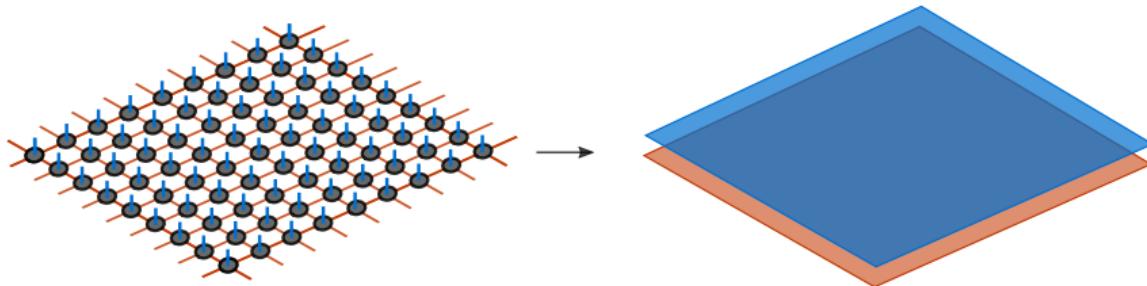


Tensor network states

from the discrete to the continuum

Antoine Tilloy

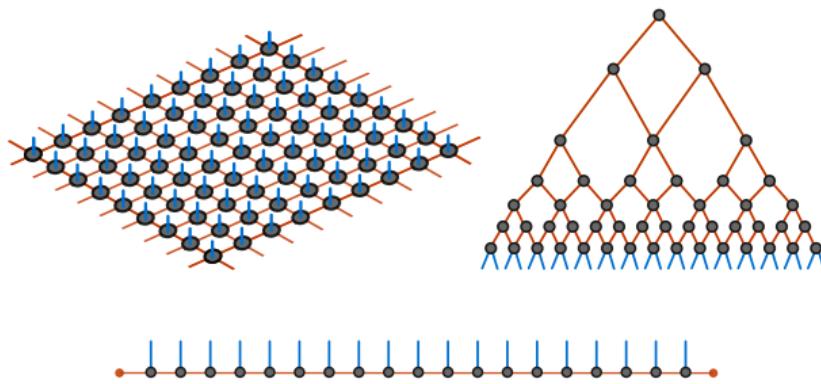
Max Planck Institute of Quantum Optics, Garching, Germany



Séminaire
Université de Nancy
June 20th, 2019

Alexander von Humboldt
Stiftung / Foundation

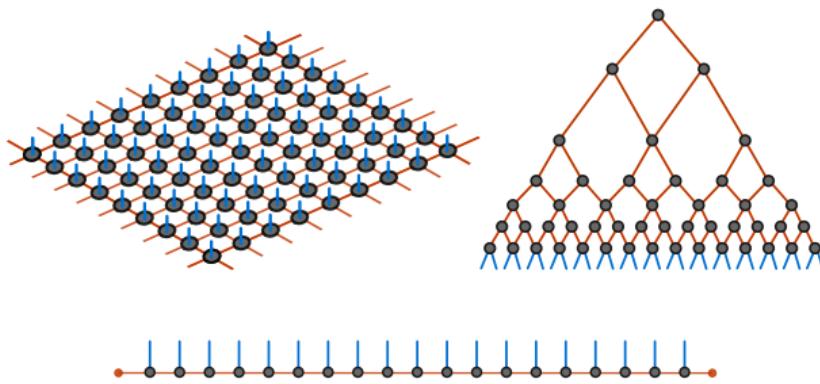
Tensor network states: a tool



Applications

- ▶ Quantum information theory
- ▶ Statistical Mechanics
- ▶ Quantum gravity
- ▶ Many-body quantum

Tensor network states: a tool



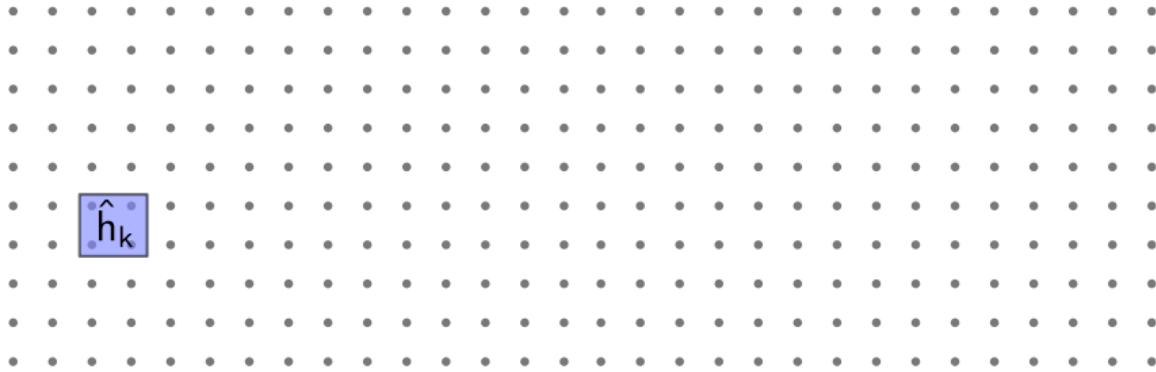
Applications

- ▶ Quantum information theory
- ▶ Statistical Mechanics
- ▶ Quantum gravity
- ▶ Many-body quantum

Negative theology

- ▶ **Not** covariant/geometric objects $g_{\mu\nu}$ or $R_{\mu\nu\kappa}^{\sigma}$
- ▶ **Not** tensor **models**
[Rivasseau, Gurau, ...]

Many-body problem



Problem

Finding low energy states of

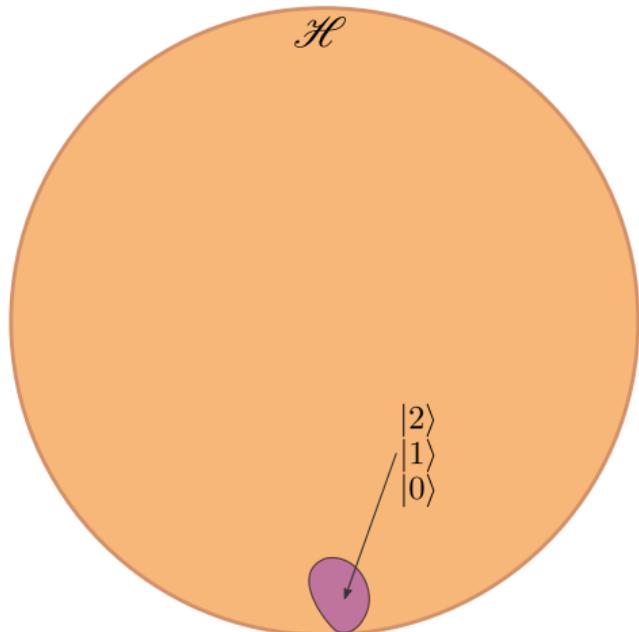
$$\hat{H} = \sum_{k=1}^N \hat{h}_k$$

is **hard** because $\dim \mathcal{H} \propto D^N$

Possible solutions

- ▶ Perturbation theory
- ▶ Monte Carlo
- ▶ Bootstrap IR fixed point
- ▶ **Variational optimization** (e.g. Mean Field, TCSA, tensor networks)

Variational optimization



Generic (spin $D/2$) state $\in \mathcal{H}$:

$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_N} |i_1, \dots, i_N\rangle$$

