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Why talk about QFT?

It is timely:
I Recently growing interest in the group
I Until not long ago, I understood essentially nothing

Interesting developments in an old subject:
I φ4

2 solved to good precision “Rychkov challenge” (got me interested)
I φ4

4 officially dead.



Why QFT is usually poorly explained

I No separation between the definition of the object and the computation tool
I Only perturbation theory, with everything blowing up
I Dirac fermions and massless vector bosons introduce orthogonal

complications → γµγνγ0γ5 + · · ·
I It is unclear what is not known at all, and what we do not do just because

we want to spare the ε’s and δ’s
I All the QFTs presented apart (hopefully) from QCD do not exist

Ergo, the subject of the talk
What’s the deal with QFT? What is known mathematically? What is not known?
What is hard to compute? What is hard to define? What has been done? What
is yet to be done?



Outline

1. Intuitive definitions
2. The free difficulties
3. The interacting difficulties
4. Axiomatic and constructive field theory
5. Example of φ4

6. How to compute stuff



Intuitive definition: canonical quantization

Hamiltonian
A continuum of nearest neighbor coupled anharmonic oscillators

Ĥ =

∫
Rd

ddx π̂(x)2

2
on-site inertia

+
[∇φ̂(x)]2

2
spatial stiffness

+ V (φ̂(x))
on-site potential

with canonical commutation relations [φ̂(x), π̂(y)] = iδd(x − y)1 (i.e. bosons)



Intuitive definition

Hilbert space
Fock space HQFT = F [L2(Rd)] – just like x , p → (a, a†) do π̂, φ̂→ ψ̂, ψ̂†

|Ψ〉 =
+∞∑
n=0

∫
dx1dx2 · · · dxn ϕn(x1, x2, · · · , xn)︸ ︷︷ ︸

wave function

ψ̂†(x1)ψ̂
†(x2) · · · ψ̂†(xn)︸ ︷︷ ︸

local oscillator creation

|vac〉



Intuitive definition: functional integral
Insert 1 =

∫
Dφ |φ〉〈φ| in expression for correlation functions and t = iτ gives

Functional integral representation
Representation of correlation functions in terms of random fields

〈0|φ̂(τ1, x1) · · · φ̂(τn, xn)|0〉 :=
∫
φ(τ1, x1) · · ·φ(τ1, xn) e−S(φ) Dφ

“Lebesgue measure”

with the action / weight where π̂→ dφ
dτ

S(φ) =
∫

ddx dτ 1
2

[
dφ
dτ

]2

inertia a.k.a time stiffness

+
[∇φ]2

2
spatial stiffness

+ V (φ)
on-site potential

Inertia = time stiffness =⇒ Euclidean rotation invariance =⇒ Lorentz



Intuitive definition: functional integral



Intuitive definition: functional integral



What are the problems - Hilbert space approach

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms ∝ ψ̂(x)ψ̂†(x)

〈Ψ1|Ĥ |Ψ2〉 = ±∞ and even 〈vac|Ĥ |vac〉 ∝ δd(0) = +∞
If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

∀ |Ψ〉 ∈H , 〈Ψ|Ĥfinite|Ψ〉 = finite but ∃ Ψn s.t. lim
n→+∞〈Ψn|Hfinite|Ψn〉 = −∞

and worse
|0〉 := lim

n→+∞ |Ψn〉 /∈H



What are the problems - Functional integral approach

Many issues, related to the fact that there is no Lebesgue measure Dφ on
functions [definition issue], and no equivalent for d > 2 [real world issue]

The field is not even a function
Entropy dominates energy

〈φ(x)2〉 =
∫

ddp 1
m2 + p2 = +∞ if d > 2

We penalize irregular and large φ, yet the only ones that
“typically” occur are so irregular and large the penalty
term is ill defined.



How are they are solved in the free case - Hamiltonian
Bogoliubov transform
Go from ψ̂(x), ψ̂†(x) to a(p), a†(p) with

a(p) = 1√
2

(
√
ωp φ̂(p) +

π̂(p)
√
ωp

)
with ωp =

√
p2 + m2

which yields
H =

∫
dpωp

1
2
(
a†

pap + apa†
p
)

Solution
I Take HQFT ≡ : H :a
I |ground state〉 = |vacuum〉a
I H built from a†

p1
· · · a†

pn
|vacuum〉a

It is easy to define what you can
exactly solve: take the
solution as starting point



Quick note ψ̂(x) vs a(x)

Careful, they are different

[listen to me]



How are they solved in the free case - functional
integral

It is difficult to define a measure on functions. The trick is to define not
Lebesgue but Gaussian:

Wiener measure (d = 1)

The measure
dµ(φ) “ := ” exp

[
−

1
2

∫
(∂xφ)

2
]
Dφ

can be defined rigorously in d = 1 and is supported on C 1/2 functions. In fact, φ
is the Brownian motion.

