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3 questions in quantum mechanics

Continuous measurement
How to gently measure and
control quantum systems?

Gravity and quantum
Could gravity, in principle,
not be quantum?

Many-body & QFT
How to efficiently parameterize
many-body and QFT states
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Observation



Motivation

“We know that the moon is demonstrably not there when
nobody looks”

David Mermin 1981



Introduction

Measurement postulate
For a system “described” by |ψ〉 ∈H and a measurement
of projectors Πi such that

∑
i Πi = 1:

♣ Born rule : Result i with probability P[i ] = 〈ψ|Πi |ψ〉
♣ Collapse : |ψ〉 −→ Πi |ψ〉√

P[i ]
Max Born John von Neumann

Albert Einstein John S. Bell

What is a measurement?

I When can the postulate be applied?
I Can measurement be deduced from other postulates?
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Continuous observation



Repeated interactions

Discrete quantum trajectories
A sequence of |ψn〉 or ρn (random) and the corresponding
measurement results δn = ±1.

I Make the interaction between system and probe smoother Uint = 1+ i
√
εAsys ⊗ Bprobe

I Increase the frequency at which probes are sent: τ ∝ ε

Continuous quantum trajectories
A continuous map |ψt〉 or ρt (random) and the corresponding
continuous measurement signal yt ∝

√
ε
∑

k δk . Typically:

d|ψt〉 =
[
−iH dt +√γ(A − 〈A〉)dWt −

γ

2 (A − 〈A〉)2 dt
]
|ψt〉

where Wt Brownian BEssentially a central limit theorem result B
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In practice

I Discrete situations “LKB style”, with actual
repeated interactions

I Almost “true” continuous measurement
settings (quantum optics, quantum dots)



Example 0

Situation considered
Pure continuous measurement of a qubit:

I for the population: pt = |〈↑ |ψt〉|2
I one can show: dpt =

√
γ pt(1 − pt) dWt
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Questions

Measurement is now dynamical with a time scale γ−1. Hence one can:
♣ Optimize it
♣ Study its competition with (few-body) unitary dynamics ∝ ωi

♣ Exploit it for real-time “soft” control

Strong continuous observation γ� ωi

I Non-demolition measurement
I Quantum jumps
I Quantum spikes

Weak continuous observation γ ∼ ωi

I Optimization
I Control
I Continuous quantum error correction
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Strong measurement limit: example 1

Situation considered
Qubit coupled to a thermal bath

I pt ground state population
I Thermal bath pt → pBoltzmann

I Continuous energy measurement pt → 0 or 1

No measurement, γ = 0 λ
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Strong measurement limit: example 2

System considered
Qubit in a magnetic field ⊥ measurement basis

I pt = |〈ψt | ↑〉z |2
I H = ω

2 σx : Rabi oscillations pt ∼ cos(ωt)
I Measurement pt → 0 or 1

No measurement, γ = 0ω
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Theorem: jumps

1. Markovian evolution L(ρt) = L(ρt) − i [H, ρt ]

2. Continuous measurement of O =
∑

k λk |k〉〈k |

Quantum jumps
When γ→ +∞, ρt converges to a Markov
chain with transition matrix M:

Mi←j =

“incoherent” contribution︷︸︸︷
Lii

jj +
1

4γ

∣∣∣∣ Hij

λi − λj

∣∣∣∣2︸ ︷︷ ︸
“coherent” contribution



A subtlety: spikes

Spikes:
I Remain in the limit
I Are Levy distributed
I Are univeral
I Are experimentally relevant (e.g. for control)

Carrying computations rigorously, one discovers things people did not expect and thought were
experimental mistakes



A subtlety: spikes

Spikes:
I Remain in the limit
I Are Levy distributed
I Are univeral
I Are experimentally relevant (e.g. for control)

Carrying computations rigorously, one discovers things people did not expect and thought were
experimental mistakes