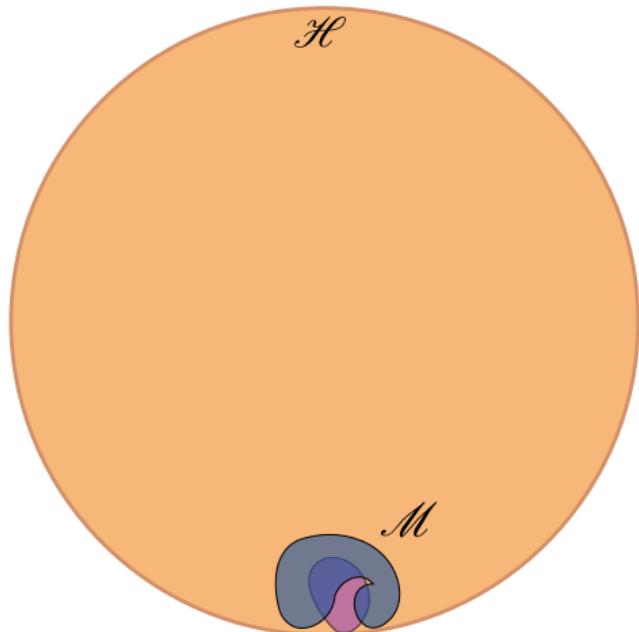
Exact variational optimization

To find the ground state:

$$|0\rangle = \min_{|\Psi\rangle \in \mathcal{H}} \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

► $\dim \mathcal{H} = D^N$

Variational optimization



Generic (spin $D/2$) state $\in \mathcal{H}$:

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} |i_1, \dots, i_N\rangle$$

Approx. variational optimization

To find the ground state:

$$|0\rangle = \min_{|\psi\rangle \in \mathcal{M}} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

► $\dim \mathcal{M} \propto \text{Poly}(N)$ or fixed

An idea popular in many fields

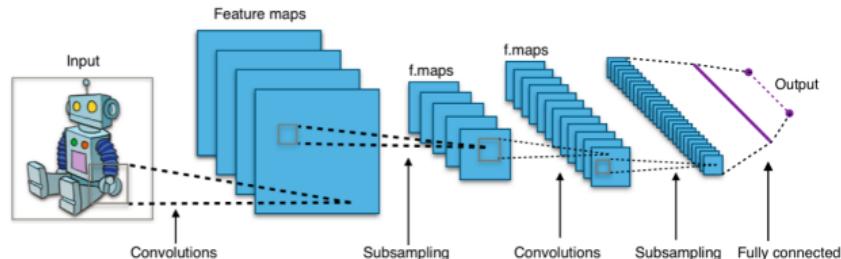
- ▶ Mean field approximation (of which TNS are an extension)

$$\psi(x_1, x_2, \dots, x_n) = \psi_1(x_1) \psi_2(x_2) \dots \psi_n(x_n)$$

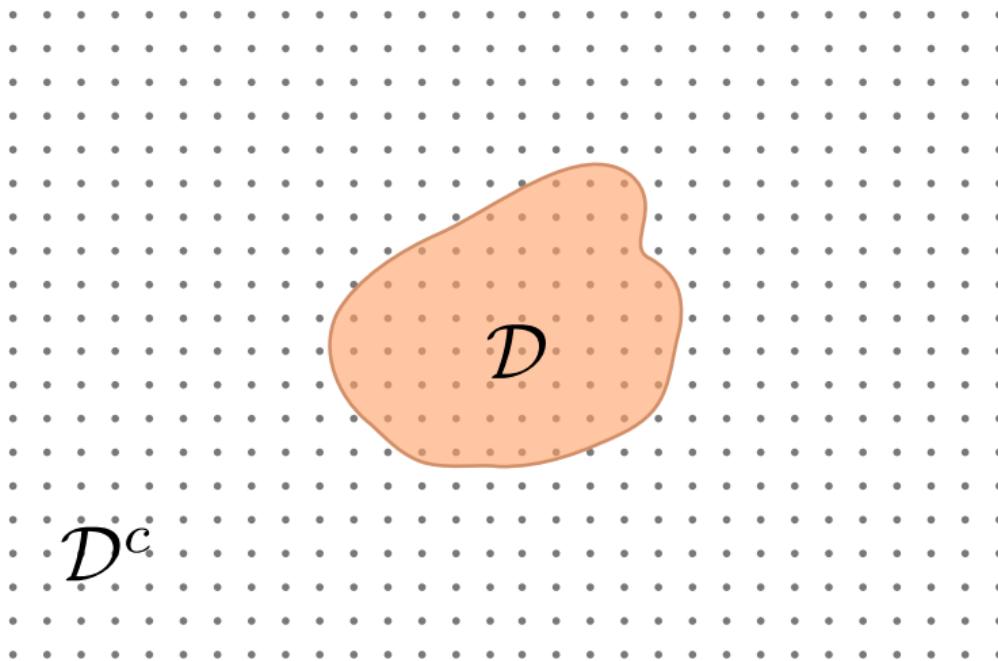
- ▶ Special variational wave functions in **Quantum chemistry** (whole industry of ansatz)
- ▶ **Moore-Read wavefunctions** in the study of the quantum Hall effect

$$\psi(x_1, x_2, \dots, x_n) = \left\langle \hat{\phi}(x_1) \hat{\phi}(x_2) \dots \hat{\phi}(x_n) \right\rangle_{\text{CFT}}$$

- ▶ Fully connected and convolutional **neural networks** used in machine learning



Interesting states are weakly entangled



Low energy state

$$|\Psi\rangle = |0\rangle \text{ or } |1\rangle \dots$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\Psi\rangle\langle\Psi|]$$

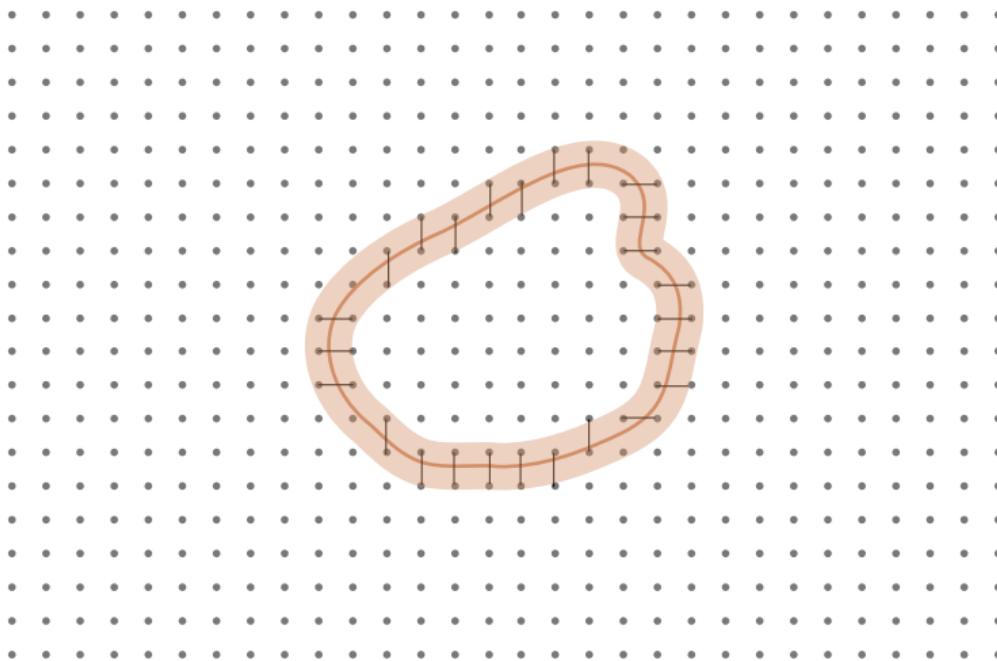
Entanglement entropy

$$S = -\text{tr}[\rho \log \rho]$$

Area law

$$S \propto |\partial \mathcal{D}|$$

Interesting states are weakly entangled



Low energy state

$$|\Psi\rangle = |0\rangle \text{ or } |1\rangle \dots$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\Psi\rangle\langle\Psi|]$$

