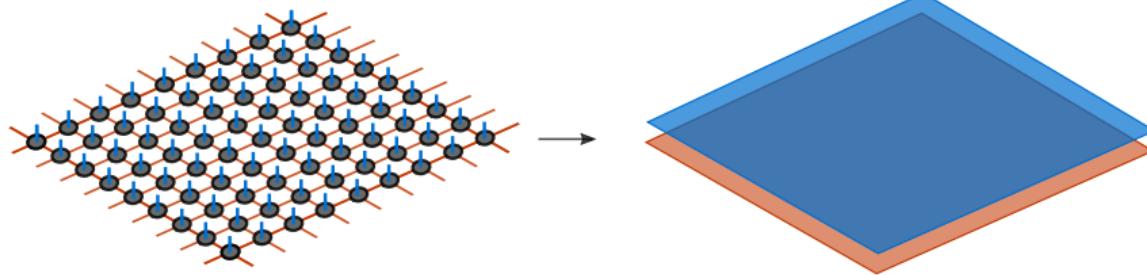


Tensor Networks for Quantum Field Theory

Antoine Tilloy

Theory Division, Max Planck Institute of Quantum Optics, Garching, Germany



Universität Leipzig
via Zoom, from Munich, Germany
December 18th, 2020

Alexander von Humboldt
Stiftung / Foundation

My profile

3 years PhD (ENS), 4 years postdoc MPQ

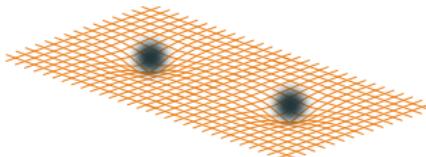
3 main lines of inquiry

Continuous measurement

How to gently measure and control quantum systems?

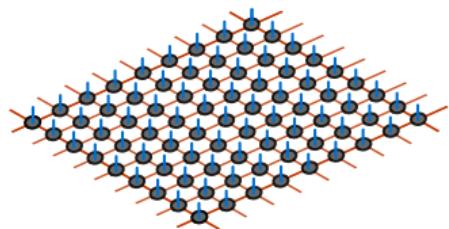
Gravity and quantum

Could gravity, in principle, not be quantum?



Many-body & QFT

How to efficiently parameterize many-body and QFT states



Quantum field theory: a bit of philosophy

Two ways to attack *real world* quantum field theories non-perturbatively

1. Start **simpler** so that it becomes **simpler** [e.g. self interacting scalar field ϕ_2^4]

Quantum field theory: a bit of philosophy

Two ways to attack *real world* quantum field theories non-perturbatively

1. Start **simpler** so that it becomes **simpler** [e.g. self interacting scalar field ϕ_2^4]
2. Start **more complex** so that it becomes **simpler** [e.g. $\mathcal{N} = 4$ SYM]

Quantum field theory: a bit of philosophy

Two ways to attack *real world* quantum field theories non-perturbatively

1. Start **simpler** so that it becomes **simpler** [e.g. self interacting scalar field ϕ_2^4]
2. Start **more complex** so that it becomes **simpler** [e.g. $\mathcal{N} = 4$ *SYM*]

ϕ_2^4 - pile of dirt

QCD - Everest

$\mathcal{N} = 4$ *SYM* - Chrysler building

2. is a good way to make fast progress first, but is limited in what it can achieve

Quantum field theory: a bit of philosophy

Two ways to attack *real world* quantum field theories non-perturbatively

1. Start **simpler** so that it becomes **simpler** [e.g. self interacting scalar field ϕ_2^4]
2. Start **more complex** so that it becomes **simpler** [e.g. $\mathcal{N} = 4$ SYM]

ϕ_2^4 - pile of dirt

QCD - Everest

$\mathcal{N} = 4$ SYM - Chrysler building

2. is a good way to make fast progress first, but is limited in what it can achieve

Goal - ideal - philosophy: an apology of the pile of dirt approach

Abandon analytical solutions, but find robust methods that can solve simple QFTs non-perturbatively and, if possible, to machine precision, *without cheating*.

