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Negative theology

» Not covariant/geometric
objects guv or R,

» Not tensor models
[Rivasseau, Gurau, ...]



Many-body problem

Possible solutions

Problem

» Perturbation theory

Finding low energy states of

» Monte Carlo

» Bootstrap IR fixed point

» Variational optimization (e.g. Mean
Field, TCSA, tensor networks)

is hard because dim . « DV



Variational optimization

Generic (spin D/2) state € -
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Exact variational optimization
To find the ground state:
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Variational optimization

Generic (spin D/2) state € J#-

W)= D Capyin Ity i)

iyi2y e yin

Approx. variational optimization
To find the ground state:

(WIH[)

0} = | i, =)

» dim.# o Poly(N) or fixed



An idea popular in many fields

» Mean field approximation (of which TNS are an extension)

Px1y X2y -+, Xn) = P1(x1) Ya(x2) - - - Palxy)

» Special variational wave functions in Quantum chemistry (whole industry of ansatz)
» Moore-Read wavefunctions in the study of the quantum Hall effect

b,y s x) = (BOble) - $lx) )

CFT

» Fully connected and convolutional neural networks used in machine learning

Feature maps

Convolutions i C i i Fully
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Typical states are strongly entangled

Random state

b)

Unaar|trivial)

Reduced density matrix

Entanglement entropy

—tr[plog p]

S:

Volume law

S x |D]




Constructing weakly entangled states



Constructing weakly entangled states

1. Put auxiliar
® ® ® ® ® maximally }clentangled
states between sites
@ @ @ @ [ 4
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Constructing weakly entangled states

1. Put auxiliary
maximally entangled
states between sites

X

o-0=) W

j=1

2. Map to initial Hilbert
space on each site

‘:A:C“X—)CD




Tensor network states: definition

Why “tensor” network?
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with tensor contractions on links



Tensor network states: definition

Why “tensor” network?

J2 i i3

- e

1 Ja

. (MAXx d i
A:C* = C Ajl 25J32Ja

Optimization
Find best A for fixed x (D x x* coeff.)

. (AAIA)
Eo = min (AIA)

oE

3AT
aAj1 22503 5J4

for example go down

with tensor contractions on links




Some facts

d =1 spatial dimension

Theorems (colloquially)

1. For gapped H, tensor network states |A)
approximate well |0) with x fixed

2. All |A) are ground states of gapped H



Some facts

d = 1 spatial dimension d > 2 spatial dimension

Theorems (colloquially) Folklore
1. For gapped H, tensor network states |A) 1. For gapped H, tensor r]etwork states |A)
approximate well |0) with x fixed approximate well |0) with x fixed

2. All |A) are ground states of gapped H 2. Most |A) are ground states of gapped H
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Limitations

Hard to contract in d > 2 Expressive but opaque

In d > 2 one can have: Generally hard to interpret
> |A) known » Tensor carries IR-irrelevant information
> (AI@;@j|A> hard to compute exactly » Hard to constrain long distance behavior

= Go to the continuum and QFT: Major objective and challenge

discrete tensor network continuum description ?7
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Try to find the ground state of a spin chain, H = ZJ. ﬂj:

|1b> - Z Civyiyy e yin |i1>"' »in>

i1yi2y+ yin

Matrix Product States (MPS)

ALR) = Y (LA (1)A,(2) - Ay (n)IR) lir, -+ i)

M1yi2y i
» A; are x X X complex matrices
> Aisa2xyxxXx tensor [Aix,
> |L) and |R) are x-vectors.



Matrix product states

Try to find the ground state of a spin chain, H = ZJ. ﬂj:

|Ll)> = Z Ciyyinyee yin |i1>' o vin>

1502y 5in
Matrix Product States (MPS)

Remark: actually equivalent
with the density matrix
renormalization group

(DMRG)

ALR) = Y (LA (1)A,(2) - Ay (n)IR) lir, -+ i)
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» [L) and |R) are x-vectors.



Matrix product states

Try to find the ground state of a spin chain, H = ZJ. ﬂj:

|Ll)> = Z Ciyyinyee yin |i1>' o vin>

1151257 51n

Matrix Product States (MPS)

ALR) = Y (LA (1)A,(2) - Ay (n)IR) lir, -+ i)

11501257 5In

» A; are x X X complex matrices
> Aisa2xyxxXx tensor [Aix,
» [L) and |R) are x-vectors.