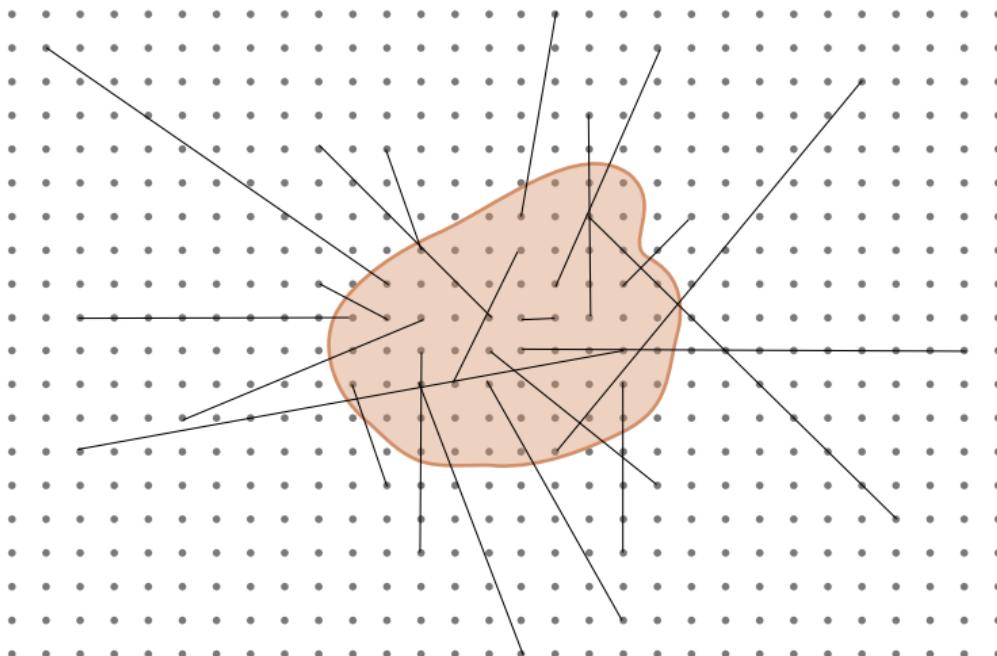
Entanglement entropy

$$S = -\text{tr}[\rho \log \rho]$$

Area law

$$S \propto |\partial \mathcal{D}|$$

Typical states are strongly entangled



Random state

$$|\Psi\rangle = U_{\text{Haar}}|\text{trivial}\rangle$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\Psi\rangle\langle\Psi|]$$

Entanglement entropy

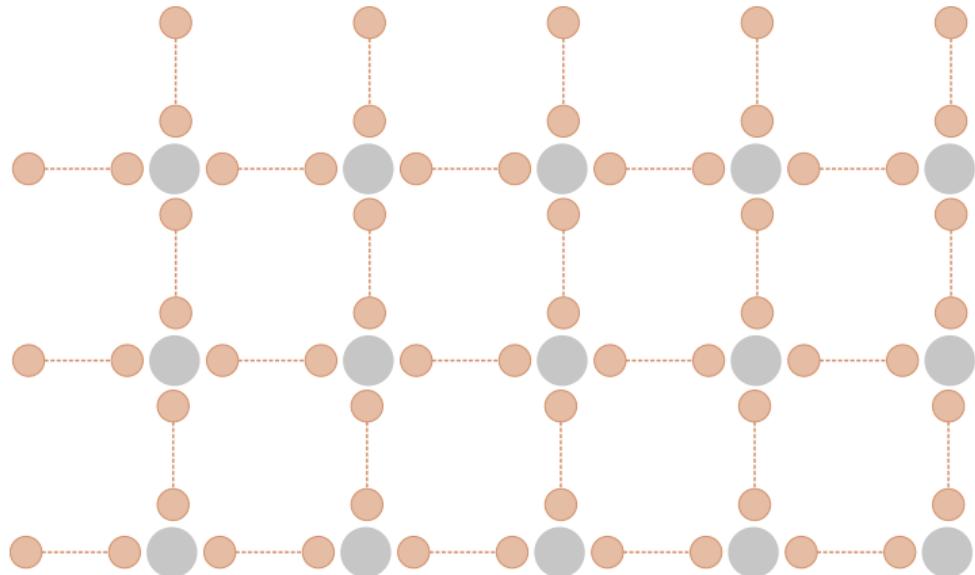
$$S = -\text{tr}[\rho \log \rho]$$

Volume law

$$S \propto |\mathcal{D}|$$

Constructing weakly entangled states

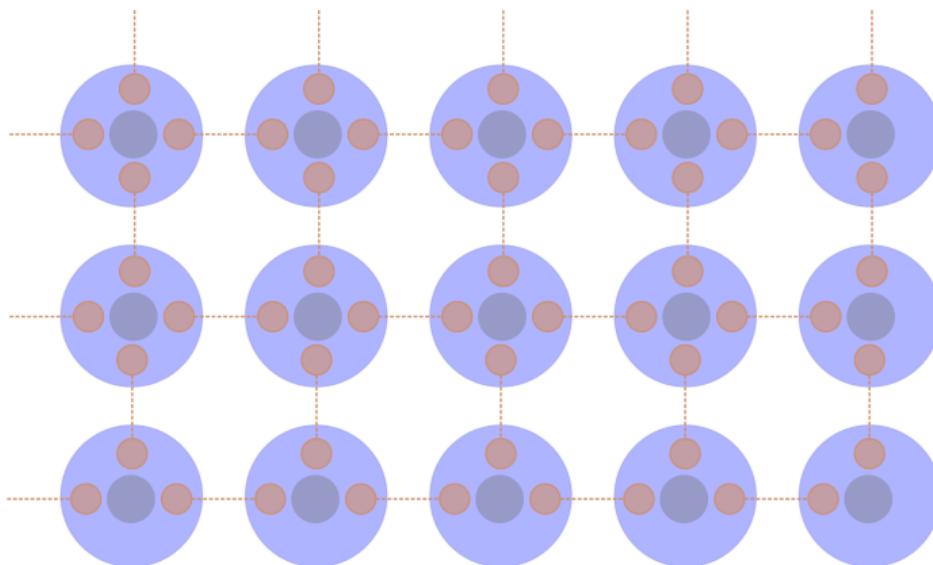
Constructing weakly entangled states



1. Put auxiliary maximally entangled states between sites

$$\text{---} = \sum_{j=1}^x |j\rangle\langle j|$$

Constructing weakly entangled states



1. Put auxiliary maximally entangled states between sites

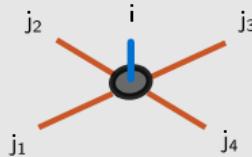
$$\bullet \cdots \bullet = \sum_{j=1}^x |j\rangle |j\rangle$$

2. Map to initial Hilbert space on each site

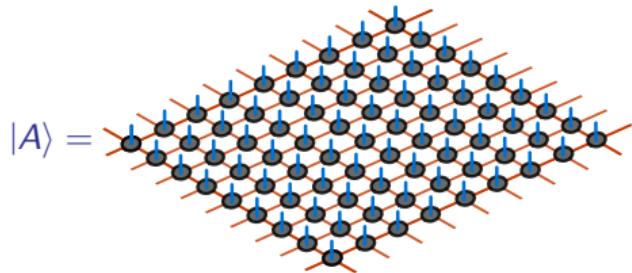
$$= A : \mathbb{C}^{4x} \rightarrow \mathbb{C}^D$$

Tensor network states: definition

Why “tensor” network?



$$A : \mathbb{C}^{4x} \rightarrow \mathbb{C}^d \quad \longrightarrow \quad A_{j_1, j_2, j_3, j_4}^i$$

