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My profile

3 years PhD (ENS), 4 years postdoc MPQ

3 main lines of inquiry

Continuous measurement
How to gently measure and
control quantum systems?

Gravity and quantum
Could gravity, in principle,
not be quantum?

Many-body & QFT
How to efficiently parameterize
many-body and QFT states



Quantum field theory: a bit of philosophy
Two ways to attack real world quantum field theories non-perturbatively

1. Start simpler so that it becomes simpler [e.g. self interacting scalar field φ4
2]

2. Start more complex so that it becomes simpler [e.g. N = 4 SYM]

φ4
2 - pile of dirt QCD - Everest N = 4 SYM - Chrysler building

2. is a good way to make fast progress first, but is limited in what it can achieve

Goal - ideal - philosophy: an apology of the pile of dirt approach
Abandon analytical solutions, but find robust methods that can solve simple QFTs
non-perturbatively and, if possible, to machine precision, without cheating.

more on this on tilloy.wordpress.com

tilloy.wordpress.com
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QFT: simplest non-trivial example

φ4
2 is a relativistic QFT in d = 1 + 1 dimensions defined by the Hamiltonian:

H =

∫
dx 1

2 π̂
2 +

1
2 (∇φ̂)

2 +
m2

2 φ̂
2 +

g
4 : φ̂4 :

I It exists as a true QFT (rigorously defined by constructive field theorists)
I It is not integrable, has no special structure simplifying computations
I It has a phase transition which cannot be located perturbatively

=⇒ the ultimate pile of dirt: non-trivial, no cheating, but easy to define

S. Rychkov challenge ' 2015
Compute everything one could want to compute about this model for all values of g . In
particular find the position of the phase transition (approximately at g/m2 ' 10± 20%)
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Tensor network states: a tool

Applications

I Quantum information theory
I Statistical Mechanics
I Quantum gravity
I Many-body quantum

Negative theology

I Not covariant/geometric
objects gµν or Rσµνκ

I Not tensor models
[Rivasseau, Gurau, ...]
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Outline

1. Tensor networks on the lattice
2. Bringing QFT to the lattice
3. Bringing tensor networks to the continuum



Many-body problem

Problem

Finding low energy states of

Ĥ =

N∑
k=1

ĥk

is hard because dim H ∝ DN

Possible solutions
I Perturbation theory
I Monte Carlo
I Bootstrap IR fixed point
I Variational optimization (e.g. Mean

Field, Hamiltonian truncation, tensor
networks)



Variational optimization

Generic state ∈H :

|ψ〉 =
D∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN〉

Exact variational optimization
To find the ground state:

|0〉 = min
|ψ〉∈H

〈ψ|H |ψ〉
〈ψ|ψ〉

I dim H = DN



Variational optimization

Generic state ∈H :

|ψ〉 =
D∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN〉

Approx. variational optimization
To find the ground state:

|0〉 = min
|ψ〉∈M

〈ψ|H |ψ〉
〈ψ|ψ〉

I dim M ∝ Poly(N) or fixed



Interesting states are weakly entangled

Low energy state
|ψ〉 = |0〉 or |1〉 ...

Reduced density matrix
ρ = trDc

[
|ψ〉〈ψ|

]
Entanglement entropy
S = −tr

[
ρ log ρ

]
Area law

S ∝ |∂D|



Interesting states are weakly entangled

Low energy state
|ψ〉 = |0〉 or |1〉 ...

Reduced density matrix
ρ = trDc

[
|ψ〉〈ψ|

]
Entanglement entropy
S = −tr

[
ρ log ρ

]
Area law

S ∝ |∂D|



Typical states are strongly entangled

Random state
|ψ〉 = UHaar|trivial〉

Reduced density matrix
ρ = trDc

[
|ψ〉〈ψ|

]
Entanglement entropy
S = −tr

[
ρ log ρ

]
Volume law

S ∝ |D|



Constructing weakly entangled states

1. Put auxiliary
maximally entangled
states between sites

=

χ∑
j=1

|j〉|j〉

2. Map to initial Hilbert
space on each site

= A : C4χ → CD
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Tensor network states: definition

Why “tensor” network?

A : C4χ → CD −→ Ai
j1,j2,j3,j4

|A〉 =

with tensor contractions on links

Optimization
Find best A for fixed χ (D × χ4 coeff.)