Some results

Strong continuous measurement

1. Jumps

2. Spikes

♦ M Bauer, D Bernard, AT JPA 2015

♦ AT, M Bauer, D Bernard PRA 2015

♦ M Bauer, D Bernard, AT JPA 2016

Others

1. Control
♦ A T, M Bauer, D Bernard EPL 2014

2. Optimal measurement
♦ AT, PRA 2016

3. Exact results
♦ AT, PRA-Rapid 2018

4. Non-Markovian exploration
♦ AT, Quantum 2017

5. Many-body exploration
♦ X Cao, AT, A De Luca, 2018



Future
Fast transition in the field in the last 2 − 3 years: new questions

Non-Markovianity
How to include it in the
theory?

I N-M feedback
I N-M measurement

♠ Non-Markovian Monte-Carlo
AT, Quantum 2017

Many-body
Joining measurement and
MB dynamics

I For integrable models
I KPZ universality class?
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♠ arXiv:1804.04638
X Cao, AT, A De Luca



Tensor network states: a tool

Applications

I Quantum information theory
I Statistical Mechanics
I Quantum gravity
I Many-body quantum

Negative theology

I Not covariant/geometric
objects gµν or Rσµνκ

I Not tensor models
[Rivasseau, Gurau, ...]



Tensor network states: a tool

Applications

I Quantum information theory
I Statistical Mechanics
I Quantum gravity
I Many-body quantum

Negative theology

I Not covariant/geometric
objects gµν or Rσµνκ

I Not tensor models
[Rivasseau, Gurau, ...]



Many-body problem

Problem

Finding low energy states of

Ĥ =

N∑
k=1

ĥk

is hard because dim H ∝ DN

Possible solutions

I Perturbation theory
I Monte Carlo
I Bootstrap IR fixed point
I Variational optimization (e.g. Mean

Field, TCSA, tensor networks)



Variational optimization

Generic (spin D/2) state ∈H :

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN〉

Exact variational optimization
To find the ground state:

|0〉 = min
|ψ〉∈H

〈ψ|H |ψ〉
〈ψ|ψ〉

I dim H = DN



Variational optimization

Generic (spin D/2) state ∈H :

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN〉

Approx. variational optimization
To find the ground state:

|0〉 = min
|ψ〉∈M

〈ψ|H |ψ〉
〈ψ|ψ〉

I dim M ∝ Poly(N) or fixed



An idea popular in many fields

I Mean field approximation (of which TNS are an extension)

ψ(x1, x2, · · · , xn) = ψ1(x1)ψ2(x2) · · ·ψn(xn)

I Special variational wave functions in Quantum chemistry (whole industry of ansatz)
I Moore-Read wavefunctions in the study of the quantum Hall effect

ψ(x1, x2, · · · , xn) =
〈
φ̂(x1)φ̂(x2) · · · φ̂(xn)

〉
CFT

I Fully connected and convolutional neural networks used in machine learning



Interesting states are weakly entangled

Low energy state
|ψ〉 = |0〉 or |1〉 ...

Reduced density matrix
ρ = trDc

[
|ψ〉〈ψ|

]
Entanglement entropy
S = −tr

[
ρ log ρ

]
Area law

S ∝ |∂D|
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Typical states are strongly entangled

Random state
|ψ〉 = UHaar|trivial〉

Reduced density matrix
ρ = trDc

[
|ψ〉〈ψ|

]
Entanglement entropy
S = −tr

[
ρ log ρ

]
Volume law

S ∝ |D|



Constructing weakly entangled states

1. Put auxiliary
maximally entangled
states between sites

=

χ∑
j=1

|j〉|j〉

2. Map to initial Hilbert
space on each site

= A : C4χ → CD
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Tensor network states: definition

Why “tensor” network?

A : C4χ → Cd −→ Ai
j1,j2,j3,j4

|A〉 =

with tensor contractions on links

Optimization
Find best A for fixed χ (D × χ4 coeff.)