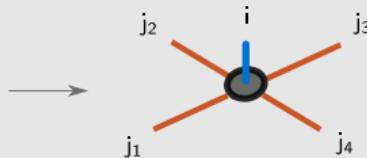


$|A\rangle =$

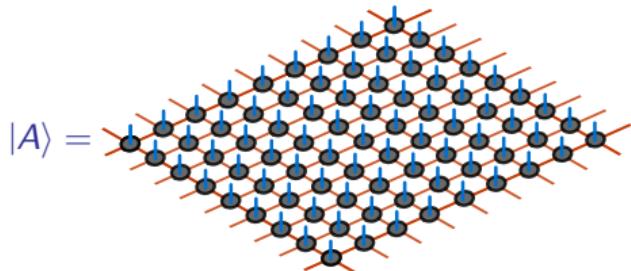
with tensor contractions on links

Tensor network states: definition

Why “tensor” network?



$$A : \mathbb{C}^{4x} \rightarrow \mathbb{C}^d \quad \rightarrow \quad A_{j_1, j_2, j_3, j_4}^i$$



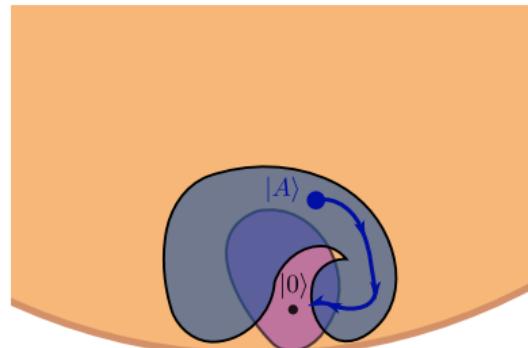
$|A\rangle =$ with tensor contractions on links

Optimization

Find best A for fixed x ($D \times x^4$ coeff.)

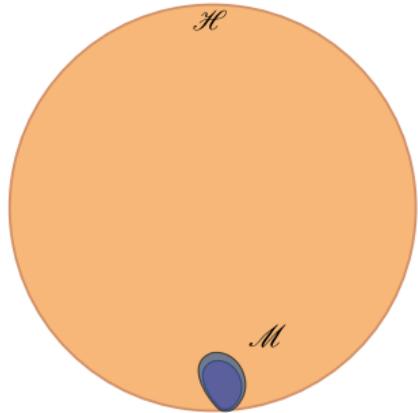
$$E_0 \simeq \min_A \frac{\langle A | \hat{H} | A \rangle}{\langle A | A \rangle}$$

for example go down $\frac{\partial E}{\partial A_{j_1, j_2, j_3, j_4}^i}$



Some facts

$d = 1$ spatial dimension

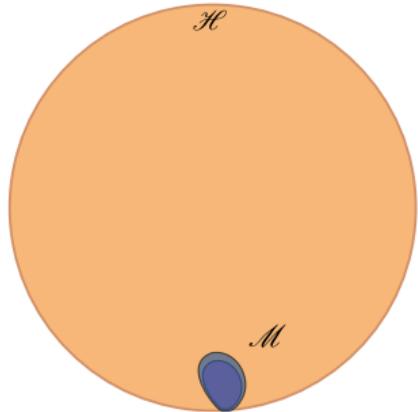


Theorems (colloquially)

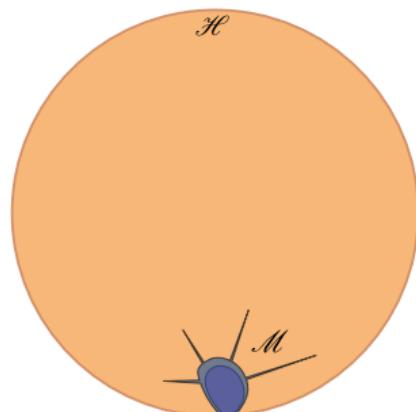
1. For gapped H , tensor network states $|A\rangle$ approximate well $|0\rangle$ with χ fixed
2. All $|A\rangle$ are ground states of gapped H

Some facts

$d = 1$ spatial dimension



$d \geq 2$ spatial dimension



Theorems (colloquially)

1. For gapped H , tensor network states $|A\rangle$ approximate well $|0\rangle$ with x fixed
2. **All** $|A\rangle$ are ground states of gapped H

Folklore

1. For gapped H , tensor network states $|A\rangle$ approximate well $|0\rangle$ with x fixed
2. **Most** $|A\rangle$ are ground states of gapped H

Limitations

Hard to contract in $d \geq 2$

In $d \geq 2$ one can have:

- ▶ $|A\rangle$ known
- ▶ $\langle A|\hat{\Theta}_i\hat{\Theta}_j|A\rangle$ hard to compute exactly

Limitations

Hard to contract in $d \geq 2$

In $d \geq 2$ one can have:

- ▶ $|A\rangle$ known
- ▶ $\langle A|\hat{\theta}_i\hat{\theta}_j|A\rangle$ hard to compute exactly

Expressive but opaque

Generally hard to interpret

- ▶ Tensor carries IR-irrelevant information
- ▶ Hard to constrain long distance behavior

Limitations

Hard to contract in $d \geq 2$

In $d \geq 2$ one can have:

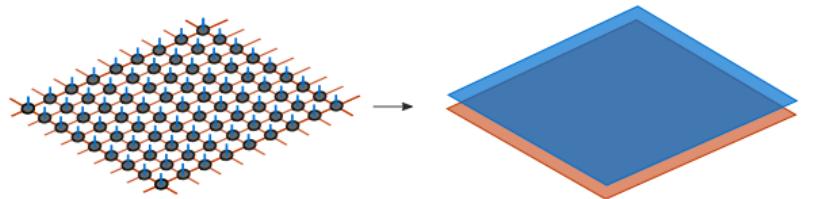
- ▶ $|A\rangle$ known
- ▶ $\langle A|\hat{\theta}_i\hat{\theta}_j|A\rangle$ hard to compute exactly

Expressive but opaque

Generally hard to interpret

- ▶ Tensor carries IR-irrelevant information
- ▶ Hard to constrain long distance behavior

⇒ Go to the continuum and **QFT**: Major objective and challenge



Matrix product states

Try to find the **ground state** of a spin chain, $H = \sum_j \hat{h}_j$:

$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} |i_1, \dots, i_n\rangle$$

Matrix product states

Try to find the **ground state** of a spin chain, $H = \sum_j \hat{h}_j$:

$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} |i_1, \dots, i_n\rangle$$

Matrix Product States (MPS)

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

- A_i are $\chi \times \chi$ complex matrices
- A is a $2 \times \chi \times \chi$ tensor $[A_i]_{k,l}$
- $|L\rangle$ and $|R\rangle$ are χ -vectors.

Matrix product states

Try to find the **ground state** of a spin chain, $H = \sum_j \hat{h}_j$:

$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} |i_1, \dots, i_n\rangle$$

Matrix Product States (MPS)

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

- A_i are $\chi \times \chi$ complex matrices
- A is a $2 \times \chi \times \chi$ tensor $[A_i]_{k,l}$
- $|L\rangle$ and $|R\rangle$ are χ -vectors.

Remark: actually equivalent with the density matrix renormalization group (DMRG)

Matrix product states

Try to find the **ground state** of a spin chain, $H = \sum_j \hat{h}_j$:

$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} |i_1, \dots, i_n\rangle$$

Matrix Product States (MPS)

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

- A_i are $\chi \times \chi$ complex matrices
- A is a $2 \times \chi \times \chi$ tensor $[A_i]_{k,l}$
- $|L\rangle$ and $|R\rangle$ are χ -vectors.