& nx 2 x x? parameters instead of 2"

Remark: actually equivalent
with the density matrix
renormalization group
(DMRG)

{ x is the bond dimension and encodes the size of the variational class



Recall the graphical notation
AL R) =3 i (LA (DAL (2) - A (n)IR) liny -+ i)
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Recall the graphical notation
‘A> L) R> = Zily"Zy"' ’in<L|Ai1(1)Aiz(2) e Al,,(n)lR> |i1) Ty ’n>

Notation: [Alx, = —l— and k—— 1= by, gives:

anr =t b LLLLLLLLLL LI LI L L

Example: computation of correlations

can be done efficiently by iterating 2 maps:

.
O = and q)o ZI
——

The contraction for a d = 1 system, can be seen as an open-system dynamics in d = 0.




Generalizations: different tensor networks

Matrix Product States (MPS)

SAVVLLLLLLLL L L L

Projected Entangled Pair States Multi-scale Entanglement
(PEPS) Renormalization Ansatz (MERA)




Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS
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Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

JAiddildl
~LLdl R

» the bond dimension X stays fixed

» the local physical dimension explodes C? @ - -- ® €2 — .Z (L2?([x, x + dx])).
= Spins become fields — (~ central limit theorem =)



Continuous Matrix Product States

Type of ansatz for bosons on a fine grained d = 1 lattice

» Matrices A; (x) where the index iy corresponds to Wi (x)|0) in physical space.

Informal cMPS definition

Fixed by:
Ao =1+¢eQ » Finite particle number
A =¢R 000000
Az Sk 01000 0 o
v2 L1238l . .
A (eR)" » Consistency

so we go from oo to 2 matrices



Continuous Matrix Product States

Definition

L
[ 2 ) — sl {L dx Qo1+R® uﬂ(x)} lwr) [0)

» @, R are x X X matrices,
» |w;) and |wg) are boundary vectors € CX, for p.b.c. (wy|-|wg) — tr[-]

> (), Pi(y)] =8(x—y)

Idea:



Continuous Matrix Product States

Definition

L

0,R,w) = (@iFep{| o Qo1+ ROV | om0
0

» @, R are x X X matrices,

» |w;) and |wg) are boundary vectors € CX, for p.b.c. (wy|-|wg) — tr[-]

> (), Pi(y)] =8(x—y)

Idea:
A(x) = Aol + AT (x)
~1@1+eQ®1+eR2P(x)
~ exp [e (Q® 1+ R®1bT(x))]



Computations

Some correlation functions

with T=Q®1+1®Q+R®R
Example

Lieb-Liniger Hamiltonian

= J o [dwx} R L+ 10 BB )
S dx dx

Solve by minimizing:

with fixed particle density (Q, R| W (x)(x) @, R).



Continuous Tensor Networks: blocking

Upon blocking:

¢ The physical Hilbert space
dimension D increases

¢ The bond (auxiliary space)
dimension x increases too




Result

physical degrees of fredom physical field

auxiliary field

auxiliary degrees of fredom

AT, J. I. Cirac, 2019
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Continuous tensor network state (heuristically)

State o) of d + 1 QFT from an auxiliary d dimensional theory of random fields ¢:

o0 = [D6 o0 { — [ £l 0l - sl @*(x)} Q)

creation

1. Genuine continuum limit of discrete tensor networks
2. The toolbox is translated to the continuum



Choice of tensor around which to expand...

For MPS, not much choice:
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Choice of tensor around which to expand...

For MPS, not much choice:

i .

=120 +eQ®10) +eR @V (x)0)

For TNS in d > 2, many options:
1. Take a & between all legs ~ GHZ state T(©) = ><
= trivial geometry

2. Take two identities T(0) =
— breakdown of Euclidean invariance

3. Take the sum of pairs of identities in both directions T(®) = >< + /\‘\/



Ansatz

1 — Take a “Trivial" tensor:

62 90
T<1(>()()1),¢(2],¢(3),¢(4) = /‘_'
o) o)
D
~ exp {_21 Z[‘bk(l) — ¢k(2)}2 + [¢k(2) - ¢k(3)]2
k=1

- 10e(3) — drl4))2 + [be(4) — ¢k(1)12}

The indices ¢ are in RX (and not 1,--- ,x)
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62 90
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Ansatz

1 — Take a “Trivial" tensor:

62 90
Téo()l),d>(2],¢(3)’¢(4) = ~ ;:\:{7;.'-‘
o) o)
D
~ exp {_21 Z[‘bk(l) — ¢k(2)}2 + [¢k(2) - ¢k(3)]2
k=1

- u(3) — bu(A) + [br(4) — ¢k<1)12}

The indices ¢ are in RX (and not 1,--- ,x)

2 — And add a “correction”:

exp {_82\/ [(b(l)) e )¢(4)] + 82“[(1)(1)) e )¢(4)] II)T(X)}

3 — Realize tensor contraction = functional integral and trivial tensor gives free field measure.