QFT: simplest non-trivial example

ϕ_2^4 is a relativistic QFT in $d = 1 + 1$ dimensions defined by the Hamiltonian:

$$H = \int dx \frac{1}{2} \hat{\pi}^2 + \frac{1}{2} (\nabla \hat{\phi})^2 + \frac{m^2}{2} \hat{\phi}^2 + \frac{g}{4} : \hat{\phi}^4 :$$

- ▶ It exists as a true QFT (rigorously defined by constructive field theorists)
- ▶ It is not integrable, has no special structure simplifying computations
- ▶ It has a phase transition which cannot be located perturbatively

QFT: simplest non-trivial example

ϕ_2^4 is a relativistic QFT in $d = 1 + 1$ dimensions defined by the Hamiltonian:

$$H = \int dx \frac{1}{2} \hat{\pi}^2 + \frac{1}{2} (\nabla \hat{\phi})^2 + \frac{m^2}{2} \hat{\phi}^2 + \frac{g}{4} : \hat{\phi}^4 :$$

- ▶ It exists as a true QFT (rigorously defined by constructive field theorists)
- ▶ It is not integrable, has no special structure simplifying computations
- ▶ It has a phase transition which cannot be located perturbatively
- ⇒ the ultimate pile of dirt: non-trivial, no cheating, but easy to *define*

QFT: simplest non-trivial example

ϕ_2^4 is a relativistic QFT in $d = 1 + 1$ dimensions defined by the Hamiltonian:

$$H = \int dx \frac{1}{2} \hat{\pi}^2 + \frac{1}{2} (\nabla \hat{\phi})^2 + \frac{m^2}{2} \hat{\phi}^2 + \frac{g}{4} : \hat{\phi}^4 :$$

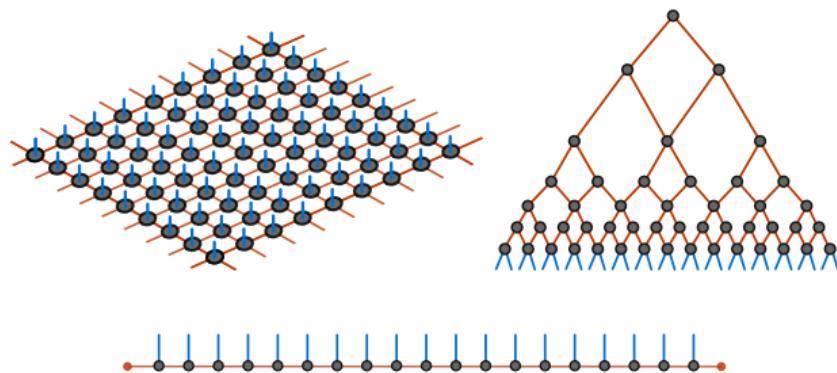
- ▶ It exists as a true QFT (rigorously defined by constructive field theorists)
- ▶ It is not integrable, has no special structure simplifying computations
- ▶ It has a phase transition which cannot be located perturbatively

⇒ the ultimate pile of dirt: non-trivial, no cheating, but easy to *define*

S. Rychkov challenge $\simeq 2015$

Compute everything one could want to compute about this model for all values of g . In particular find the position of the phase transition (approximately at $g/m^2 \simeq 10 \pm 20\%$)