Remark: actually equivalent with the density matrix renormalization group (DMRG)

- ◊ $n \times 2 \times \chi^2$ parameters instead of 2^n
- ◊ χ is the **bond dimension** and encodes the size of the variational class

Recall the graphical notation

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

Notation: $[A_i]_{k,l} = \text{---} \bullet \text{---}$ and $k \text{---} l = \sum \delta_{k,l}$ gives:

Recall the graphical notation

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

Notation: $[A_i]_{k,l} = \text{---} \bullet \text{---}$ and $k \text{---} l = \sum \delta_{k,l}$ gives:

Example: computation of correlations

Recall the graphical notation

$$|A, L, R\rangle = \sum_{i_1, i_2, \dots, i_n} \langle L | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | R \rangle |i_1, \dots, i_n\rangle$$

Notation: $[A_i]_{k,l} = \text{---} \bullet \text{---}$ and $k \text{ --- } l = \sum \delta_{k,l}$ gives:

Example: computation of correlations

$$\langle A | \mathcal{O}(i_k) \mathcal{O}(i_\ell) | A \rangle = \text{Diagram showing two pink diamond operators on a 2D grid of nodes. The grid has orange horizontal and blue vertical lines. The nodes are black dots. The two pink diamonds are positioned on the grid, with one at approximately (i_k, j_k) and another at approximately (i_\ell, j_\ell).}$$

can be done efficiently by iterating 2 maps:

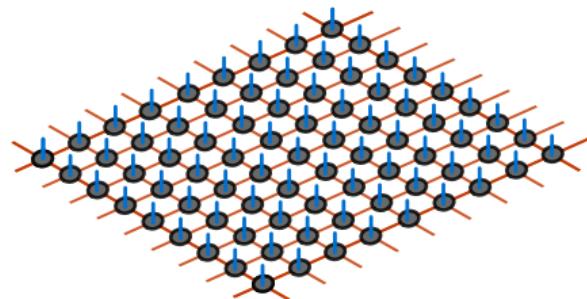
$$\Phi = \begin{array}{c} \text{---} \\ | \\ \text{---} \\ | \\ \text{---} \end{array} \quad \text{and} \quad \Phi_{\mathcal{O}} = \begin{array}{c} \text{---} \\ | \\ \text{---} \\ | \\ \text{---} \end{array}$$

The contraction for a $d = 1$ system, can be seen as an open-system dynamics in $d = 0$.

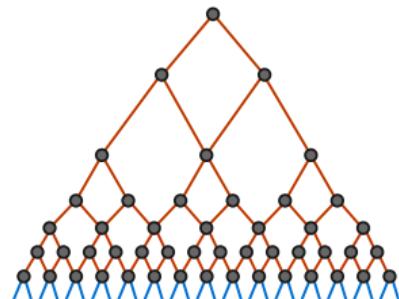
Generalizations: different tensor networks

Matrix Product States (MPS)

Projected Entangled Pair States (PEPS)

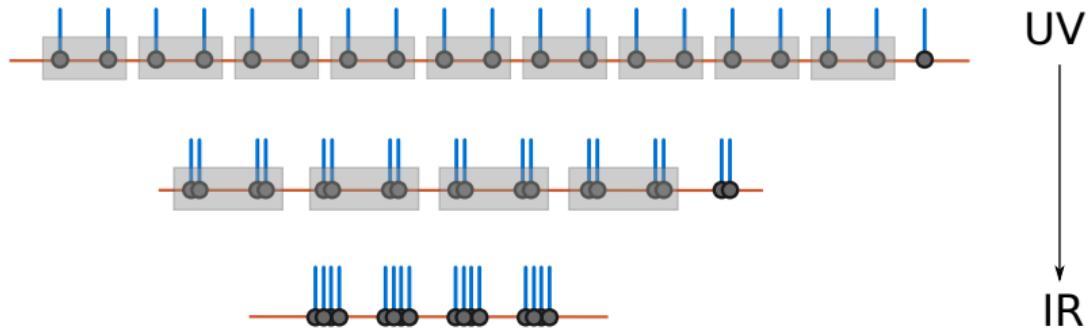


Multi-scale Entanglement Renormalization Ansatz (MERA)



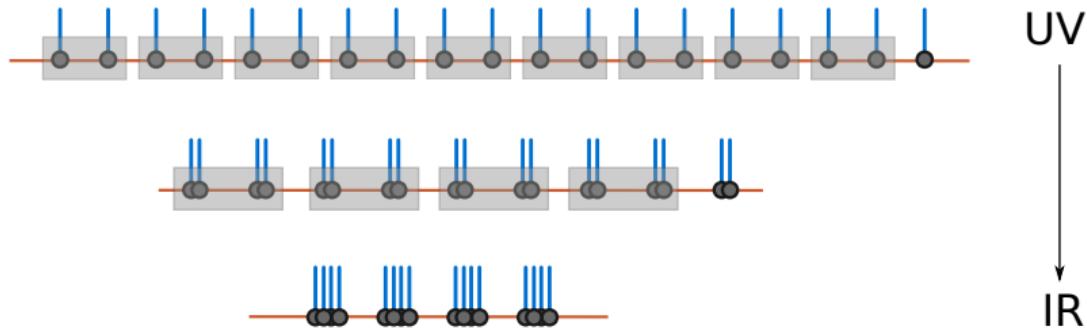
Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS



Continuous Matrix Product States (cMPS)

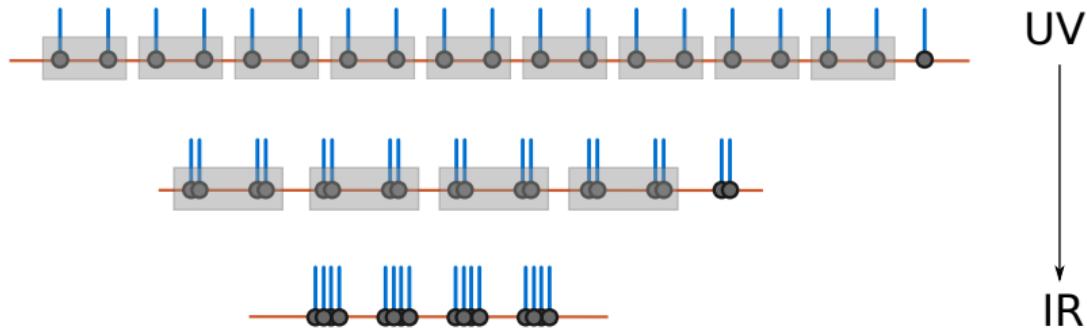
Taking the continuum limit of a MPS



- ▶ the bond dimension χ stays fixed

Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS



- ▶ the bond dimension χ stays fixed
- ▶ the local physical dimension explodes $\mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 \rightarrow \mathcal{F}(L^2([x, x + dx]))$.
 \Rightarrow Spins become fields – (\simeq central limit theorem \simeq)

Continuous Matrix Product States

Type of ansatz for bosons on a fine grained $d = 1$ lattice

- Matrices $A_{i_k}(x)$ where the index i_k corresponds to $\psi^{\dagger i_k}(x)|0\rangle$ in physical space.

Informal cMPS definition

$$A_0 = \mathbb{1} + \varepsilon Q$$

$$A_1 = \varepsilon R$$

$$A_2 = \frac{(\varepsilon R)^2}{\sqrt{2}}$$

...