E0 ' min
A

〈A|Ĥ |A〉
〈A|A〉

for example go down ∂E
∂Ai

j1,j2,j3,j4
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Some facts

d = 1 spatial dimension

Theorems (colloquially)

1. For gapped H, tensor network states |A〉
approximate well |0〉 with χ fixed

2. All |A〉 are ground states of gapped H

d > 2 spatial dimension

Folklore

1. For gapped H, tensor network states |A〉
approximate well |0〉 with χ fixed

2. Most |A〉 are ground states of gapped H
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Limitations

Hard to contract in d > 2
In d > 2 one can have:

I |A〉 known
I 〈A|Ôi Ôj |A〉 hard to compute exactly

Expressive but opaque
Generally hard to interpret

I Tensor carries IR-irrelevant information
I Hard to constrain long distance behavior

=⇒ Go to the continuum and QFT: Major objective and challenge

discrete tensor network continuum description ??
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Continuous Matrix Product states

[Verstraete & Cirac 2010]: continuum limit of Matrix Product States (d = 1 tensor networks)

UV

IR

Works for Lieb-Liniger model (boson with contact interactions), φ4, etc.
Best method on the market for 1 + 1 QFT

But no version for d + 1 QFT, even “no-go” theorems



Continuous Tensor Networks: blocking

Upon blocking:
♦ The physical Hilbert space

dimension D increases
♦ The bond (auxiliary space)

dimension χ increases too



Result

auxiliary field

physical field

auxiliary degrees of fredom

physical degrees of fredom

AT, J. I. Cirac, Phys. Rev. X 2019 (in print)

Continuous tensor network state (heuristically)

State |α〉 of d + 1 QFT from an auxiliary d dimensional theory of random fields φ:

|α〉 =
∫
Dφ exp

{
−

∫
dd x L[φ(x)] − α[φ(x)] ψ̂†(x)

creation

}
|Ω〉

1. Genuine continuum limit of discrete tensor networks
2. The toolbox is translated to the continuum
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Future

Reopens the field after 8 years of only d = 1
So far, success expected from success in the discrete and continuous d = 1

New non-perturbative method, how will it fare?

Continuous tensor network states (cTNS) for dimensional reduction

Contracting a cTNS in 2d = Solving χ field theories in 1d = Optimizing χ cTNS in 1d

One can trade a dimension for a variational optimization
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Summary: 2 fields, 2 main results

Continuous quantum measurement Tensor networks for QFT

Mathematical understanding of stochastic
dynamics to help control quantum systems
in the lab

Extend a powerful variational method from the
lattice to the continuum

Main results:
I Quantum jumps
I Spikes

Main results:
I An ansatz of continuous tensor network state
I Promising non-perturbative methods for QFT



Bonus slides

–



Matrix product states

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,in |i1, · · · , in〉

Matrix Product States (MPS)

|A, L,R〉 =
∑

i1,i2,··· ,in

〈L|Ai1(1)Ai2(2) · · ·Ain(n)|R〉 |i1, · · · , in〉

I Ai are D × D complex matrices
I A is a 2× D × D tensor [Ai ]k,l
I |L〉 and |R〉 are D-vectors.

Remark: actually equivalent
with the density matrix
renormalization group
(DMRG)

♦ n × 2× D2 parameters instead of 2n

♦ D is the bond dimension and encodes the size of the variational class
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Graphical notation
|A, L,R〉 =∑i1,i2,··· ,in〈L|Ai1(1)Ai2(2) · · ·Ain(n)|R〉 |i1, · · · , in〉

Notation: [Ai ]k,l = and k l =
∑
δk,l gives:

|A, L,R〉 =

Example: computation of correlations

〈A|O(ik)O(i`)|A〉 =

can be done efficiently by iterating 2 maps:

Φ = and ΦO =

The contraction for a d = 1 system, can be seen as an open-system dynamics in d = 0.
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Generalizations: different tensor networks