Even works for interacting:

dµλ(φ) := exp
[
−λ

∫
φ4
]

dµ(φ)

is perfectly well defined (peculiarity of d = 1).



How are they solved in the free case - functional
integral

For d > 2, no measure on functions since φ is not even a function. As before
start from solution.
Bochner-Milnos theorem
Take a distribution D(x , y) that has reasonable properties of a correlation
function (positive, symmetric, not too weird), then there exists a Gaussian
process φ of which it is the correlation function:

D(x , y) = 〈φ(x)φ(y)〉

φ is a distribution valued random variable

So, to do things properly:
1. Solve the functional integral dirty (removing infinities, using black magic)
2. Use the found 2-point correlation as starting point to define the theory



How about interactions?

Use the free theory that is understood + perturbation theory∫
dµ(φ) exp

[
−

∫
λφ4

]
'

∫
dµ(φ)

[
1 + λ

∫
φ4(x) + 1

2λ
2
∫∫
φ4(x)φ4(y) + · · ·

]

2 difficulties
I Each term in the series in infinite [need regularization]
I Removing/smoothing the infinities term by term, the series is divergent



Divergence of the expansion
First noted by Dyson in a 2 page PRL

any physical quantity = f (g) =
illicit

∑
n

angn diverges ∀ g

For φ4
0∫
R

dφ exp(−m2φ2 − gφ4) =
illicit

+∞∑
n=0

(−g)n

n!

∫
R

dφφ4n exp(−m2φ2)

=

+∞∑
n=0

(−g)n

n!m2n+1/2

∫+∞
0

du u2n+1/2 exp(−u)

=

+∞∑
n=0

(−g)n

m2n+1/2
Γ(2n + 3/2)
Γ(n + 1)
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So do QFT even exist? Are they needed?

Effective field theories as the only thing
All theories have a UV (short distance) cutoff. Some approximate field theory
description makes sense far (but not infinitely far) from the cutoff.

but two things:
I A regulated QFT is not longer a reasonable QFT (either non-local,

non-relativistic, unstable vacuum, etc.). The theory underlying the effective
QFT would have to be different (Strings?)

I Seeing all QFT as effective QFT is not needed. Could if be QFT all the
way down?



Ways forward
Start from something simple so it becomes simple
The idea of constructive field theory. Try to make sense of the φ4 term in d = 2,
then climb your way up to real stuff (QCD).

Make it complicated so it becomes simple
What high energy theorists do. Make it highly complicated such that the
problems cancel out, things can be solved almost exactly, and proceed as with
the free field (take the final point as definition).



Ways forward, but in memes



Axiomatic (Lorentzian) QFT
Wightman functions
Imagine you have a QFT, e.g. in canonical
quantization. Then the Wightman functions are

fn(x1, x2, · · · , xn) := 〈φ(x1)φ(x2) · · ·φ(xn)〉

and are tempered distributions.

Wightman reconstruction theorem
Imagine you are given Wigthman functions
f1, f2, · · · , fn, · · · that are reasonable, in the
sense that they verify the sort of things
correlation functions from QFT should (locality,
Lorentz invariance, microcausality), a.k.a the
Wightman axioms then there exists a QFT of
which they are the correlation functions

Arthur Strong Wightman

(1922 – 2013)



Axiomatic Euclidean QFT

Schwinger functions
Imagine you have a QFT, e.g. in canonical
quantization. Then the Schwinger functions are
the correlation functions in imaginary time:

Sn(x1, · · · , xn) := 〈φ(x1, τ1) · · ·φ(xn, τn)〉

and are not a priori as well behaved.

Osterwalder-Schrader reconstruction
Imagine you are given Schwinger functions
S1, S2, · · · , Sn, · · · that are reasonable + some
non-obvious technical conditions, a.k.a the
Osterwalder-Schrader axioms then they can
be analytically continued to Wightman functions

Robert Schrader
(1939 – 2015)

Konrad Osterwalder
(born 1942)



Constructive field theory

Idea in a nutshell
Start from a random field on a lattice of size a
with probability distribution:

dP(φ) = exp(−S a(ma, λa, φ)) dφ

and try to control the continuum limit of the
Schwinger functions by tuning ma, λa, then
declare that :

Sn := lim
a→0

Sa
n

and then try to prove that the limit verifies the
O-S axioms.