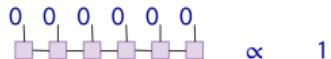
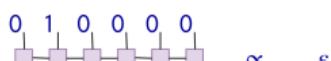
$$A_n = \frac{(\varepsilon R)^n}{\sqrt{n}}$$

...

so we go from ∞ to 2 matrices

Fixed by:

- Finite particle number



- Consistency

Continuous Matrix Product States

Definition

$$|Q, R, \omega\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x) \right\} | \omega_R \rangle |0\rangle$$

- Q, R are $\chi \times \chi$ matrices,
- $|\omega_L\rangle$ and $|\omega_R\rangle$ are boundary vectors $\in \mathbb{C}^\chi$, for p.b.c. $\langle \omega_L | \cdot | \omega_R \rangle \rightarrow \text{tr}[\cdot]$
- $[\psi(x), \psi^\dagger(y)] = \delta(x - y)$

Idea:

Continuous Matrix Product States

Definition

$$|Q, R, \omega\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x) \right\} | \omega_R \rangle |0\rangle$$

- Q, R are $\chi \times \chi$ matrices,
- $|\omega_L\rangle$ and $|\omega_R\rangle$ are boundary vectors $\in \mathbb{C}^\chi$, for p.b.c. $\langle \omega_L | \cdot | \omega_R \rangle \rightarrow \text{tr}[\cdot]$
- $[\psi(x), \psi^\dagger(y)] = \delta(x - y)$

Idea:

$$\begin{aligned} A(x) &\simeq A_0 \mathbb{1} + A_1 \psi^\dagger(x) \\ &\simeq \mathbb{1} \otimes \mathbb{1} + \varepsilon Q \otimes \mathbb{1} + \varepsilon R \otimes \psi^\dagger(x) \\ &\simeq \exp [\varepsilon (Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x))] \end{aligned}$$

Computations

Some correlation functions

$$\langle \hat{\psi}(x)^\dagger \hat{\psi}(x) \rangle = \text{Tr} [e^{TL} (R \otimes \bar{R})]$$

$$\langle \hat{\psi}(x)^\dagger \hat{\psi}(0)^\dagger \hat{\psi}(0) \hat{\psi}(x) \rangle = \text{Tr} [e^{T(L-x)} (R \otimes \bar{R}) e^{Tx} (R \otimes \bar{R})]$$

$$\left\langle \hat{\psi}(x)^\dagger \left[-\frac{d^2}{dx^2} \right] \hat{\psi}(x) \right\rangle = \text{Tr} [e^{TL} ([Q, R] \otimes [\bar{Q}, \bar{R}])]$$

with $T = Q \otimes \mathbb{1} + \mathbb{1} \otimes \bar{Q} + R \otimes \bar{R}$

Example

Lieb-Liniger Hamiltonian

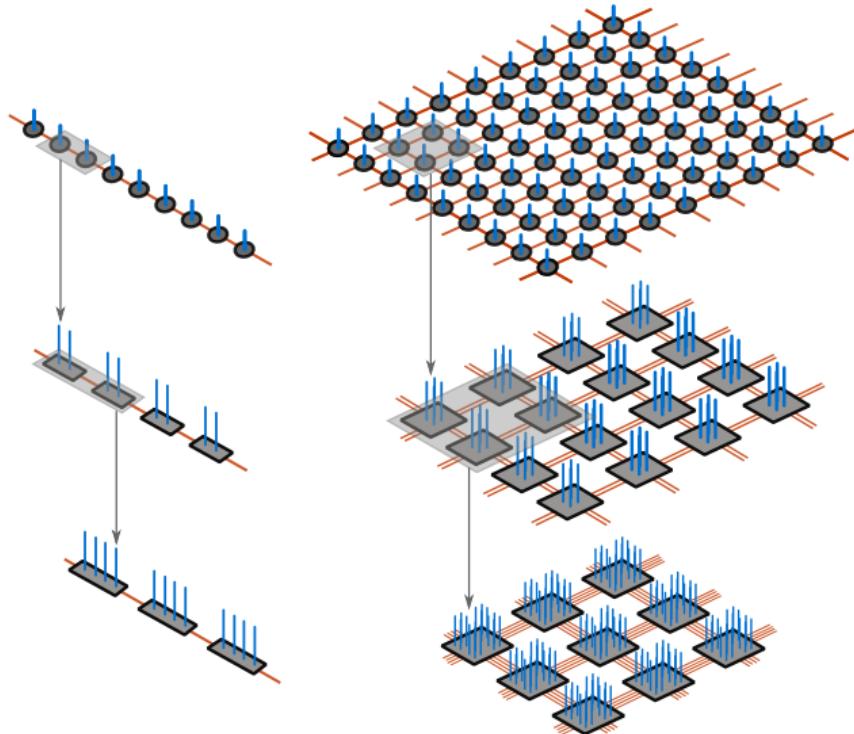
$$\mathcal{H} = \int_{-\infty}^{+\infty} dx \left[\frac{d\hat{\psi}^\dagger(x)}{dx} \frac{d\hat{\psi}(x)}{dx} + c \hat{\psi}^\dagger(x) \hat{\psi}^\dagger(x) \hat{\psi}(x) \hat{\psi}(x) \right]$$

Solve by **minimizing**:

$$\langle Q, R | \mathcal{H} | Q, R \rangle = f(Q, R)$$

with fixed particle density $\langle Q, R | \psi^\dagger(x) \psi(x) | Q, R \rangle$.

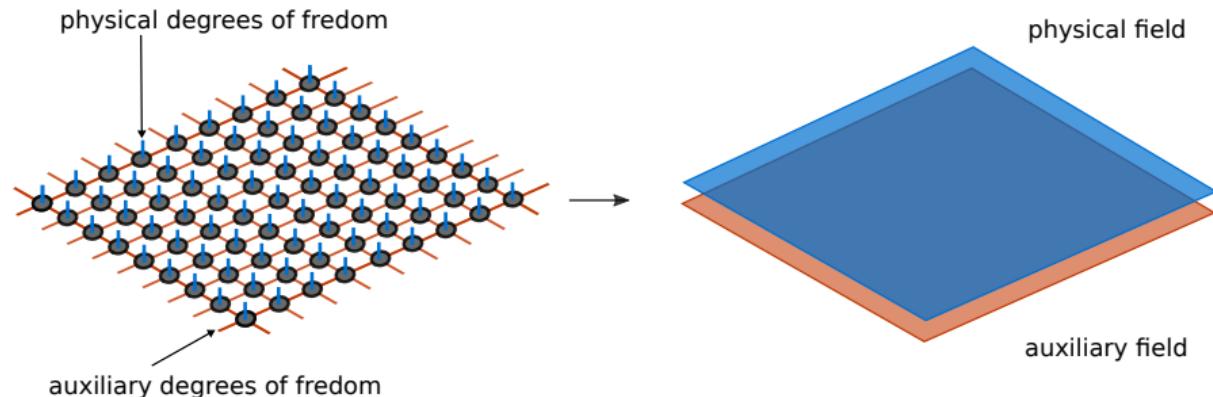
Continuous Tensor Networks: blocking



Upon **blocking**:

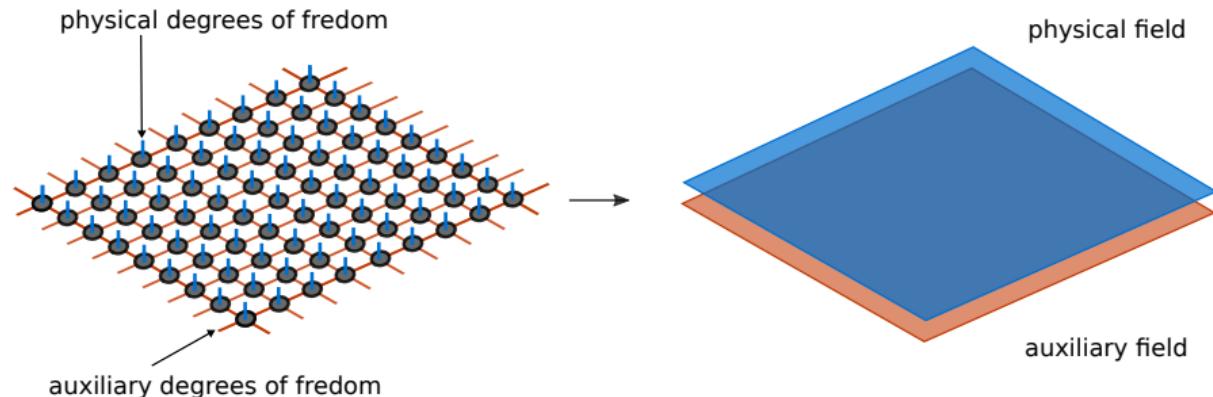
- ◊ The **physical** Hilbert space dimension D increases
- ◊ The **bond** (auxiliary space) dimension x increases too

Result



AT, J. I. Cirac, 2019

Result



AT, J. I. Cirac, 2019

Continuous tensor network state (heuristically)

State $|\alpha\rangle$ of $d + 1$ QFT from an auxiliary d dimensional theory of random fields ϕ :

$$|\alpha\rangle = \int \mathcal{D}\phi \exp \left\{ - \int d^d x \mathcal{L}[\phi(x)] - \alpha[\phi(x)] \hat{\psi}^\dagger(x) \right\} |\Omega\rangle$$

1. Genuine continuum limit of discrete tensor networks
2. The toolbox is translated to the continuum

Choice of tensor around which to expand...