Matrix Product States (MPS)

Projected Entangled Pair States
(PEPS)

Multi-scale Entanglement
Renormalization Ansatz (MERA)



Some facts

A list of theorems [very colloquially]:
I Expressiveness [trivial] Tensor Network States cover H when D ∝ 2n

I Area law The entanglement of a subregion of space scales as its area for a TNS
I Efficiency [gapped] Matrix Product States approximate well the ground states of gapped

systems in 1 spatial dimension
I Efficiency [critical] Multi-scale Entanglement Renormalization Ansatz (MERA)

approximate well the ground states of critical systems in 1 spatial dimension.
I Symmetries Physical symmetries can be implemented locally on the bond space
I Inverse problem TNS are the ground state of a local parent Hamiltonian



Successes and limits

Successes

♥ Arbitrary precision for 1d quantum systems
♥ Classification of topological phases in 1d and 2d
♥ Progress on non-Abelian lattice Gauge theories
♥ AdS/CFT toy models

Limits

♠ Hard to contract in d > 2
♠ No continuum limit in d > 2
♠ Lack of analytic techniques

Can one apply tensor network techniques directly in the continuum, to QFT?
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Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

UV

IR

I the bond dimension D stays fixed
I the local physical dimension explodes C2 ⊗ · · · ⊗ C2 −→ F (L2([x , x + dx ])).

=⇒ Spins become fields – (' central limit theorem ')
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Continuous Matrix Product States

Type of ansatz for bosons on a fine grained d = 1 lattice
I Matrices Aik (x) where the index ik corresponds to ψ†ik (x)|0〉 in physical space.

Informal cMPS definition

A0 = 1+ εQ
A1 = εR

A2 =
(εR)2
√

2
· · ·

An =
(εR)n
√

n
· · ·

so we go from ∞ to 2 matrices

Fixed by:
I Finite particle number

I Consistency



Continuous Matrix Product States

Definition

|Q,R,ω〉 = 〈ωL|P exp
{∫L

0
dx Q ⊗ 1+ R ⊗ψ†(x)

}
|ωR〉 |0〉

I Q,R are D × D matrices,
I |ωL〉 and |ωR〉 are boundary vectors ∈ CD , for p.b.c. 〈ωL| · |ωR〉 → tr[ · ]
I [ψ(x), ψ†(y)] = δ(x − y)

Idea:

A(x) ' A01+ A1ψ
†(x)

' 1⊗ 1+ εQ ⊗ 1+ εR ⊗ψ†(x)
' exp

[
ε
(
Q ⊗ 1+ R ⊗ψ†(x)

)]
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Computations
Some correlation functions 〈

ψ̂(x)†ψ̂(x)
〉
= Tr

[
eTL(R ⊗ R)

]
〈
ψ̂(x)†ψ̂(0)†ψ̂(0)ψ̂(x)

〉
= Tr

[
eT(L−x)(R ⊗ R)eTx (R ⊗ R)

]
〈
ψ̂(x)†

[
−

d2

dx2

]
ψ̂(x)

〉
= Tr

[
eTL([Q,R]⊗ [Q,R])

]
with T = Q ⊗ 1+ 1⊗ Q̄ + R ⊗ R̄

Example
Lieb-Liniger Hamiltonian

H =

∫+∞
−∞ dx

[
dψ̂†(x)

dx
dψ̂(x)

dx + cψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x)
]

Solve by minimizing:
〈Q,R | H |Q,R〉 = f (Q,R)

with fixed particle density 〈Q,R |ψ†(x)ψ(x) |Q,R〉.