Glimm, Jaffe,
Fröhlich, Sokal,
Kupiainen,
Gawedski,
Rivasseau, Sénéor,
Chatterjee · · ·



Lattice φ4

Define the probability measure dµ(φ) = exp(−S(φ))
∏

i∈lattice dφi

S(φ) =
∑
〈i,j〉

(φi − φj)
2

2a2 ad

(∇φ)2/2

+
∑

i

1
2µ

2
aφ

2
i +

1
4λaφ

4
i

Continuum limit
Send a to 0, while tuning λa and µa such that

〈φ(xi1)φ(xi2) · · ·φ(xin〉 → f (x1, x2, · · · , xn) non-trivial

intuitively we should take λa = a−[λ]λ and µa = a−[µ]µ but not the right scaling



φ4
0: trivially exists and exactly solvable

Recall that ∫
R

dφ exp(−m2φ2 − gφ4) =
illicit

+∞∑
n=0

(−g)n

m2n+1/2
Γ(2n + 3/2)
Γ(n + 1)

But of course the integral exists, and can be computed (Simpson) or e.g.∫
R

dφ exp(−m2φ2 − gφ4) =
licit

+∞∑
n=0

(−m2)n

n!

∫
R

dφφ2n exp(−gφ4)

=

+∞∑
n=0

(−m2)n

gn+1/2
1
2

∫+∞
0

dv vn/2+1/4 exp(−u)

=
1
2

+∞∑
n=0

(−m2)n

gn+1/2
Γ(n/2 + 5/4)
Γ(n + 1) absolutely conv.

Rc=+∞



φ4
1: clearly exists, solvable to arbitrary precision

A field in 0 space and 1 time dimension is just an an-harmonic oscillator.

Solve the corresponding 1-body Schrödinger equation, e.g. with exact
diagonalization on a truncated mode basis.



φ4
2: exists, not easy to solve

First non-trivial example to have been rigorously constructed

S(φ) =
∑
〈i,j〉

(φi − φj)
2

2a2 a2

(∇φ)2/2

+
∑

i

1
2µ

2
aφ

2
i +

1
4λaφ

4
i

Taking the limit
The right way to get the continuum limit is to take:

µa = µa2 +
3
2 log(a)a2λ

λa = λa2

which is equivalent to normal ordering the interaction term.

Basically, at first order in perturbation theory, the φ4 term behaves like a φ2

term times a log divergent constant.



φ4
3: exists, not easy to solve

Same reasoning, but more complicated scaling since 2 divergent diagrams in
perturbation theory.

Taking the limit
The right way to get the continuum limit is to take:

µa = a−[µ](µ+ C1λa−1 + C2λ
2 log(a))

λa = λa−[λ]

which is equivalent to normal ordering the interaction term.



In general
In general the continuum limit requires typically that the mass term is a series of
the coupling:

µa = a−[µ]µ+ a−[µ]
∑

n
λnfn(a)

where the fn(a) diverge when a → 0.

Several options:
I Non-renormalizable Infinitely many fn(a) are non zero, and can be fixed

arbitrarily
I Just renormalizable Infinitely many fn(a) are non zero, but are determined

once a finite number of parameters are fixed
I Super renormalizable Only a finite number of fn(a) are non zero (can be

found from perturbation theory)
When just renormalizable, it could be that the series of fn(a) diverges...



Understanding the need for renormalization

Main reason
For interacting quantum field theories, the naive way to take the continuum limit,
using engineering dimensions, is wrong, because the field takes larger and larger
values as we get close to the continuum limit.



Some sad facts

φ4
4 does not exist (is trivial)

Almost proved for a long time
Proved by Aizenman & Duminil-Copin, 2020

QED does not exist (Landau pole)

Very suspected to be true (numerics and RG)



Some open problems

Millennium prize
For some compact Lie group G , construct a QFT
verifying a set of axioms as strong as Wightman’s that
gives the “standard” Yang-Mills (non-abelian Gauge
theory) perturbation expansion when Taylor expanded.

Still worth a Fields medal
Rigorously construct one example of non-trivial scalar
QFT in 3 + 1 dimensions, or prove that it is impossible



For another time, how to compute stuff?

Once one understands what a QFT actually is, most condensed matter
techniques that we know can be used.

For example, for φ4
2, critical coupling fc = λ/µ2


