

Some open problems I think about

at work, in the shower, or while running

Antoine Tilloy

Max Planck Institute of Quantum Optics, Garching, Germany

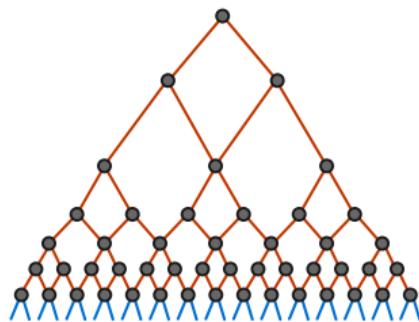
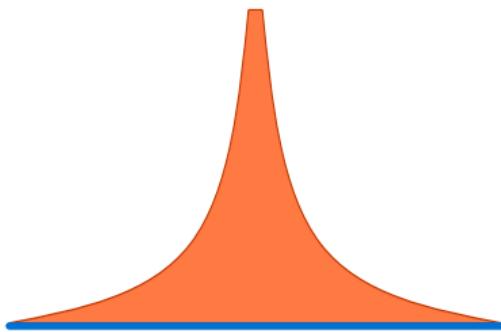
MPQ Theory division workshop
Somewhere in Germany
October 22nd, 2019

Alexander von Humboldt
Stiftung / Foundation

List of problems

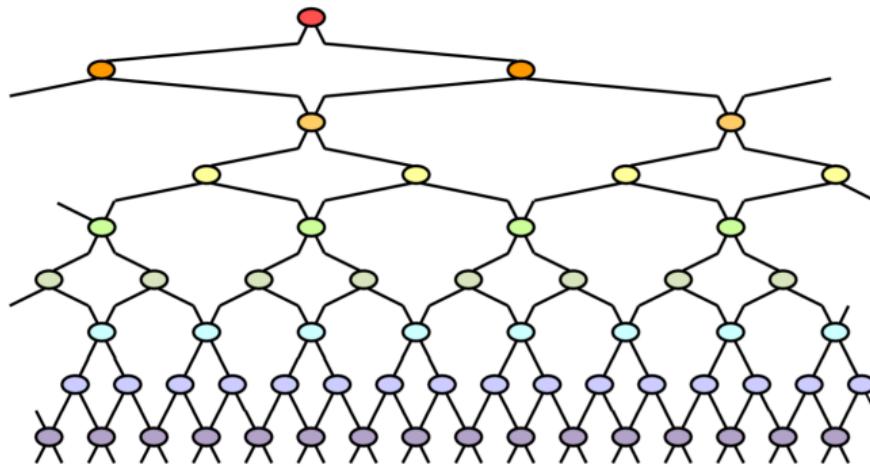
- 1 – [tensor networks] Is there a good continuous MERA?
- 2 – [entanglement] Is there a simple model of measurement induced phase transition?
- 3 – [foundations] Can relativistic quantum field theories be made open?
- 4 – [real world] Should actinides be burnt or burried?
- 5 – [random] A list of other open problems

Q1: Is there a good continuous MERA?



What is the MERA?

The **Multiscale Entanglement Renormalization Ansatz** is a tensor network with a particular structure adapted to **critical systems** [courtesy of Guifre Vidal]

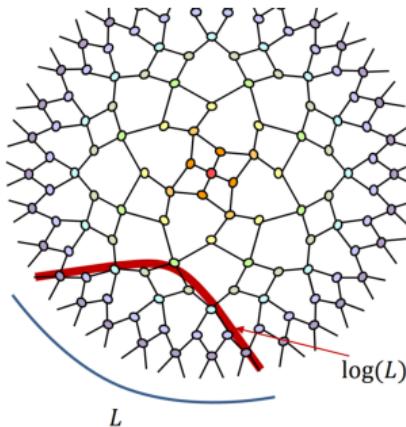


disentangler *isometry*

$$u \quad \begin{array}{c} \text{---} \\ \text{---} \end{array} = \quad \Big| \quad \quad \quad w \quad \begin{array}{c} \text{---} \\ \text{---} \end{array} = \quad \Big|$$
$$u^\dagger \quad \begin{array}{c} \text{---} \\ \text{---} \end{array} = \quad \Big| \quad \quad \quad w^\dagger \quad \begin{array}{c} \text{---} \\ \text{---} \end{array} = \quad \Big|$$

Some facts about the MERA

1 – Because of **geometry**: $S \propto \log L$



2 – Because of **special tensors**: renormalization is **local** – “strict causal cone”

$$\begin{array}{c} \text{disentangler} \\ u \\ u^\dagger \end{array} = \left| \begin{array}{c} \\ \\ \end{array} \right| \quad \begin{array}{c} \text{isometry} \\ w \\ w^\dagger \end{array} = \left| \begin{array}{c} \\ \\ \end{array} \right|$$

A diagram illustrating the local nature of renormalization. On the left, a MERA tree is shown with a blue shaded rectangular region. This region is enclosed in a box, which is then enclosed in a larger box. This represents the “strict causal cone” of the region. To the right of the tree, an equals sign is followed by a vertical line with three horizontal bars, representing the disentangler u and isometry w tensors. The blue shaded region is shown again within the causal cone, indicating that the renormalization process is local to that region.

Why would the cMERA be nice?

- ▶ Apply directly to QFT without discretization
- ▶ Renormalize continuously (and not by factors of 2)

Why would the cMERA be nice?

