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Fundamental Physics with tensor networks

To apply tensor networks to fundamental theories, we need to understand:
1. Weird degrees of freedom (Gauge theories)
2. The continuum

3. (Relativistic Hamiltonians)



What we did so far on the continuum

“Analytical” Continuous tensor networks

1. Introduce a “good” definition of continuous tensor network (with Ignacio)
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physical indices

boundary tensor ¢
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2. Show that in a simple setup it does the job (with Teresa and Patrick)

— both non-relativistic, “condensed-matter QFT"

“Numerical” Continuous tensor networks

1. Discretize d3 on a super-fine lattice, solve with standard methods,
extrapolate the result to the continuum limit (with Clément)



True vs Effective QFT

Against the “why bother since there is always a cutoff?”

Effective QFT

The theory has a momentum /energy
cutoff A large but finite A > m,
where m is the gap.

The fundamental theory is not
known, but in perturbation theory,
one can take A — oo term by term
to get a good approximation of
physics at scale m.

Examples
1. QED with matter

2. ¢f

True QFT

The limit A — +00 can be taken
exactly, and the theory is valid “all
the way down".

All quantities exist

non-perturbatively in the limiting
theory, for arbitrarily high energy.
No cutoff whatsoever in principle.

Examples
1. QCD without too much matter
2. ¢3 and O3
3. Sine-Gordon, Gross-Neveu, etc.



Outline

SUR A

¢* theory — the condensed matter way
Divergences and standard resolution
¢* theory — the rigorous way
[llustration on lattice based approach
cMPS to the rescue?

relativistic cMPS and preliminary results



Intuitive definition: canonical quantization
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Hamiltonian

A continuum of nearest neighbor coupled anharmonic oscillators

+ V(dKx))

on-site potential

H =

J R C [V (x))2
Rd 2

on-site inertia spatial stiffness

with canonical commutation relations [(?)(x),ﬁ(y)] = i89(x — y)1 (i.e. bosons)



Intuitive definition
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Hilbert space
Fock space et = Z[L?(RY)] - just like x, p — (a,a") do A, $ — xT),lT)T

“+o0o

|\P> = ZJdX]_dXQ 000 an fpn(Xsz, to axnll/l\)T(Xl){l\)T(X ) o '{l\)T(Xn) |vac)

n=0
wave function local oscillator creation




Intuitive definition: functional integral
Insert 1 = [ Do |d)(P| in expression for correlation functions and t = iT gives

Functional integral representation

Representation of correlation functions in terms of random fields

(Ol (1, x1) -+ B (Tny X,)[0) := Jd)(’tl,xl) (T Xxe) €0 D

“Lebesgue measure”

with the action / weight where t — ‘jiiT’
S(P) _JddXdT 1 [@r + Vol + V()
2 |dt 2 on-site potential

inertia a.k.a time stiffness  SPatial stiffness

Inertia = time stiffness == Euclidean rotation invariance = Lorentz



Intuitive definition: functional integral




Intuitive definition: functional integral




What are the problems - Hilbert space approach

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms oc P(x)PT(x)

(W;|H[W,) = +00 and even (vac|H|vac) x §7(0) = 400

If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

VW) € A, (Y|Finieel¥) = finite but 3V, st. lim (W,|Hiniel¥,) = —00

n—-+o0o

and worse
0) := lim [¥,) & 2

n—-+00



What are the problems - Functional integral approach

Many issues, related to the fact that there is no Lebesgue measure D¢ on
functions [definition issue|, and no equivalent for d > 2 [real world issue]

The field is not even a function

Entropy dominates energy

1

m2+p2=+oo ifd>?2

(0(x)) = | a%p

We penalize irregular and large ¢, yet the only ones that
“typically” occur are so irregular and large the penalty
term is ill defined.




How are they are solved in the free case - Hamiltonian

Bogoliubov transform
Go from l/lB(X),l/l\)T(X) to a(p), af(p) with

A 7t
a(p) = % (\/w_pd)(p) + \/(wi)> with w, = +/p? + m?

p
which yields
1
H = Jdp wp 5 (afap + apal)

Solution

» Take Hoer =: H 2,

» |ground state) = [vacuum),

This solves the problematic free
part exactly, and allows to
define a finite interaction

> 7 built from af ---af lvacuum),



Rigorous operator definition of cl)‘21

Renormalized ¢3 theory:

H:de:ﬂ2:a (V)2 :, 2

m- 2. a4
> + > +2.d).a+g.c|>.a

note that : > :, depends on m!

1. Rigorously defined relativistic QF T without cutoff

2. Vacuum energy density finite

3. Very difficult to solve unless g < m? (perturbation theory)
4. Phase transition around f. = ;&5 ~ 11



Ways to solve ¢}

With a lattice of size a (UV cutoff) and fixed number of sites N (IR cutoff)
» Monte-Carlo
» Tensor network renormalization
With a lattice of size a (UV cutoff) and no IR cutoff
» Uniform MPS
With continuous space, an energy cutoff A (UV) and an IR cutoff
» Hamiltonian truncation
Without cutoff

» Perturbation theory + Borel-Padé resummation



Lattice ¢5

Discretize the action:
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Taking the limit
The right way to get the continuum limit is to take:

3 log(a)a®A

Ha:H32+2

A, = Aa®
which is equivalent to normal ordering

Basically, at first order in perturbation theory, the ¢* term behaves like a ¢p?
term times a log divergent constant.