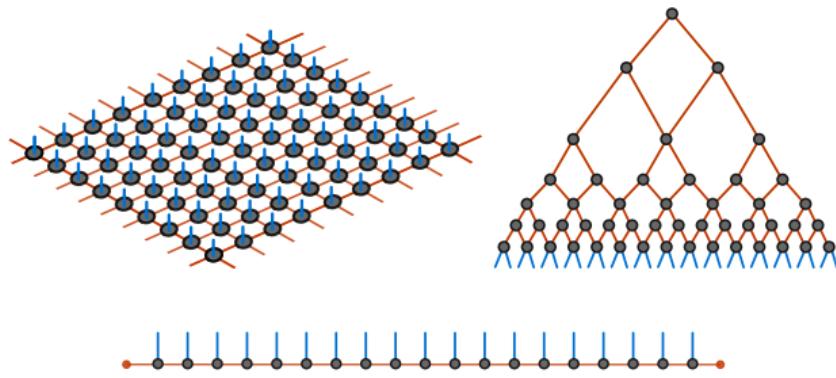
Tensor network states: a tool



Applications

- ▶ Quantum information theory
- ▶ Statistical Mechanics
- ▶ Quantum gravity
- ▶ Many-body quantum

Tensor network states: a tool



Applications

- ▶ Quantum information theory
- ▶ Statistical Mechanics
- ▶ Quantum gravity
- ▶ Many-body quantum

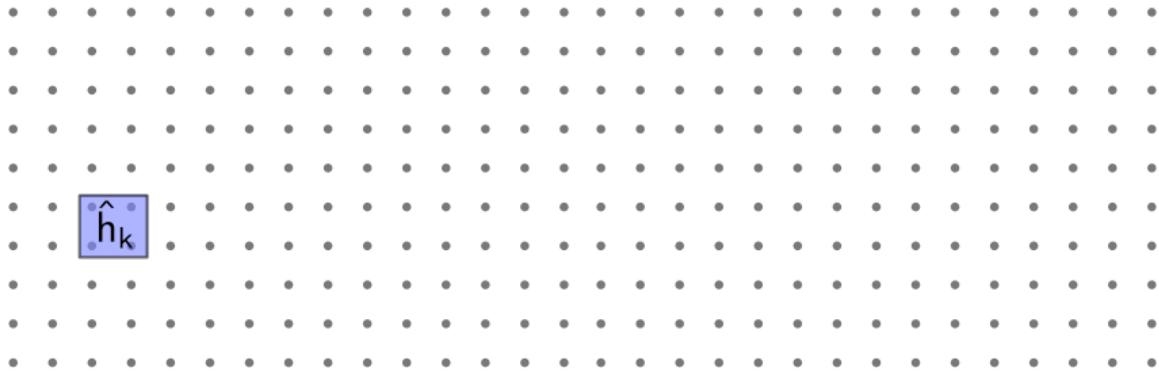
Negative theology

- ▶ **Not** covariant/geometric objects $g_{\mu\nu}$ or $R_{\mu\nu\kappa}^{\sigma}$
- ▶ **Not** tensor **models**
[Rivasseau, Gurau, ...]

Outline

1. Tensor networks on the lattice
2. Bringing QFT to the lattice
3. Bringing tensor networks to the continuum

Many-body problem



Problem

Finding low energy states of

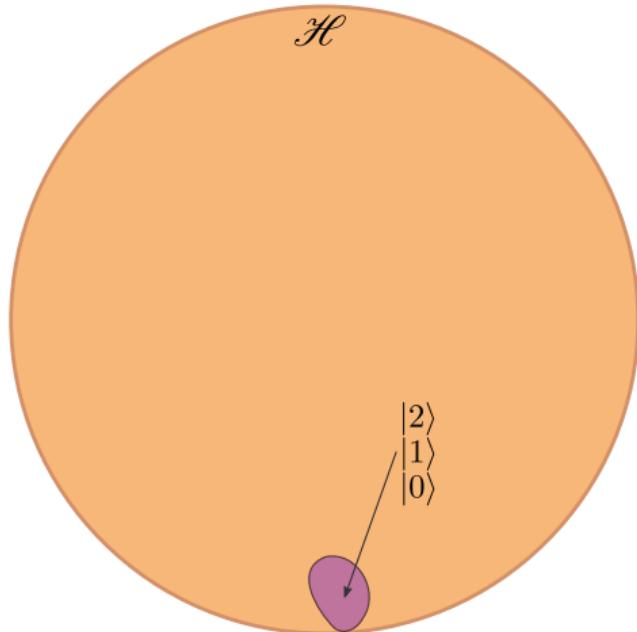
$$\hat{H} = \sum_{k=1}^N \hat{h}_k$$

is **hard** because $\dim \mathcal{H} \propto D^N$

Possible solutions

- ▶ Perturbation theory
- ▶ Monte Carlo
- ▶ Bootstrap IR fixed point
- ▶ **Variational optimization** (e.g. Mean Field, Hamiltonian truncation, tensor networks)