For **MPS**, not much choice:

$$\begin{aligned} \text{---} \bullet \text{---} &= \text{---} + \varepsilon \dots \\ &= \mathbb{1} \otimes |0\rangle + \varepsilon Q \otimes |0\rangle + \varepsilon R \otimes \psi^\dagger(x)|0\rangle \end{aligned}$$

Choice of tensor around which to expand...

For **MPS**, not much choice:

$$\begin{array}{c} | \\ \text{---} \bullet \text{---} \end{array} = \text{---} + \varepsilon \dots$$
$$= \mathbb{1} \otimes |0\rangle + \varepsilon Q \otimes |0\rangle + \varepsilon R \otimes \psi^\dagger(x)|0\rangle$$

For **TNS** in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \cancel{\text{---}}$
 \implies trivial geometry

Choice of tensor around which to expand...

For **MPS**, not much choice:

$$\begin{array}{c} | \\ \text{---} \bullet \text{---} \end{array} = \text{---} + \varepsilon \dots$$
$$= \mathbb{1} \otimes |0\rangle + \varepsilon Q \otimes |0\rangle + \varepsilon R \otimes \psi^\dagger(x)|0\rangle$$

For **TNS** in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \cancel{\text{---}}$
 \implies trivial geometry
2. Take two identities $T^{(0)} = \cancel{\text{---}}$
 \implies breakdown of Euclidean invariance

Choice of tensor around which to expand...

For **MPS**, not much choice:

$$\begin{array}{c} \text{---} \bullet \text{---} \\ \text{---} \end{array} = \text{---} + \varepsilon \dots$$
$$= \mathbb{1} \otimes |0\rangle + \varepsilon Q \otimes |0\rangle + \varepsilon R \otimes \psi^\dagger(x)|0\rangle$$

For **TNS** in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \cancel{\text{---}}$
 \Rightarrow trivial geometry
2. Take two identities $T^{(0)} = \cancel{\text{---}}$
 \Rightarrow breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions $T^{(0)} = \cancel{\text{---}} + \cancel{\text{---}}$

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagup \quad \diagdown \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ \frac{-1}{2} \sum_{k=1}^D [\phi_k(1) - \phi_k(2)]^2 + [\phi_k(2) - \phi_k(3)]^2 \right. \\ \left. + [\phi_k(3) - \phi_k(4)]^2 + [\phi_k(4) - \phi_k(1)]^2 \right\}$$

The indices ϕ are in \mathbb{R}^x (and **not** $1, \dots, x$)

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagup \quad \diagdown \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ \frac{-1}{2} \sum_{k=1}^D [\phi_k(1) - \phi_k(2)]^2 + [\phi_k(2) - \phi_k(3)]^2 \right. \\ \left. + [\phi_k(3) - \phi_k(4)]^2 + [\phi_k(4) - \phi_k(1)]^2 \right\}$$

The indices ϕ are in \mathbb{R}^x (and **not** $1, \dots, x$)

2 – And add a “correction”:

$$\exp \left\{ -\varepsilon^2 V [\phi(1), \dots, \phi(4)] + \varepsilon^2 \alpha [\phi(1), \dots, \phi(4)] \psi^\dagger(x) \right\}$$

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagup \quad \diagdown \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ \frac{-1}{2} \sum_{k=1}^D [\phi_k(1) - \phi_k(2)]^2 + [\phi_k(2) - \phi_k(3)]^2 \right. \\ \left. + [\phi_k(3) - \phi_k(4)]^2 + [\phi_k(4) - \phi_k(1)]^2 \right\}$$

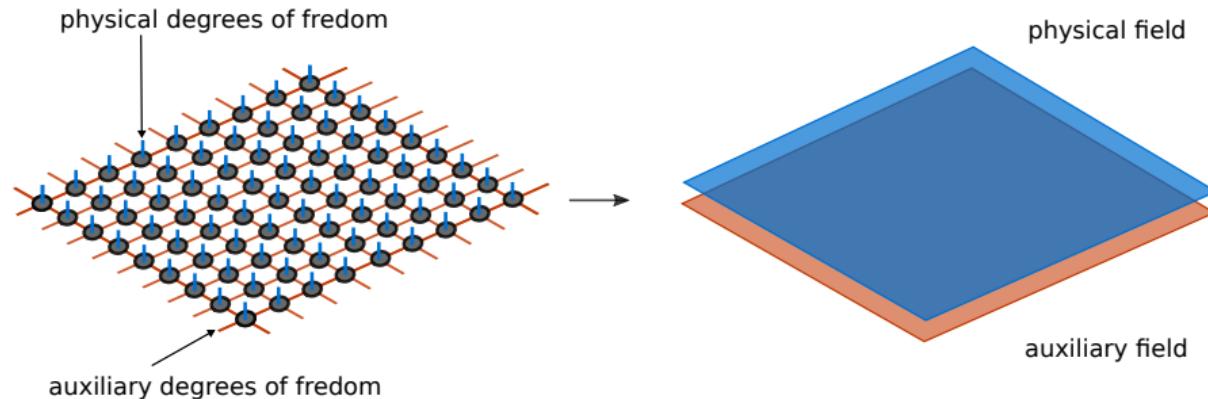
The indices ϕ are in \mathbb{R}^x (and **not** $1, \dots, x$)

2 – And add a “correction”:

$$\exp \left\{ -\varepsilon^2 V [\phi(1), \dots, \phi(4)] + \varepsilon^2 \alpha [\phi(1), \dots, \phi(4)] \psi^\dagger(x) \right\}$$

3 – Realize tensor contraction = functional integral and trivial tensor gives free field measure.

Result



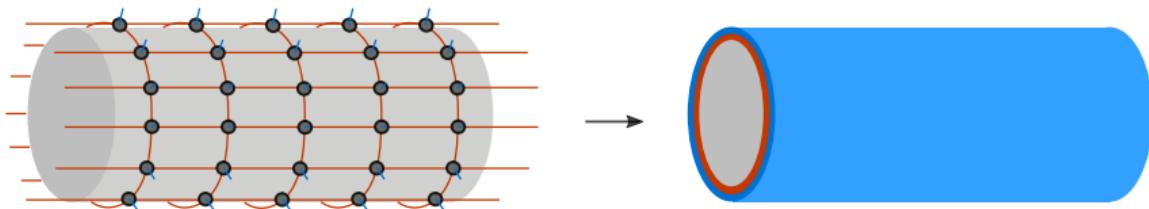
AT, J. I. Cirac, 2019

Continuous tensor network state (heuristically)

State $|\alpha\rangle$ of $d + 1$ QFT from an auxiliary d dimensional theory of random fields ϕ :

$$|\alpha\rangle = \int \mathcal{D}\phi \exp \left\{ - \int d^d x \mathcal{L}[\phi(x)] - \alpha[\phi(x)] \hat{\psi}^\dagger(x) \right\} |\Omega\rangle$$

Operator definition



$|V, \alpha\rangle =$

$$\text{tr} \left[\mathcal{T} \exp \left(- \int_0^T d\tau \int_S dx \frac{\hat{\pi}_k(x) \hat{\pi}_k(x)}{2} + \frac{\nabla \hat{\phi}_k(x) \nabla \hat{\phi}_k(x)}{2} + V[\hat{\phi}(x)] - \alpha[\hat{\phi}(x)] \psi^\dagger(\tau, x) \right) \right] |0\rangle$$

where:

- $\hat{\phi}_k(x)$ and $\hat{\pi}_k(x)$ are χ independent canonically conjugated pairs of (auxiliary) field operators: $[\hat{\phi}_k(x), \hat{\phi}_l(y)] = 0$, $[\hat{\pi}(x)_k, \hat{\pi}_l(y)] = 0$, and $[\hat{\phi}_k(x), \hat{\pi}_l(y)] = i\delta_{k,l} \delta(x - y)$ acting on a space of $d - 1$ dimensions.