E0 ' min
A

〈A|Ĥ |A〉
〈A|A〉

for example go down ∂E
∂Ai

j1,j2,j3,j4
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Some facts

d = 1 spatial dimension

Theorems (colloquially)

1. For gapped H, tensor network states |A〉
approximate well |0〉 with χ fixed

2. All |A〉 are ground states of gapped H

d > 2 spatial dimension

Folklore

1. For gapped H, tensor network states |A〉
approximate well |0〉 with χ fixed

2. Most |A〉 are ground states of gapped H
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From condensed matter to QFT

Tensor network are excellent theoretically and numerically but limited to the lattice

2 options:
I Discretize QFT, solve with best known tensor network algorithms

S(φ) =
∑
〈i,j〉

(φi − φj)
2

2a2 a2

(∇φ)2/2

+
∑

i

1
2µ

2
aφ

2
i +

1
4λaφ

4
i

and take a→ 0
I Take the continuum limit of tensor networks, and apply to QFT directly



Lattice φ4
2

Discretize the action:

S(φ) =
∑
〈i,j〉

(φi − φj)
2

2a2 a2

(∇φ)2/2

+
∑

i

1
2µ

2
aφ

2
i +

1
4λaφ

4
i

Taking the limit
The right way to get the continuum limit is to take:

µ2
a = µ2a2 +

3
2 log(a)a2λ

λa = λa2

which is equivalent to normal ordering

At first order in perturbation theory, the φ4 term behaves like a φ2 term times a log divergent
constant.



Results with GILT tensor renormalization

With C. Delcamp, we found the critical point fc = lima→0
λa
µ2

a
in the continuum limit to the

highest precision ever arXiv:2003.12993
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2 log λ

The a log a correction of the critical point position as a function of lattice spacing a was not
known before



Directly in the continuum

What was known (since 2010)

Continuous matrix product states for 1 + 1 dimensional non-relativistic QFT

My contribution

I Define continuous tensor networks for 1 + d dimensional non-relativistic QFT
[with I. Cirac]

I Demonstrate that they have the right UV properties and fast convergence
[with T. Karanikolaou]

I Define relativistic continuous matrix product states for 1 + 1 relativistic QFT
[preliminary numerics]
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Continuous Matrix Product states

[Verstraete & Cirac 2010]: continuum limit of Matrix Product States (d = 1 tensor networks)

UV

IR

Works for Lieb-Liniger model (boson with contact interactions)
Best method on the market for 1 + 1 non-relativistic QFT

But no version for d + 1 QFT, even “no-go” theorems



Continuous Tensor Networks: blocking

Upon blocking:
♦ The physical Hilbert space

dimension D increases
♦ The bond (auxiliary space)

dimension χ increases too



Result

auxiliary field

physical field

auxiliary degrees of fredom

physical degrees of fredom

AT, J. I. Cirac, Phys. Rev. X 2019

Continuous tensor network state (heuristically)

State |α〉 of d + 1 QFT from an auxiliary d dimensional theory of random fields φ:

|α〉 =
∫
Dφ exp

{
−

∫
dd x L[φ(x)] − α[φ(x)] ψ̂†(x)

creation

}
|Ω〉

1. Genuine continuum limit of discrete tensor networks
2. Right UV scaling and exponential convergence to the ground state as the number of

auxiliary fields φ in increased arXiv:2006.13143
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Preliminary continuous relativistic results in 1 + 1

H =

∫
dx 1

2 π̂
2 +

1
2 (∇φ̂)

2 +
m2

2 φ̂
2 +

g
4 : φ̂4 :

Test of a brand new relativistic continuous matrix product state ansatz at g = 4 (deeply
non perturbative). No UV nor IR cutoffs!

Seems exponentially convergent! First rigorous bound on φ4 energy



Summary of tensor networks in QFT

Tensor networks are promising for non-perturbative QFT:
I They are already the best numerical method for QFT in 1 + 1 dimensions
I They can now be applied to (non-relativistic) QFT in 1 + d
I They will very soon give rigorous results for relativistic QFT in 1 + 1 dimensions

In the near future:
I Push lattice based approach to lattice gauge theory (go beyond scalar)
I Push continuous approach to relativistic 1 + d