Variational optimization



Generic state $\in \mathcal{H}$:

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_n}^D c_{i_1, i_2, \dots, i_N} |i_1, \dots, i_N\rangle$$

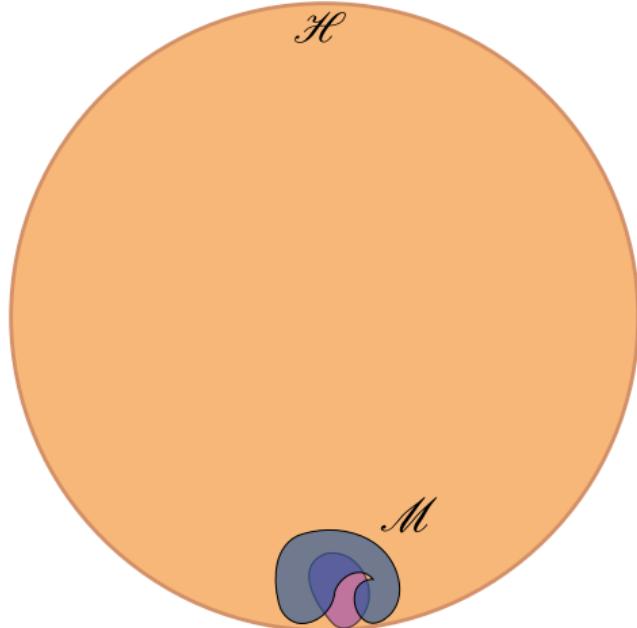
Exact variational optimization

To find the ground state:

$$|0\rangle = \min_{|\psi\rangle \in \mathcal{H}} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

► $\dim \mathcal{H} = D^N$

Variational optimization



Generic state $\in \mathcal{H}$:

$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_n}^D c_{i_1, i_2, \dots, i_N} |i_1, \dots, i_N\rangle$$

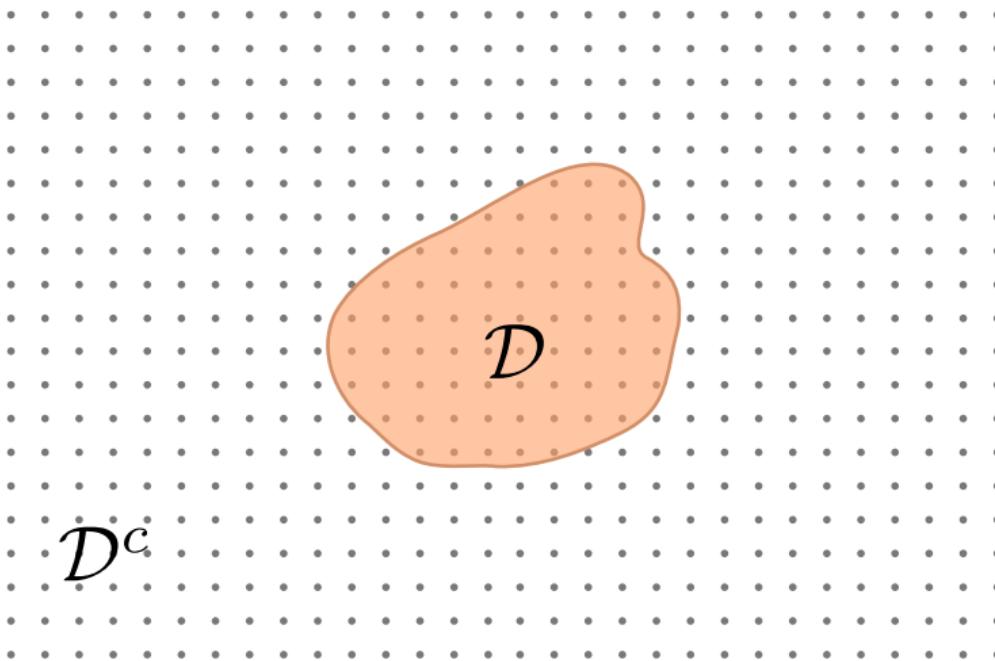
Approx. variational optimization

To find the ground state:

$$|0\rangle = \min_{|\Psi\rangle \in \mathcal{M}} \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

► $\dim \mathcal{M} \propto \text{Poly}(N)$ or fixed

Interesting states are weakly entangled



Low energy state

$$|\Psi\rangle = |0\rangle \text{ or } |1\rangle \dots$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\Psi\rangle\langle\Psi|]$$

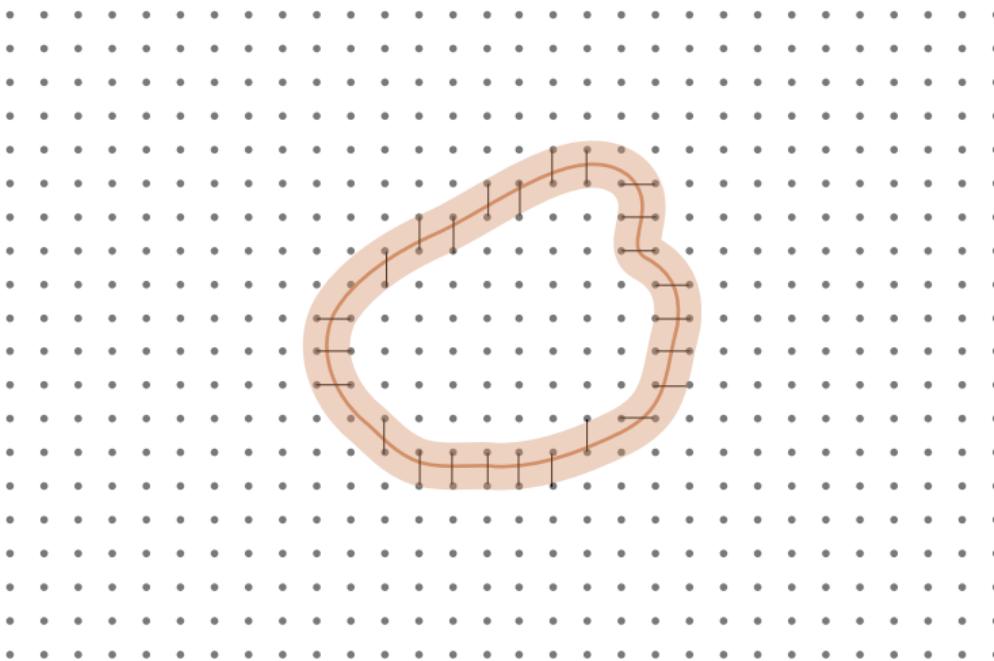
Entanglement entropy

$$S = -\text{tr}[\rho \log \rho]$$

Area law

$$S \propto |\partial\mathcal{D}|$$

Interesting states are weakly entangled



Low energy state

$$|\Psi\rangle = |0\rangle \text{ or } |1\rangle \dots$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\Psi\rangle\langle\Psi|]$$