- ▶ Apply directly to QFT without discretization
- ▶ Renormalize continuously (and not by factors of 2)
- ▶ Translation invariant even without Lorenzo's galactic brain

cMERA proposals – original Haegeman *et al.* 2011

Start from \mathcal{H} of non-relativistic QFT: $[\psi(x), \psi^\dagger(y)] = \delta(x - y)$
and define:

$$|\Psi\rangle = U|\Omega\rangle = \mathcal{P} \exp \left(\int_{s_{UV}}^{s_{IR}} L + K \right) |\Omega\rangle$$

cMERA proposals – original Haegeman *et al.* 2011

Start from \mathcal{H} of non-relativistic QFT: $[\psi(x), \psi^\dagger(y)] = \delta(x - y)$
and define:

$$|\Psi\rangle = U|\Omega\rangle = \mathcal{P} \exp \left(\int_{s_{UV}}^{s_{IR}} L + K \right) |\Omega\rangle$$

- ▶ Equivalent of the “coarse grainer” (3 legged tensor) $\psi(x) \rightarrow \psi(e^{-s}x)$

$$L := -\frac{i}{2} \int \psi^\dagger(x) x \frac{d\psi(x)}{dx} - x \frac{d\psi^\dagger(x)}{dx} \psi(x) dx \quad (1)$$

cMERA proposals – original Haegeman *et al.* 2011

Start from \mathcal{H} of non-relativistic QFT: $[\psi(x), \psi^\dagger(y)] = \delta(x - y)$
and define:

$$|\Psi\rangle = U|\Omega\rangle = \mathcal{P} \exp \left(\int_{s_{UV}}^{s_{IR}} L + K \right) |\Omega\rangle$$

- ▶ Equivalent of the “coarse grainer” (3 legged tensor) $\psi(x) \rightarrow \psi(e^{-s}x)$

$$L := -\frac{i}{2} \int \psi^\dagger(x) x \frac{d\psi(x)}{dx} - x \frac{d\psi^\dagger(x)}{dx} \psi(x) dx \quad (1)$$

- ▶ Equivalent of the disentangler (4 legged tensor)

$$K = \int dx dy K_2(x, y) \psi^{(\dagger)}(x) \psi^{(\dagger)}(y) + \int K_3 \psi \psi \psi + \dots$$

where $K_j(x_1, \dots, x_j)$ is $\sim \Lambda^{-1}$ local, i.e. $|K_j| \ll 1$ if $|x_k - x_i| \gg \Lambda^{-1}$

cMERA proposals – perturbative refinements

Remember definition:

$$|\Psi\rangle = U|\Omega\rangle = \mathcal{P} \exp \left(\int_{s_{UV}}^{s_{IR}} L + K \right) |\Omega\rangle$$

K free, but $|\Psi\rangle$ computable for K at most quadratic – “**Gaussian cMERA**”

cMERA proposals – perturbative refinements

Remember definition:

$$|\Psi\rangle = U|\Omega\rangle = \mathcal{P} \exp \left(\int_{s_{UV}}^{s_{IR}} L + K \right) |\Omega\rangle$$

K free, but $|\Psi\rangle$ computable for K at most quadratic – “**Gaussian cMERA**”

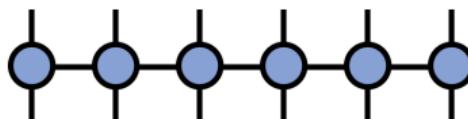
⇒ do perturbation theory for weakly interacting fields [Cotler et al. 2017]

Nice that it can be done, but probably not interesting fixed points.

cMERA proposals – “magic” entangler

Take K a continuous matrix product operator [Zou, Ganahl, Vidal 2019]:

$$K = \text{tr}_{\text{aux}} \left\{ \mathcal{P} \exp \left[\int dx \ Q \otimes \mathbb{1} + R \otimes \psi(x) + \bar{R} \otimes \psi^\dagger(x) \right] \right\}$$



1. breaks locality
2. preserves the geometry
3. two matrices parameterize everything

cMERA questions

1. For a “magic” cMERA with R and Q fixed, what is the conformal data?

$$\Delta, \mathcal{O}_\Delta(x), C_{ijk} = f(R, Q)?$$

cMERA questions

1. For a “magic” cMERA with R and Q fixed, what is the conformal data?

$$\Delta, \mathcal{O}_\Delta(x), C_{ijk} = f(R, Q)?$$

2. Can the cMERA be made more local?

$$K = \int dx k(x) = \int dx P(\partial_x \psi, \psi)$$

cMERA questions

1. For a “magic” cMERA with R and Q fixed, what is the conformal data?

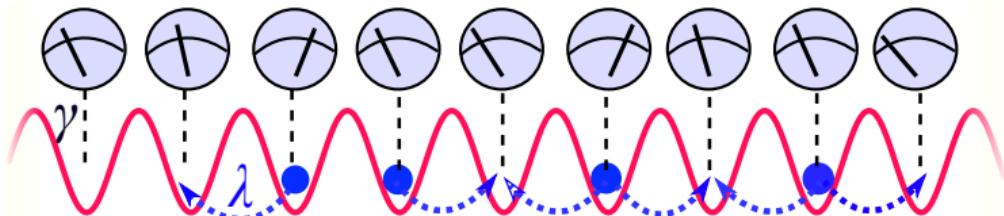
$$\Delta, \mathcal{O}_\Delta(x), C_{ijk} = f(R, Q)?$$

2. Can the cMERA be made more local?

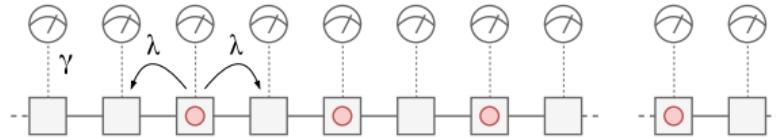
$$K = \int dx k(x) = \int dx P(\partial_x \psi, \psi)$$

3. Can a cMERA be contracted by \simeq TCSA
[truncation of the field algebra + exact diag.]

Q2: Is there a simple model of measurement induced entanglement phase transition?