Continuous Tensor Networks: blocking

Upon blocking:
♣ The physical Hilbert space

dimension d increases (idem
cMPS =⇒ physical field)

♣ The bond dimension D increases
too
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Choice of trivial tensor

For MPS, not much choice:

= + ε · · ·
= 1⊗ |0〉+ εQ ⊗ |0〉+ εR ⊗ψ†(x)|0〉

For TNS in d > 2, many options:
1. Take a δ between all legs ∼ GHZ state T (0) =

=⇒ trivial geometry
2. Take two identities T (0) =

=⇒ breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions T (0) = +
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Ansatz

1 – Take a “Trivial” tensor:

T (0)
φ(1),φ(2),φ(3),φ(4) =

∼ exp
{
−1
2

D∑
k=1

[φk(1) − φk(2)]2 + [φk(2) − φk(3)]2

+ [φk(3) − φk(4)]2 + [φk(4) − φk(1)]2
}

The indices φ are in RD (and not 1, · · · ,D)

2 – And add a “correction”:

exp
{
−ε2V [φ(1), · · · , φ(4)] + ε2α [φ(1), · · · , φ(4)]ψ†(x)

}
3 – Realize tensor contraction = functional integral and trivial tensor gives free field measure.
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Functional integral definition

|V , α〉 =
∫
Dφ exp

{
−

∫
Ω

dd x 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)] ψ̂†(x)
}

|0〉



Functional integral definition

|V ,B, α〉 =
∫
DφB(φ|∂Ω) exp

{
−

∫
Ω

dd x 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)]ψ†(x)
}

|0〉



Operator definition

|V , α〉 =

tr
[
T exp

(
−

∫T

0
dτ
∫

S
dx π̂k(x)π̂k(x)

2 +
∇φ̂k(x)∇φ̂k(x)

2 + V [φ̂(x)] − α[φ̂(x)]ψ†(τ, x)
)]

|0〉

where:
I φ̂k(x) and π̂k(x) are k independent canonically conjugated pairs of (auxiliary) field

operators: [φ̂k(x), φ̂l(y)] = 0, [π̂(x)k , π̂l(y)] = 0, and [φ̂k(x), π̂l(y)] = iδk,l δ(x − y)
acting on a space of d − 1 dimensions.
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Wave-function definition

A generic state |Ψ〉 in Fock space can be written:

|Ψ〉 =
+∞∑
n=0

∫
Ωn

ϕn(x1, · · · , xn)

n! ψ†(x1) · · ·ψ†(xn) |0〉

where φn is a symmetric n-particle wave-function

Functional integral representation

ϕn(x1, · · · , xn) = 〈α[φ(x1)] · · ·α[φ(xn)] 〉aux

with:

〈·〉aux =

∫
Dφ · B(φ|∂Ω) exp

[
−

1
2

∫
Ω

dd x [∇φk(x)]2 + V [φ(x)]
]

I ∼ Moore-Read wave-function for Quantum Hall, but generic QFT



Expressivity and stability

How big are cTNS?

Stability
The sum of two cTNS of bond field
dimension D1 and D2 is a cTNS with bond
field dimension D 6 D1 + D2 + 1:

|V1, α1〉+ |V2, α2〉 = |W , β〉

Expressiveness
All states in the Fock space can be
approximated by cTNS:

I A field coherent state is a cTNS with
D = 0

I Stability allows to get all sums of field
coherent states

Note: expressiveness can also be obtained with D = 1 but it is less natural. Flexibility in D
makes the expressivity higher for restricted classes of V and α.



Computations
Define generating functional for normal ordered correlation functions

Zj ′,j =
1

〈V , α|V , α〉 〈V , α| exp
(∫

dx j ′(x)ψ†(x)
)

exp
(∫

dx j(x)ψ(x)
)
|V , α〉

Operator representation

Zj′j = tr
[

B ⊗ B∗T exp
{∫T/2

−T/2

(
Tj′j −

∫
S

j · j ′
)}]

with transfer matrix:

Tj′j =

∫
S

dx H(x)⊗ 1+ 1⊗H∗(x) +
(
α[φ̂(x)] + j ′(x)

)
⊗
(
α[φ̂(x)]∗ + j(x)

)
and

H(x) =
D∑

k=1

[π̂k(x)]2 +
[
∇φ̂k(x)

]2

2 + V [φ̂(x)]

=⇒ cMPS brought us from 1 to 0, cTNS bring us from d to d − 1.



