(H] YT (x)}

3 — Realize tensor contraction = functional integral and trivial tensor gives free field measure.



Functional integral definition
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Functional integral definition

|V, B, )

boundary tensor

physical indices



Operator definition

g

|V7 (X> =
T /N N\
o [rrexp H dTJ dx ﬁk(*gﬁk(x) 4 V“’k(x)j‘“(x) V)] — ald ()] pt (T,x))] 0)
0 S
where:

» $u(x) and Rx(x) are k independent canonically conjugated pairs of (auxiliary) field

operators: [bx(x), §i(y)] = 0, [Rx)k, Ri(y)] = 0, and [bx(x), Ri(y)] = idk, 8(x — y)
acting on a space of d — 1 dimensions.



Operator definition

laux;) |V,B,a)
lin) lout)
X aQin Q agout
- >
|V) B) “) =
T A~ o a
tr [@‘Texp (—J dTJ dx ﬁk(x);k(x) + Vd)k(x)2Vd)k(x) + V[a\)(X)] — a[a\)(X)] IPT(T,X))} 0)
o Js
where:

> E]\)k(x) and 7 (x) are k independent canonically conjugated pairs of (auxiliary) field

operators: [y (x), di(y)] =0, [R(x)k, Ri(y)] =0, and [ (x), i (y)] = i8y,1 8(x — y)
acting on a space of d — 1 dimensions.



Wave-function definition

A generic state [¥) in Fock space can be written:

+oo

Wy = ZJ @nlx1y- -y xn) Wixa) Wi (x,) [0)

I
n:O n n.
where ¢, is a symmetric n-particle wave-function
Functional integral representation

(Pn(XI) co )Xn) - < O([(I)(X]_)] e oc[(])(x,,)] >au><
with:

(Yo =JD¢ . B(dloa) exp [—% JQ d9x [V P + VI(x)]

» ~ Moore-Read wave-function for Quantum Hall, but generic QFT



Expressivity and stability

How big are cTNS?

Stability Expressiveness
The sum of two cTNS of bond field All states in the Fock space can be
dimension D; and D, is a cTNS with bond approximated by cTNS:

field dimension D < D1 + D; + 1: » A field coherent state is a cTNS with

D=0

» Stability allows to get all sums of field
coherent states

Vi, o) + [V, 00) = [W, B)

Note: expressiveness can also be obtained with D =1 but it is less natural. Flexibility in D
makes the expressivity higher for restricted classes of V' and «.



Computations
Define generating functional for normal ordered correlation functions

Appp— (V.alesp (j dxj’(xw(x)> exp ( | dxj(x)w(x)) IV, )

(V, oV, o

Operator representation

Z,j/j =tr

T/2
B®B*‘J’exp J <Tj/j—J JJ/>
—T/2 S

Ty = [ x50 @ 1+ 103600 + (ol +170) o (Bl +00)

with transfer matrix:

and

Al [Vdék(x)f

D
Z + VI$(x)]

k=1

= cMPS brought us from 1 to 0, cTNS bring us from d to d — 1.



Redundancies

Discrete redundancy

Different elementary tensors are equivalent,
they give the same state:
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Redundancies

Discrete redundancy Continuum redundancy

Different elementary tensors are equivalent, v SV
+V.-F
they give the same state: () () b, 6]

S
when o = 7 and g =\

up to boundary terms:

Just Stokes' theorem. If QO has a boundary 9Q):

Dlp] — Dld] exp {ﬁddlx Flx, d(x)] - n(x)}

o]




Rescaling

Clxty =+ x) =(T(1)O00xa) - - O(x)I T (1)),
the objective is to find a tensor T(A) of new parameters such that:

CAx, -+, Axp) o (T(A)|O(xa) -+ - O () T(A)).
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Renormalization

Scaling

— d =2, All powers of the field in V and « yield relevant couplings

— d =3, The powers p =1,2,3,4,5 of the field in V yield relevant A > 0 couplings. p =6
is marginal in V. For o, p = 1,2 are relevant and p = 3 is marginal. All other p are
irrelevant.

For finite bond field dimension in d = 3, finite number of parameters for renormalized cTNS:

V(p) = Ad + Bdd + Codd + Ddddd + EQdddd + FOddddd
x($) =X+ Ydd + Zodd

Proper renormalization procedure not checked yet



Getting back cMPS

One can get back cMPS with finite bond dimension by:
1. Compactification Take d — 1 dimensions out of d to be very small

T D B
|V, B, o) >~ tr {E‘Iexp (—J dTZ ?’% + VIX] - afX] IIJT(T))} 0)
0 k=1

= Hilbert space of a quantum particle in D space dimensions.

2. Quantization Take V with D deep minima to force the auxiliary field to take only D
possibilities



Generalization

For a general Riemanian manifold M with boundary 0M, define:

IV, B, o) = J@q» B(dlanc) exp {—Jﬁdxﬁ(w + VIVl = ald, Vol o) }|0>

i.e. add curvature and possible anisotropies in V' and «



Generalization

For a general Riemanian manifold M with boundary 0M, define:

M

V,B, &) = J"Dd) B(dlon) exp { Jddx\/_( +Vid, Vo] — ald, V] lw) }|0>

i.e. add curvature and possible anisotropies in V' and «

Example: «[x, ¢, V] localized on the boundary and
hyberbolic metrix g:

— cMERA-like in d — 1 dimensions



Future

Limitations and work for the future

v

Quite formal out of the Gaussian regime

Computation through dimensional reduction not trivial
Limited to bosonic field theories (so far)

Gauge invariant states

Can one say anything about topology?



Summary

D
V,8,60 = [ D0 Bl0laa) e {-| %% 3 3 [Vulx)? + Vigl) - alobol ' (x) | 0)
k=

1

Continuous tensor network states are natural continuum limits of tensor network states and
natural higher d extensions of continuous matrix product states.

1.

LA

Obtained from discrete tensor networks

Can be made Euclidean invariant

Motto of tensor networks: trade a dimension for a variational optimization
Still need to be properly renormalized (in perturbative and RG sense)

Still needs to be used to approximate non-trivial non-Gaussian ground states