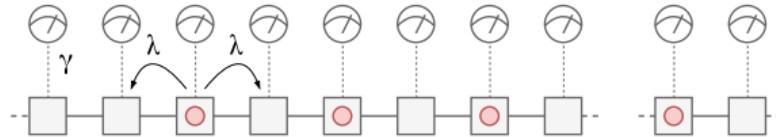
Continuously measured free fermions



Consider **free fermions** on a line:

$$H = \lambda \sum_{j=1}^N a_j^\dagger a_{j+1} + a_{j+1}^\dagger a_j$$

Continuously measured free fermions



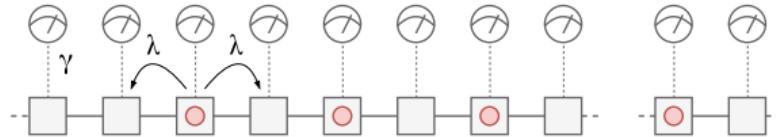
Consider **free fermions** on a line:

$$H = \lambda \sum_{j=1}^N a_j^\dagger a_{j+1} + a_{j+1}^\dagger a_j$$

add continuous measurement of number n_j on each site:

$$d|\Psi_t\rangle = -iHdt|\Psi_t\rangle + \sum_{i=1}^L \left(\sqrt{\gamma} [n_i - \langle n_i \rangle_t] dW_t^i - \frac{\gamma}{2} [n_i - \langle n_i \rangle_t]^2 dt \right) |\Psi_t\rangle$$

Continuously measured free fermions



Consider **free fermions** on a line:

$$H = \lambda \sum_{j=1}^N a_j^\dagger a_{j+1} + a_{j+1}^\dagger a_j$$

add continuous measurement of number n_j on each site:

$$d|\Psi_t\rangle = -iHdt|\Psi_t\rangle + \sum_{i=1}^L \left(\sqrt{\gamma} [n_i - \langle n_i \rangle_t] dW_t^i - \frac{\gamma}{2} [n_i - \langle n_i \rangle_t]^2 dt \right) |\Psi_t\rangle$$

Gaussianity is preserved → non-linear closed equation for $D_{ij} = \langle a_i^\dagger a_j \rangle$

Continuously measured free fermions

Basic non-linear continuous measurement evolution:

$$d|\Psi_t\rangle_{\text{meas.}} = -iHdt|\Psi_t\rangle + \sum_{i=1}^L \left(\sqrt{\gamma} [n_i - \langle n_i \rangle_t] dW_t^i - \frac{\gamma}{2} [n_i - \langle n_i \rangle_t]^2 dt \right) |\Psi_t\rangle$$

Continuously measured free fermions

Basic non-linear continuous measurement evolution:

$$d|\Psi_t\rangle_{\text{meas.}} = -iHdt|\Psi_t\rangle + \sum_{i=1}^L \left(\sqrt{\gamma} [n_i - \langle n_i \rangle_t] dW_t^i - \frac{\gamma}{2} [n_i - \langle n_i \rangle_t]^2 dt \right) |\Psi_t\rangle$$

Upon measurement randomness averaging, we would get the **Lindblad equation**:

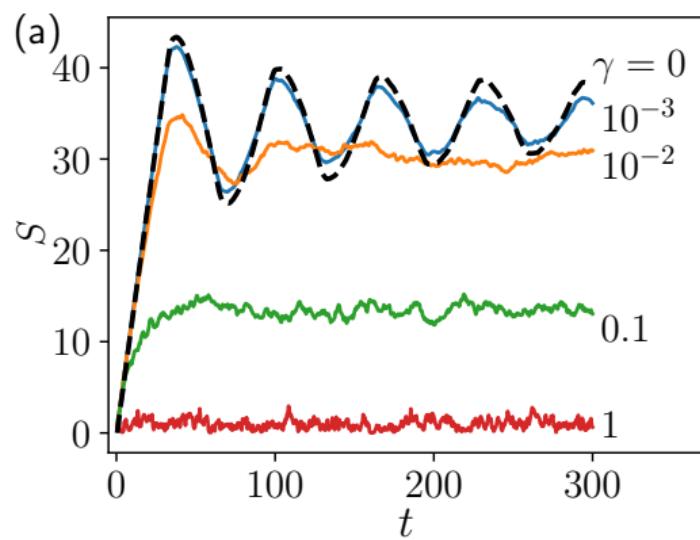
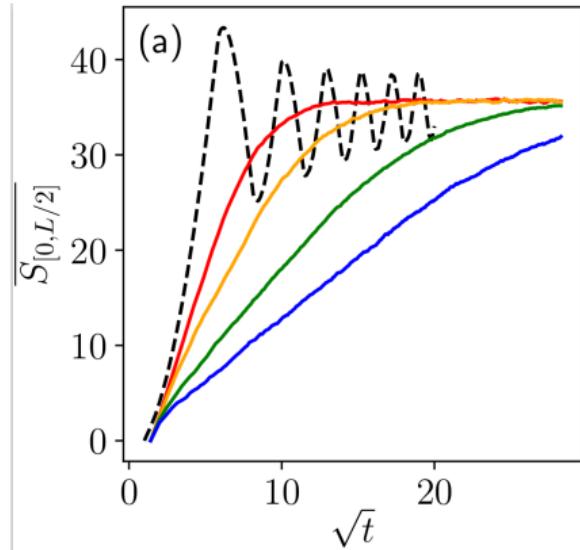
$$\partial_t \rho_t = -i[H, \rho] - \frac{\gamma}{2} \sum_j [n_j, [n_j, \rho_t]]$$