Example with tensor network renormalization

Done with Clément [late 2019 — early 2020]
Discretize ¢, write Z =) S(d) as a tensor network and contract it

svd

Technically: UV cutoff (lattice) and IR cutoff (number of RG steps)



Example with tensor network renormalization

Continuum limit taken numerically

111 11.10
[P+ agAlog A+ BiA |
FEP + apMlog A+ Bod + 7202 O8N
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More costly as the UV cutoff gets small because:
1. Field becomes unbounded at short distance — large starting bond dimension
2. More RG steps (with max x) to get to the same scale



Limitation of numerical continuum limit

Is it a problem of local basis choice?

No:
1. UV fixed point is a free CFT, so technically continuum of singular values

2. Interaction is super renormalizable / strongly relevant, so its impact on the
tensors — 0 in continuum limit

— even theory independent, would apply to QCD, but worse for
super-renormalizable theories



Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

JAddddddl
LLadl R



Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

JAddddddl
LLadl R

» the bond dimension D stays fixed



Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

JAddddddl
LLadl R

» the bond dimension D stays fixed

» the local physical dimension explodes C? ® - - - ® C? — Z (L?([x, x + dx])).
—> Spins become fields — (~ central limit theorem ~)



Continuous Matrix Product States

Type of ansatz for bosons on a fine grained d = 1 lattice

» Matrices A, (x) where the index iy corresponds to {1’ (x)|0) in physical
space.

Informal cMPS definition

Fixed by:
A =1+¢Q » Finite particle number
Al =¢R 90069909
HHHHHHT 1
A2:(€R)2 010000
V2 BEOOEE « e
» Consistency
A, = ER) 1o 7 9
\/ﬁ e T e R . B T

so we go from oo to 2 matrices



Continuous Matrix Product States

Definition

L
|Q, R, w) = (w,|Pexp {L dx Q1+ R ®1I)T(x)} |wg) [0)y

» Q,R are D x D matrices,
» |w;) and |wg) are boundary vectors € CP, for p.b.c. {w;|-|wg) — tr[-]

> [W(x), ()] =8(x —y)

Idea:



Continuous Matrix Product States

Definition
L
1Q, R, w) = (w,|Pexp {J dx Q1+ R ®1|)T(X)} |wg) [0)y
0

» Q,R are D x D matrices,
» |w;) and |wg) are boundary vectors € CP, for p.b.c. {w;|-|wg) — tr[-]

> [W(x), ()] =8(x —y)

Idea:

A(x) 2 Aol + AppT(x)
~1®1+eQ®1L+eRYPI(x)
~exple (Q® 1L+ R®VPI(x))]



Computations

Some correlation functions

With T=Q®1+12Q+R®

Example

Lieb-Liniger Hamiltonian

I R L L N T P SN
%—de [Kd—— i e

Solve by minimizing: (Q, R|H|Q,R) = f(Q, R)



Standard CMPS and ¢*

Applying cMPS to the ¢* Hamiltonian

(Q, RIhgs|Q, R) = 0
Oh no!

The short distance behavior of cMPS is the wrong one, even the free theory is
hard to approximate.



Towards relativistic CMPS

Local basis in position of the QFT: T, &, 7, 0)y,
Diagonal basis of the free part: al , 10),

Bogoliubov transform
Go from ﬂ)(x),l/l\ﬂ(x) to a(p), af(p) with

a(p) = % (\/w_p(/f)(p) + j(:);)> with w, = +/p? + m?

p

which yields
1
Ho = Jdp Wp 5 (afa, + apal)

Go from [0)y, to |0),
and
Go from P(x) to a(x) = [dp a(p)e # P(x)



Relativistic CMPS

Definition
IR, Q) = tr {Texp de RRT+R® aT(x)l } 0),

Some properties
1. |0,0) = |0), is the ground state of Hy hence exact CFT UV fixed point
2. (Q, Rlhg4|Q, R) is finite for all Q, R (not trivial)



Consequence on the Hamiltonian

H is local in {P(x), not in a(x)...

H :jdxldXQD(xl ~x)at (x)alx)

+ J dxidxodxsdxa K (x1, X0, X3, X2 ) a(x1)a(x2) a(x3)a(xs) + 4a’aaa + 3a'a'aa

+ h.c.

mlx|

But exponentially decreasing: K is horrible, but decays o« e~



The nightmarish optimization

Compute ey = (Q, Rlhy+|Q, R) and V¢ rep
1. Contains an algebraic part identical to standard cMPS

2. Involves horrible quadruple integrals without analytic solutions

Optimization with naive gradient descent, BFGS, or conjugate gradient leads to
plateaus = does not work

One needs to do TDVP with a metric, slightly more complicated but works.



Preliminary results

After a scary amount of optimization, test at g = 1 (deeply non perturbative)
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Seems exponentially convergent! First rigorous bound on ®* ener
p y g g gy



What now

1. Still very costly (3 days, 40 cores for D = 9)

2. Can get modest improvement by changing the a,, to as for different masses
(in progress)
3. Need to compute gap with TDVP

4. Get closer to criticality



Summary

New ansatz for 1 + 1 relativistic QF T
No cutoff, UV or IR (a first?)

UV is captured exactly even at D =0
Rigorous (variational)

LAl S

Gives some hints to improve numerical continuous limits (e.g. in lattice

QCD)