Result

physical degrees of fredom physical field

auxiliary field
auxiliary degrees of fredom

AT, J. I. Cirac, 2019

Continuous tensor network state (heuristically)

State o) of d +1 QFT from an auxiliary d dimensional theory of random fields ¢:

lo) = JD(I) exp{ — Jddx Lld(x)] — Oé[fb(x)]lT’T(X)} 1€2)

creation



Operator definition

g

|V7 (X> =
T /N N\
o [rrexp H dTJ dx ﬁk(*gﬁk(x) 4 V“’k(x)j‘“(x) V)] — ald ()] pt (T,x))] 0)
0 S
where:

» &u(x) and R« (x) are X independent canonically conjugated pairs of (auxiliary) field

operators: [bx(x), §i(y)] = 0, [Rx)k, Ri(y)] = 0, and [bx(x), Ri(y)] = idk, 8(x — y)
acting on a space of d — 1 dimensions.



Wave-function definition

A generic state [¥) in Fock space can be written:

+oo

Wy = ZJ @nlx1y- -y xn) Wixa) Wi (x,) [0)

I
n:O n n.
where ¢, is a symmetric n-particle wave-function
Functional integral representation

(Pn(XI) co )Xn) - < O([(I)(X]_)] e oc[(])(x,,)] >au><
with:

(Yo =JD¢ . B(dloa) exp [—% JQ d9x [V P + VI(x)]

» ~ Moore-Read wave-function for Quantum Hall, but generic QFT



Expressivity and stability

How big are cTNS?

Stability

The sum of two cTNS of bond field
dimension X3 and X is a cTNS with bond
field dimension x < x1 + x2 + 1:

Vi, o) + [Va, 00) = W, B)

Expressiveness
All states in the Fock space can be
approximated by cTNS:
» A field coherent state is a cTNS with
x=0
» Stability allows to get all sums of field
coherent states

Note: expressiveness can also be obtained with x = 1 but it is less natural. Flexibility in x
makes the expressivity higher for restricted classes of V' and «.



Computations
Define generating functional for normal ordered correlation functions

Appp— (V.alesp (j dxj’(xw(x)> exp ( | dxj(x)w(x)) IV, )

(V, oV, o

Operator representation

Z,j/j =tr

T/2
B®B*‘J’exp J <Tj/j—J JJ/>
—T/2 S

Ty = [ x50 @ 1+ 103600 + (ol +170) o (Bl +00)

with transfer matrix:

and

Al [Vdék(x)f

D
Z + VI$(x)]

k=1

= cMPS brought us from 1 to 0, cTNS bring us from d to d — 1.



Renormalization

Scaling

— d =2, All powers of the field in V and « yield relevant couplings

— d =3, The powers p =1,2,3,4,5 of the field in V yield relevant A > 0 couplings. p =6
is marginal in V. For o, p = 1,2 are relevant and p = 3 is marginal. All other p are
irrelevant.

For finite bond field dimension in d = 3, finite number of parameters for renormalized cTNS:

V(p) = Ad + Bdd + Codd + Ddddd + EQdddd + FOddddd
x($) =X+ Ydd + Zodd

Proper renormalization procedure not checked yet



Generalization

For a general Riemanian manifold M with boundary 0M, define:

IV, B, o) = J@q» B(dlanc) exp {—Jﬁdxﬁ(w + VIVl = ald, Vol o) }|0>

i.e. add curvature and possible anisotropies in V' and «



Generalization

For a general Riemanian manifold M with boundary 0M, define:

M

V,B, &) = J"Dd) B(dlon) exp { Jddx\/_( +Vid, Vo] — ald, V] lw) }|0>

i.e. add curvature and possible anisotropies in V' and «

Example: «[x, ¢, V] localized on the boundary and
hyberbolic metrix g:

— cMERA-like in d — 1 dimensions



Future

Limitations and work for the future

» Quite formal out of the Gaussian regime (but Gaussian still non-trivial)
» Computation through dimensional reduction quite hard to carry

» Limited to bosonic field theories (so far)

» Gauge invariant states

» Can one say anything about topology?



Summary

D
V,8,60 = [ D0 Bl0laa) e {-| %% 3 3 [Vulx)? + Vigl) - alobol ' (x) | 0)
k=

1

Continuous tensor network states are natural continuum limits of tensor network states and
natural higher d extensions of continuous matrix product states.

1.

LA

Obtained from discrete tensor networks

Can be made Euclidean invariant

Motto of tensor networks: trade a dimension for a variational optimization
Still need to be properly renormalized (in perturbative and RG sense)

Still needs to be used to approximate non-trivial non-Gaussian ground states