Note that pure unitary noise would give **same** Lindblad:

$$d|\Psi_t\rangle_{\text{noise}} = -iHdt|\Psi_t\rangle - i \sum_j n_j dW_t^i |\Psi_t\rangle = -iH_{\text{noise}}|\Psi_t\rangle$$

Results

Now quench and look at entanglement entropy:



Entanglement varies wildly depending on “unraveling” after a quench:

1. $|\psi_t\rangle_{\text{meas.}}$ has **area** law entanglement for all γ
2. $|\psi_t\rangle_{\text{noise}}$ has **volume** law entanglement for all γ

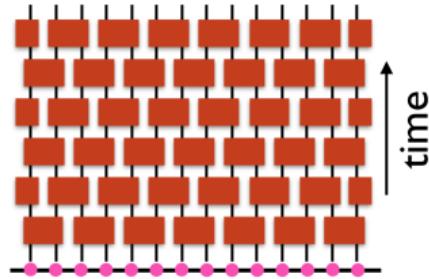
→ no phase transition, very good generalized hydrodynamics

Duck shooting intuition

A quench,

- ▶ creates lots of entangled excitation
- ▶ they propagate at constant speed
- ▶ they get randomly killed by measurement

BUT

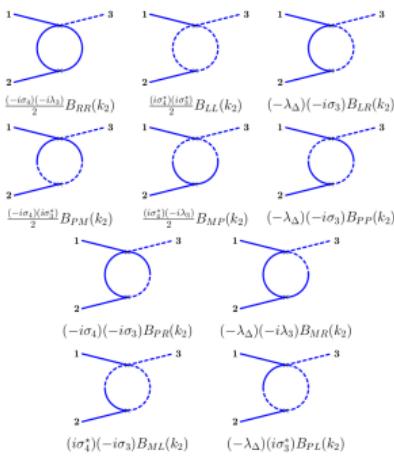
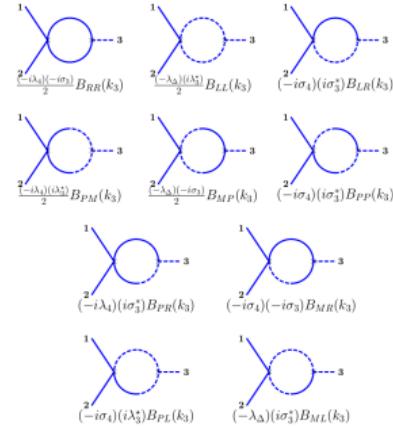


random circuits show there can be a phase transition in both cases for γ_c

Some weird scrambling thingy must be going on (ducks turn into snakes)

Is there a simple model, physically reasonable, numerically manageable, that shows both phase transitions?

Q3: Can relativistic quantum field theories be made open?



Markovian open system dynamics in quantum mechanics

$$\frac{d}{dt}\rho_t = -i[H, \rho_t] + \sum_{k=1}^n A_k \rho A_k^\dagger - \{A_k^\dagger A_k, \rho_t\}$$

Origins:

1. Interaction with bath in Markovian limit
2. Repeated interaction with discrete ancillas

Markovian open system dynamics in quantum mechanics

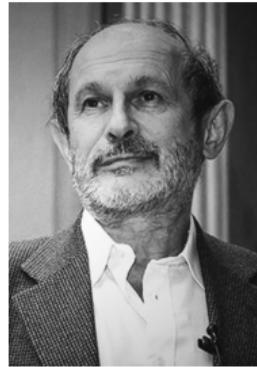
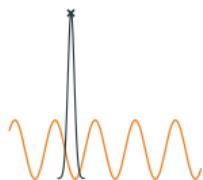
$$\frac{d}{dt}\rho_t = -i[H, \rho_t] + \sum_{k=1}^n A_k \rho A_k^\dagger - \{A_k^\dagger A_k, \rho_t\}$$

Origins:

1. Interaction with bath in Markovian limit
2. Repeated interaction with discrete ancillas
3. What if it is fundamental?

Dynamical reduction program

In the 80's people proposed to add a fundamental collapse of the wavefunction in the Schrödinger equation:



so Lindblad dynamics fundamental \simeq fundamental collapse of $|\psi\rangle$

BUT non-relativistic

Field theory

It is hard!