Redundancies

Discrete redundancy

Different elementary tensors are equivalent,
they give the same state:

∼

when = and =

up to boundary terms:

Continuum redundancy

V (φ)→ V (φ) +∇ ·F [x , φ(x)]

Just Stokes’ theorem. If Ω has a boundary ∂Ω:

D[φ]→ D[φ] exp
{∮
∂Ω

dd−1x F [x , φ(x)] · n(x)
}
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Rescaling

C(x1, · · · , xn) = 〈T (1)|O(x1) · · ·O(xn)|T (1)〉,
the objective is to find a tensor T (λ) of new parameters such that:

C(λx1, · · · , λxn) ∝ 〈T (λ)|O(x1) · · ·O(xn)|T (λ)〉.

Doable exactly:
V → λd V ◦ λ 2−d

2 and α→ λ
d
2α ◦ λ 2−d

2

– d = 2, All powers of the field in V and α yield relevant couplings
– d = 3, The powers p = 1, 2, 3, 4, 5 of the field in V yield relevant ∆ > 0 couplings. p = 6

is marginal in V . For α, p = 1, 2 are relevant and p = 3 is marginal. All other p are
irrelevant.
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Renormalization

Scaling

– d = 2, All powers of the field in V and α yield relevant couplings
– d = 3, The powers p = 1, 2, 3, 4, 5 of the field in V yield relevant ∆ > 0 couplings. p = 6

is marginal in V . For α, p = 1, 2 are relevant and p = 3 is marginal. All other p are
irrelevant.

For finite bond field dimension in d = 3, finite number of parameters for renormalized cTNS:

V (φ) = Aφ+ Bφφ+ Cφφφ+ Dφφφφ+ Eφφφφφ+ Fφφφφφφ
α(φ) = Xφ+ Yφφ+ Zφφφ

Proper renormalization procedure not checked yet



Getting back cMPS

One can get back cMPS with finite bond dimension by:
1. Compactification Take d − 1 dimensions out of d to be very small

|V ,B, α〉 ' tr
[

B̂ T exp
(
−

∫T

0
dτ

D∑
k=1

P̂2
k

2 + V [X̂ ] − α[X̂ ]ψ†(τ)

)]
|0〉

=⇒ Hilbert space of a quantum particle in D space dimensions.
2. Quantization Take V with D deep minima to force the auxiliary field to take only D

possibilities



Generalization

For a general Riemanian manifold M with boundary ∂M, define:

|V ,B, α〉 =
∫
DφB(φ|∂M) exp

{
−

∫
M

dd x√g
(gµν∂µφk∂νφk

2 + V [φ,∇φ] − α[φ,∇φ]ψ†
)}

|0〉

i.e. add curvature and possible anisotropies in V and α

Example: α[x , φ,∇φ] localized on the boundary and
hyberbolic metrix g :

→ cMERA-like in d − 1 dimensions
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Future

Limitations and work for the future
I Quite formal out of the Gaussian regime
I Computation through dimensional reduction not trivial
I Limited to bosonic field theories (so far)
I Gauge invariant states
I Can one say anything about topology?



Summary

|V ,B, α〉 =
∫
DφB(φ|∂Ω) exp

{
−

∫
Ω

dd x 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)]ψ†(x)
}

|0〉

Continuous tensor network states are natural continuum limits of tensor network states and
natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks
2. Can be made Euclidean invariant
3. Motto of tensor networks: trade a dimension for a variational optimization
4. Still need to be properly renormalized (in perturbative and RG sense)
5. Still needs to be used to approximate non-trivial non-Gaussian ground states