Wave-function definition

A generic state $|\Psi\rangle$ in Fock space can be written:

$$|\Psi\rangle = \sum_{n=0}^{+\infty} \int_{\Omega^n} \frac{\varphi_n(x_1, \dots, x_n)}{n!} \psi^\dagger(x_1) \dots \psi^\dagger(x_n) |0\rangle$$

where φ_n is a symmetric n -particle wave-function

Functional integral representation

$$\varphi_n(x_1, \dots, x_n) = \langle \alpha[\phi(x_1)] \dots \alpha[\phi(x_n)] \rangle_{\text{aux}}$$

with:

$$\langle \cdot \rangle_{\text{aux}} = \int \mathcal{D}\phi \cdot B(\phi|_{\partial\Omega}) \exp \left[-\frac{1}{2} \int_{\Omega} d^d x [\nabla \phi_k(x)]^2 + V[\phi(x)] \right]$$

- \sim Moore-Read wave-function for Quantum Hall, but generic QFT

Expressivity and stability

How big are cTNS?

Stability

The sum of two cTNS of bond field dimension χ_1 and χ_2 is a cTNS with bond field dimension $\chi \leq \chi_1 + \chi_2 + 1$:

$$|V_1, \alpha_1\rangle + |V_2, \alpha_2\rangle = |W, \beta\rangle$$

Expressiveness

All states in the Fock space can be approximated by cTNS:

- ▶ A field coherent state is a cTNS with $\chi = 0$
- ▶ Stability allows to get all sums of field coherent states

Note: expressiveness can also be obtained with $\chi = 1$ but it is less natural. Flexibility in χ makes the expressivity higher for restricted classes of V and α .

Computations

Define generating functional for normal ordered correlation functions

$$Z_{j',j} = \frac{1}{\langle V, \alpha | V, \alpha \rangle} \langle V, \alpha | \exp \left(\int dx j'(x) \psi^\dagger(x) \right) \exp \left(\int dx j(x) \psi(x) \right) | V, \alpha \rangle$$

Operator representation

$$Z_{j',j} = \text{tr} \left[B \otimes B^* \mathcal{T} \exp \left\{ \int_{-T/2}^{T/2} \left(T_{j'j} - \int_S j \cdot j' \right) \right\} \right]$$

with **transfer matrix**:

$$T_{j'j} = \int_S dx \mathcal{H}(x) \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}^*(x) + \left(\alpha[\hat{\phi}(x)] + j'(x) \right) \otimes \left(\alpha[\hat{\phi}(x)]^* + j(x) \right)$$

and

$$\mathcal{H}(x) = \sum_{k=1}^D \frac{[\hat{\pi}_k(x)]^2 + [\nabla \hat{\phi}_k(x)]^2}{2} + V[\hat{\phi}(x)]$$

⇒ cMPS brought us from 1 to 0, cTNS bring us from d to $d-1$.

Renormalization

Scaling

- $d = 2$, All powers of the field in V and α yield relevant couplings
- $d = 3$, The powers $p = 1, 2, 3, 4, 5$ of the field in V yield relevant $\Delta > 0$ couplings. $p = 6$ is marginal in V . For α , $p = 1, 2$ are relevant and $p = 3$ is marginal. All other p are irrelevant.

For finite bond field dimension in $d = 3$, finite number of parameters for **renormalized** cTNS:

$$V(\phi) = A\phi + B\phi\phi + C\phi\phi\phi + D\phi\phi\phi\phi + E\phi\phi\phi\phi\phi + F\phi\phi\phi\phi\phi\phi$$

$$\alpha(\phi) = X\phi + Y\phi\phi + Z\phi\phi\phi$$

Proper renormalization procedure not checked yet

Generalization

For a general Riemannian manifold \mathcal{M} with boundary $\partial\mathcal{M}$, define:

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi B(\phi|_{\partial\mathcal{M}}) \exp \left\{ - \int_{\mathcal{M}} d^d x \sqrt{g} \left(\frac{g^{\mu\nu} \partial_\mu \phi_k \partial_\nu \phi_k}{2} + V[\phi, \nabla \phi] - \alpha[\phi, \nabla \phi] \psi^\dagger \right) \right\} |0\rangle$$

i.e. add curvature and possible anisotropies in V and α

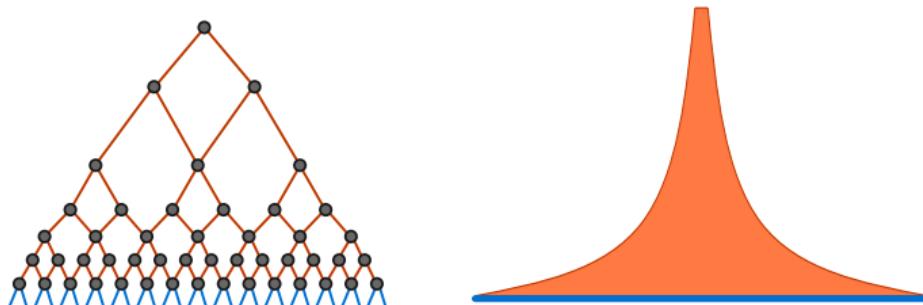
Generalization

For a general Riemannian manifold \mathcal{M} with boundary $\partial\mathcal{M}$, define:

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi B(\phi|_{\partial\mathcal{M}}) \exp \left\{ - \int_{\mathcal{M}} d^d x \sqrt{g} \left(\frac{g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi}{2} + V[\phi, \nabla \phi] - \alpha[\phi, \nabla \phi] \psi^\dagger \right) \right\} |0\rangle$$

i.e. add curvature and possible anisotropies in V and α

Example: $\alpha[x, \phi, \nabla \phi]$ localized on the boundary and hyperbolic metric g :



→ cMERA-like in $d - 1$ dimensions

Future

Limitations and work for the future

- ▶ Quite formal out of the Gaussian regime (but Gaussian still non-trivial)
- ▶ Computation through dimensional reduction quite hard to carry
- ▶ Limited to bosonic field theories (so far)
- ▶ Gauge invariant states
- ▶ Can one say anything about topology?

Summary

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi \, B(\phi|_{\partial\Omega}) \exp \left\{ - \int_{\Omega} d^d x \frac{1}{2} \sum_{k=1}^D [\nabla \phi_k(x)]^2 + V[\phi(x)] - \alpha[\phi(x)] \psi^\dagger(x) \right\} |0\rangle$$

Continuous tensor network states are natural continuum limits of tensor network states and natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks
2. Can be made Euclidean invariant
3. **Motto of tensor networks:** trade a dimension for a variational optimization
4. Still need to be properly renormalized (in perturbative and RG sense)
5. Still needs to be used to approximate non-trivial non-Gaussian ground states