Difficulties:

- ▶ Vacuum unstable, decays into particle pairs
- ▶ Infinite energy density increase $\partial_t \text{tr}[h(x)\rho_t] = +\infty$
- ▶ S-matrix picture blows up
- ▶ No LSZ reduction formulas

But:

- ▶ Free models seem to make sense regardless of infinite energy
- ▶ Interacting models look formally renormalizable
- ▶ So maybe the infinites are spurious

What has been done

Preskill's notes (35 pages) [no hyperlink, but indexed by Google]

Diagrammatic for the field theoretic Lindblad equation

Note Title

7/24/2014

Feynman diagrams are derived from a "interaction" of the form

$$\exp(iS - iS' + \delta)$$

where S acts on ket side and S' on bra side of a density operator

The δ term acts on both. It can be a sum of terms of the form $(\phi - \phi')^2$ where ϕ is a function of fields (but not derivatives). This corresponds to CP Lindblad term $2\phi\phi' - \phi^2 - \phi'^2$

The simplest Lorentz invariant subterms are $(\phi - \phi')^2$ and $(\phi^2 - \phi'^2)$

Let's compute some loop corrections -- Are such theories renormalizable? That is -- can divergences be cancelled by counterterms of the same form?

In the Feynman rules:

- 1) Normal vertices are imaginary but supervertices are real.
- 2) The propagators for bra internal lines and ket internal lines have opposite sign.
- 3) Bra and ket propagators have opposite i epsilon prescriptions.

Let's consider the theory

$$S = \frac{1}{2} \phi_1 \phi_1^2 - \frac{1}{2} m^2 \phi^2 \quad \text{and} \quad \delta = \frac{1}{4!} (\phi^2 - \phi'^2)^2$$

we'll use solid lines to denote kets and dotted lines for bras.

As a warmup, recall $Z = \frac{1}{4!} \lambda \phi^4$

$$\text{In one loop: } \lambda = (-i\lambda)^{\frac{1}{2}} \int \frac{d^4 k}{(2\pi)^4} \left(\frac{i}{k^2 - m^2 + i\epsilon} \right)^2$$

symmetry factor

$$= \frac{1}{32\pi^2} \int dk_0 k_0^3 (i) \frac{1}{k_0^2} = \frac{i\lambda^2}{32\pi^2} \lambda \Lambda^2$$

wick rotation

there are 3 such diagrams:

 + + An incoming particle can be paired at a vertex with any of 3 other incoming particles

 - $i\delta\lambda$ cancellation divergence with a counterterm
 $\Rightarrow \delta\lambda = \frac{3}{32\pi^2} \lambda^2 \ln \Lambda^2$

If we define renormalized coupling at scale μ ,

bare coupling is

$$\lambda_0 = \lambda_m + \frac{3}{16\pi^2} \lambda^2 \ln \frac{\Lambda}{\mu}$$

we keep λ_0 fixed as μ changes: $\mu \frac{d}{d\mu} \lambda_0 = 0$

$$\Rightarrow \mu \frac{d}{d\mu} \lambda_m = \frac{3}{16\pi^2} \lambda^2 \mu \quad \text{Not asymptotically free}$$

As another warm up, to check diagram combinatorics, consider $SO(2)$ invariant theory

$$Z = \frac{1}{2} \lambda_1 \phi_1^2 + \frac{1}{2} \lambda_2 \phi_2^2 - \frac{1}{2} m^2 (\phi_1^2 + \phi_2^2) - \frac{1}{4!} (\phi_1^2 + \phi_2^2)^2$$

The counterterm should be $SO(2)$ invariant

What has been done

Preskill's notes (35 pages) [no hyperlink, but indexed by Google]

going on.

In that case the term in the dissipator with numerator $\sim \omega^2$ comes from γ_p , and the constant term

$$\text{E.g. } \omega = -\omega_0 \Rightarrow 2\pi f(\omega) = \frac{1}{m\omega_0} \frac{\gamma_p \omega^2 + \gamma_x \omega_0^2}{(\omega - \omega_0)^2} e^{i\omega t}$$

$$\begin{aligned} \Rightarrow 2\pi f'(-\omega_0) &= \frac{i}{m\omega_0} \left(\frac{-\gamma_p}{2\omega_0} + \frac{2(\gamma_p + \gamma_x)}{8\omega_0} + \frac{\gamma_p + \gamma_x}{4} / it \right) e^{-i\omega_0 t} \\ &= \frac{i}{m\omega_0} \left(\frac{\gamma_p - \gamma_x}{4\omega_0} + \frac{\gamma_p + \gamma_x}{4} / it \right) e^{-i\omega_0 t} \end{aligned}$$

$t > 0$

$$G(t) = \frac{e^{-i\omega_0 t}}{2m\omega_0} \left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \left[\frac{i(\gamma_p - \gamma_x)}{2\omega_0} - \frac{1}{2}(\gamma_p + \gamma_x)t \right] \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right)$$

$t < 0$

$$G(t) = \frac{e^{i\omega_0 t}}{2m\omega_0} \left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \left[\frac{i(\gamma_p - \gamma_x)}{2\omega_0} + \frac{1}{2}(\gamma_p + \gamma_x)t \right] \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right)$$

(Same function, but with t replaced by $-t$.)

Wow ... what does "that" mean?

What has been done

Preskill's notes (35 pages) [no hyperlink, but indexed by Google]

$$t < 0$$
$$G(t) = \frac{e^{i\omega_0 t}}{2m\omega_0} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \left[\frac{i\gamma_p}{2\omega_0} \right]$$

(Same function, but with t replaced by -t.)

Wow ... what does *that* mean?

What has been done

Some brave bois computed 1-loop β -function with fingers crossed
[Avinash Baidya, Chandan Jana, R. Loganayagam, and Arnab Rudra]

$$\begin{array}{c} \text{Diagram 1: } 2\frac{(-i\lambda_4)^2}{2} B_{RR}(k_s) \\ \text{Diagram 2: } 2\frac{(-i\lambda_4)^2}{2} B_{LL}(k_s) \\ \text{Diagram 3: } 2(-i\sigma_4)^2 B_{LR}(k_s) \end{array}$$

$$\begin{array}{c} \text{Diagram 4: } 2\frac{(-i\lambda_4)(-i\lambda_3)}{2} B_{PM}(k_s) \\ \text{Diagram 5: } 2\frac{(-i\lambda_4)(-i\lambda_3)}{2} B_{MP}(k_s) \\ \text{Diagram 6: } 2(-i\sigma_4)^2 B_{PP}(k_s) \end{array}$$

$$\begin{array}{c} \text{Diagram 7: } 2(-i\lambda_4)(-i\sigma_4) B_{PR}(k_s) \\ \text{Diagram 8: } 2(-i\lambda_4)(-i\sigma_4) B_{MR}(k_s) \end{array}$$

$$\begin{array}{c} \text{Diagram 9: } 2(-\lambda_\Delta)(-i\sigma_4) B_{PL}(k_s) \\ \text{Diagram 10: } 2(-\lambda_\Delta)(-i\sigma_4) B_{ML}(k_s) \end{array}$$

$$\begin{array}{c} \text{Diagram 11: } \frac{(-i\sigma_1)(-i\lambda_3)}{2} B_{RR}(k_2) \\ \text{Diagram 12: } \frac{|i\sigma_1^*|(i\sigma_3^*)}{2} B_{LL}(k_2) \\ \text{Diagram 13: } (-\lambda_\Delta)(-i\sigma_3) B_{LR}(k_2) \end{array}$$

$$\begin{array}{c} \text{Diagram 14: } \frac{(-i\sigma_1)(i\sigma_3^*)}{2} B_{PM}(k_2) \\ \text{Diagram 15: } \frac{(i\sigma_3^*)(-i\lambda_3)}{2} B_{MP}(k_2) \\ \text{Diagram 16: } (-\lambda_\Delta)(-i\sigma_3) B_{PP}(k_2) \end{array}$$

$$\begin{array}{c} \text{Diagram 17: } (-i\sigma_4)(-i\sigma_3) B_{PR}(k_2) \\ \text{Diagram 18: } (-\lambda_\Delta)(-i\lambda_3) B_{MR}(k_2) \end{array}$$

$$\begin{array}{c} \text{Diagram 19: } (i\sigma_4^*)(-i\sigma_3) B_{PL}(k_2) \\ \text{Diagram 20: } (-\lambda_\Delta)(i\sigma_3^*) B_{ML}(k_2) \end{array}$$

$$\begin{array}{c} \text{Diagram 21: } \frac{(-i\lambda_4)(-i\sigma_3)}{2} B_{RR}(k_3) \\ \text{Diagram 22: } \frac{2(-\lambda_\Delta)(i\lambda_3^*)}{2} B_{LL}(k_3) \\ \text{Diagram 23: } (-i\sigma_4)(i\sigma_3^*) B_{LR}(k_3) \end{array}$$

$$\begin{array}{c} \text{Diagram 24: } \frac{(-i\lambda_4)(i\lambda_3^*)}{2} B_{PM}(k_3) \\ \text{Diagram 25: } \frac{2(-\lambda_\Delta)(-i\sigma_3)}{2} B_{MP}(k_3) \\ \text{Diagram 26: } (-i\sigma_4)(i\sigma_3^*) B_{PP}(k_3) \end{array}$$

$$\begin{array}{c} \text{Diagram 27: } \frac{2(-i\lambda_4)(i\sigma_3^*)}{2} B_{PR}(k_3) \\ \text{Diagram 28: } (-i\sigma_4)(-i\sigma_3) B_{MR}(k_3) \end{array}$$

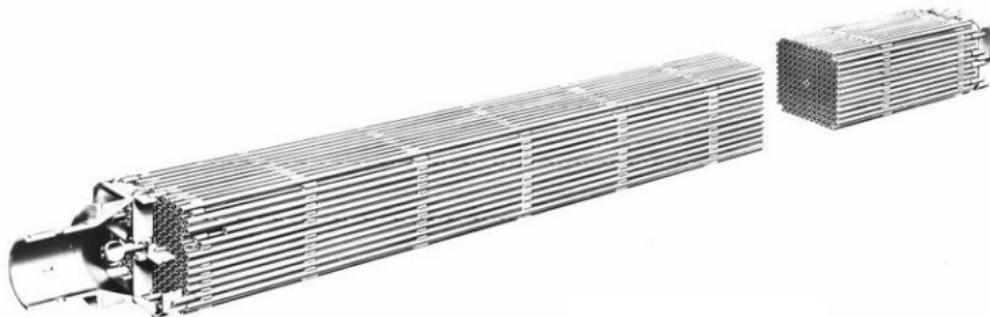
$$\begin{array}{c} \text{Diagram 29: } \frac{2(-i\sigma_4)(i\lambda_3^*)}{2} B_{PL}(k_3) \\ \text{Diagram 30: } (-\lambda_\Delta)(i\sigma_3^*) B_{ML}(k_3) \end{array}$$

Q4: Should actinides be burnt or buried?

Commission nationale du débat public

cndp Commission nationale
du débat public

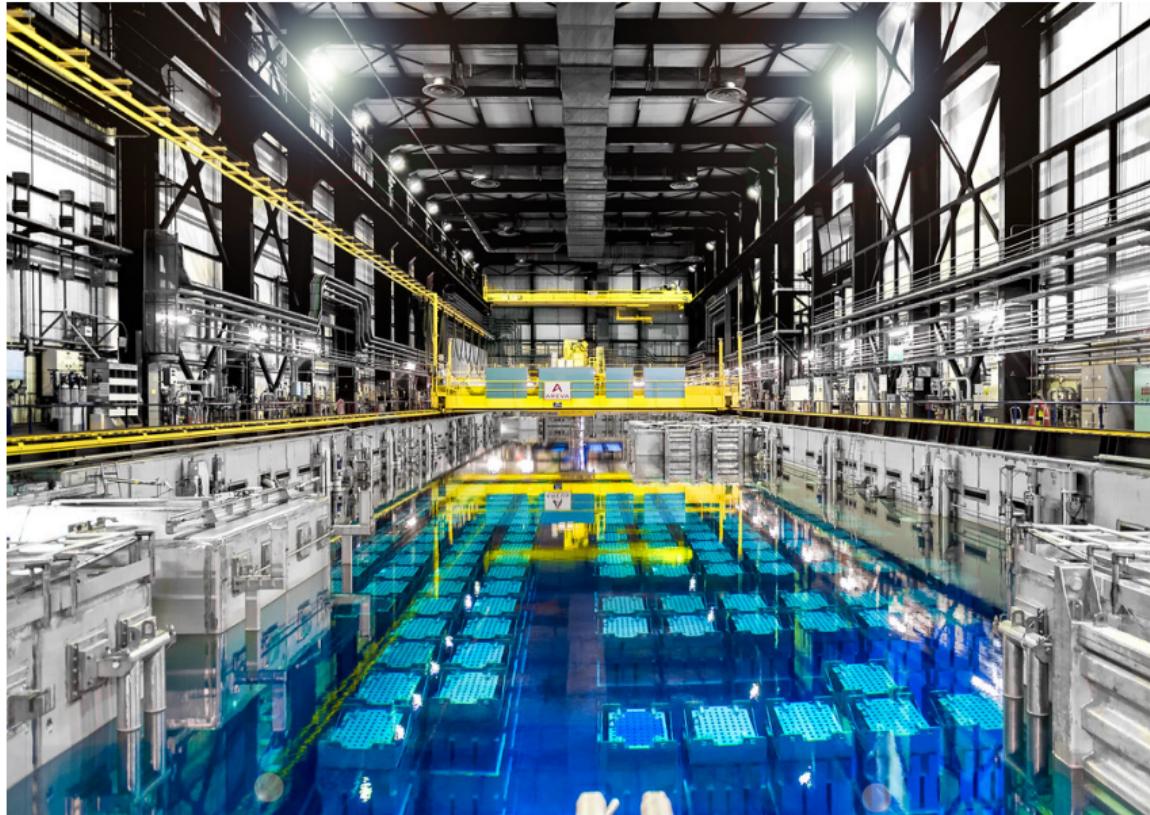
Composition of spent nuclear fuel



For French pressurized water reactors, with 4% enriched fuel, and standard burnup:

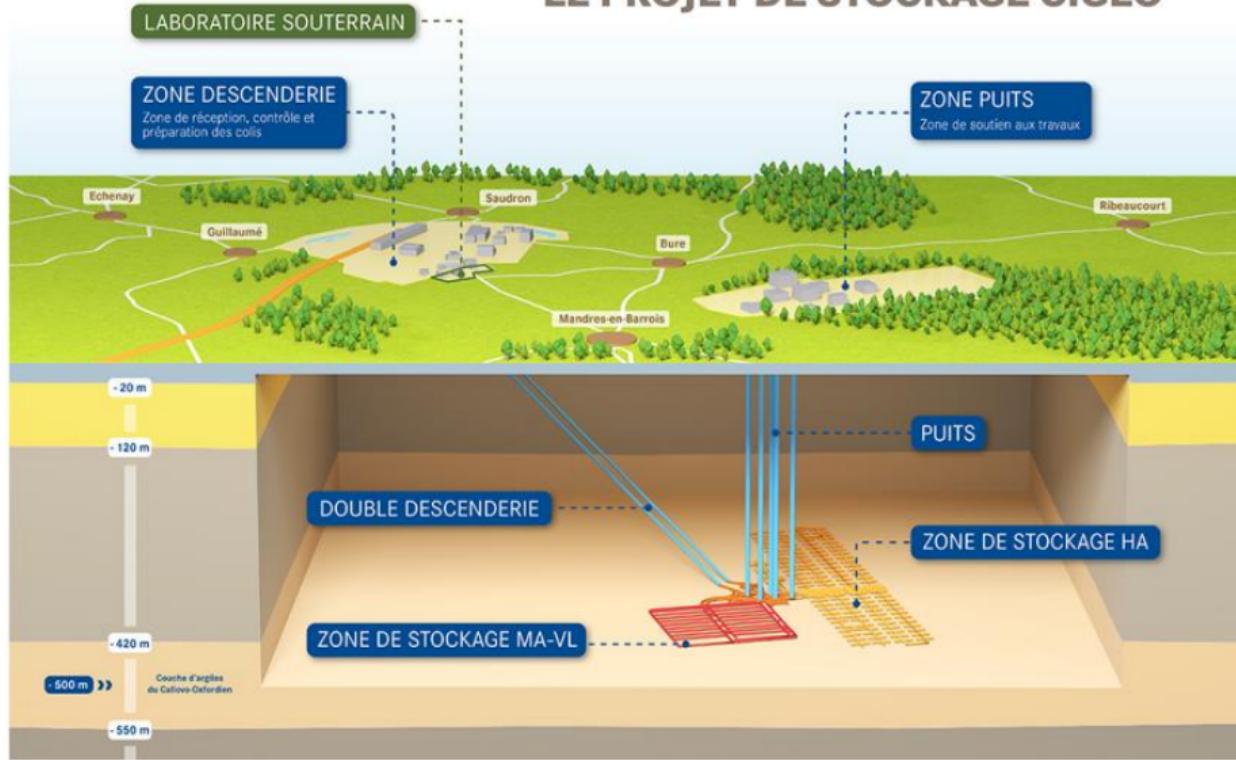
1. $\simeq 95\%$ uranium (at 0.9% of ^{235}U)
2. $\simeq 4\%$ fission products (some stable, but also ^{137}Cs , ^{129}I , ^{90}Sr , ...)
3. $\simeq 1\%$ plutonium ($\simeq 60\%$ of ^{239}Pu)
4. $\simeq 0.1\%$ minor actinides (^{241}Am , Np , Cm , ...)

Where they are temporarily



Deep geological storage

LE PROJET DE STOCKAGE CIGÉO



Back to the fuel

1. 95% uranium (at 0.9% of ^{235}U) → eternal but weakly radioactive
2. 4% fission products → very radioactive, but short lived (half-life $\simeq 30$ y)
3. 1% plutonium → very radioactive, long lived (half-life 24000 y)
4. 0.1% minor actinides → very radioactive, quite long lived (half-life $\simeq 500$ y)

Standard fuel reprocessing and plutonium reuse

At first order of approximation $^{239}\text{Pu} \simeq ^{235}\text{U}$

→ blend it with ^{238}U at roughly 8% → boom! new fuel to burn

[10% of French electricity from such “recycled” fuel]

Where the rest goes

Minor actinides + fission products are **vitrified**

Could we do the same for americium?

Americium is less fissile than plutonium, not enough to maintain reaction

Yes but no in current reactors:

- ▶ Light water reactor “can” consume americium
- ▶ Produces small amounts of berkelium and californium, with energetic γ

Could we do the same for americium?

Americium is less fissile than plutonium, not enough to maintain reaction

Yes but no in current reactors:

- ▶ Light water reactor “can” consume americium
- ▶ Produces small amounts of berkelium and californium, with energetic γ

Yes in better reactors:

- ▶ Burnable at a slow rate in **fast neutron reactors**
- ▶ Burnable slightly faster in **accelerator driven subcritical reactors**

Some reactors that can burn americium

Phenix, Marcoule, France
(retired)

BN800, Beloyarsk, Russia

Myrrha, Belgium (project)

Should we do the same for americium?

Unclear ...

CEA (\simeq French national labs) showed:

- ▶ americium can be efficiently separated from spent fuel
- ▶ fast neutron reactors can burn it progressively in $\simeq 100$ years **if**
 $n_{\text{fast}} \geq n_{\text{total}}/2$

Should we do the same for americium?

Unclear ...

CEA (\simeq French national labs) showed:

- ▶ americium can be efficiently separated from spent fuel
- ▶ fast neutron reactors can burn it progressively in $\simeq 100$ years **if**
 $n_{\text{fast}} \geq n_{\text{total}}/2$

IRSN (\simeq national expert on nuclear safety and radiation protection)

- ▶ Increases by a factor of 10 the amount of americium in processing plants and reactors
- ▶ Fuel massively radioactive and very hard to manage
- ▶ Overall much higher risks than just putting it underground as it is not soluble

What people think

A sizeable fraction of the public thinks that:

1. Fuel reprocessing should be abandoned because it is risky
i.e. **no plutonium burning**

What people think

A sizeable fraction of the public thinks that:

1. Fuel reprocessing should be abandoned because it is risky
i.e. **no plutonium burning**
2. Waste should not be put underground and we should wait for advanced actinide transmutation techniques
i.e. **americium burning... and plutonium burning??**

What people think

A sizeable fraction of the public thinks that:

1. Fuel reprocessing should be abandoned because it is risky
i.e. **no plutonium burning**
2. Waste should not be put underground and we should wait for advanced actinide transmutation techniques
i.e. **americium burning... and plutonium burning??**

Random open-problems

- ▶ Can conformal bootstrap methods be used to make tensor networks more efficient?
- ▶ Is there a meaningful functional renormalization group for tensor networks?
- ▶ How can the lattice field theory tensor network renormalization be applied to interacting fields
- ▶ Can one use neural networks as ansatz for generating functionals $Z[j]$ instead of states $|\psi\rangle$
- ▶ What is the best way to falsify collapse models
- ▶ What is the best way to find signatures that gravity is classical or quantum?
- ▶ Can one combine Gaussian variational optimization and truncated Hilbert space approaches (exact diagonalization) in QFT?