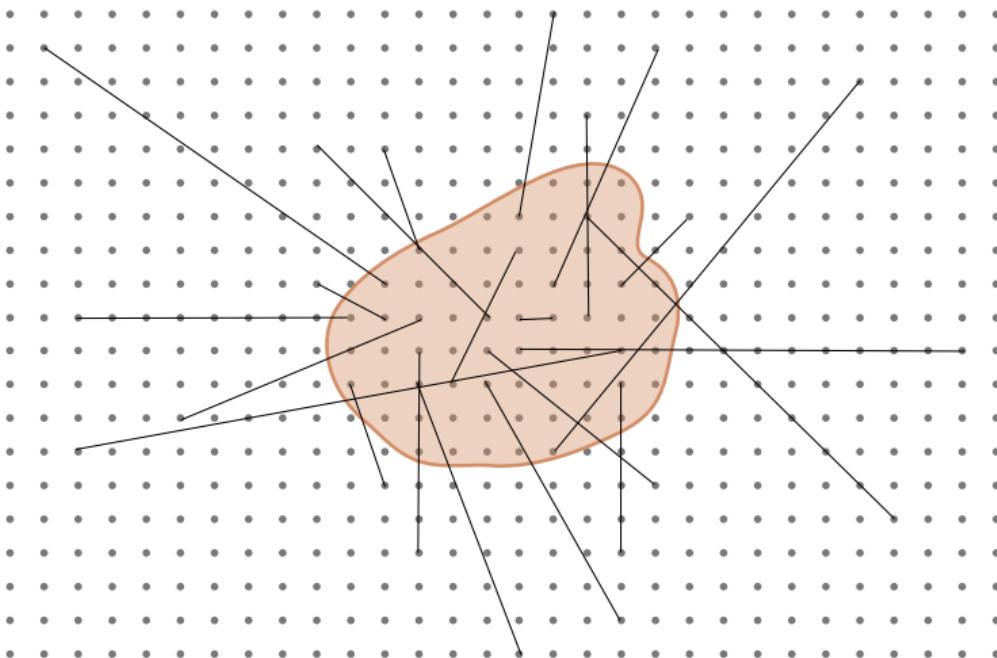
Entanglement entropy

$$S = -\text{tr}[\rho \log \rho]$$

Area law

$$S \propto |\partial \mathcal{D}|$$

Typical states are strongly entangled



Random state

$$|\Psi\rangle = U_{\text{Haar}}|\text{trivial}\rangle$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\Psi\rangle\langle\Psi|]$$

Entanglement entropy

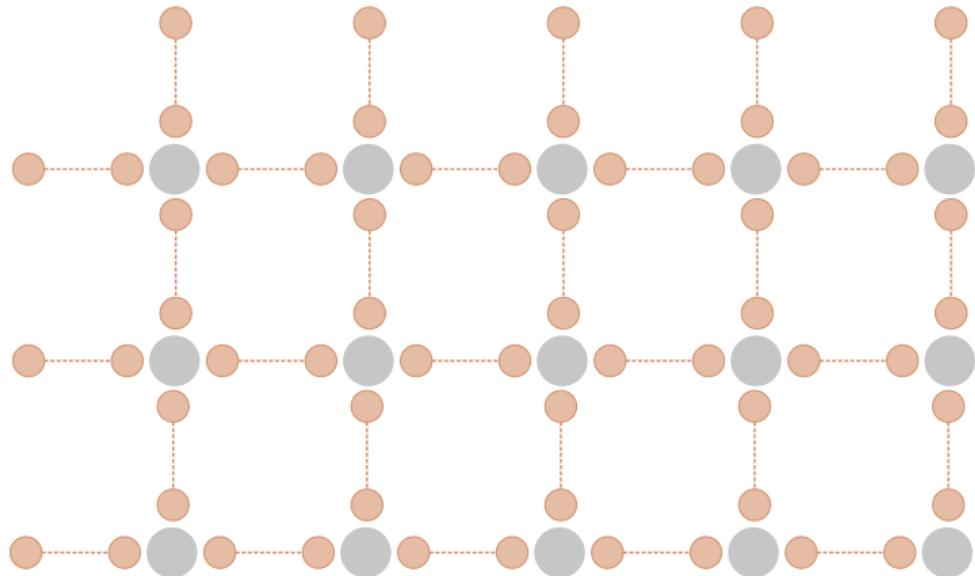
$$S = -\text{tr}[\rho \log \rho]$$

Volume law

$$S \propto |\mathcal{D}|$$

Constructing weakly entangled states

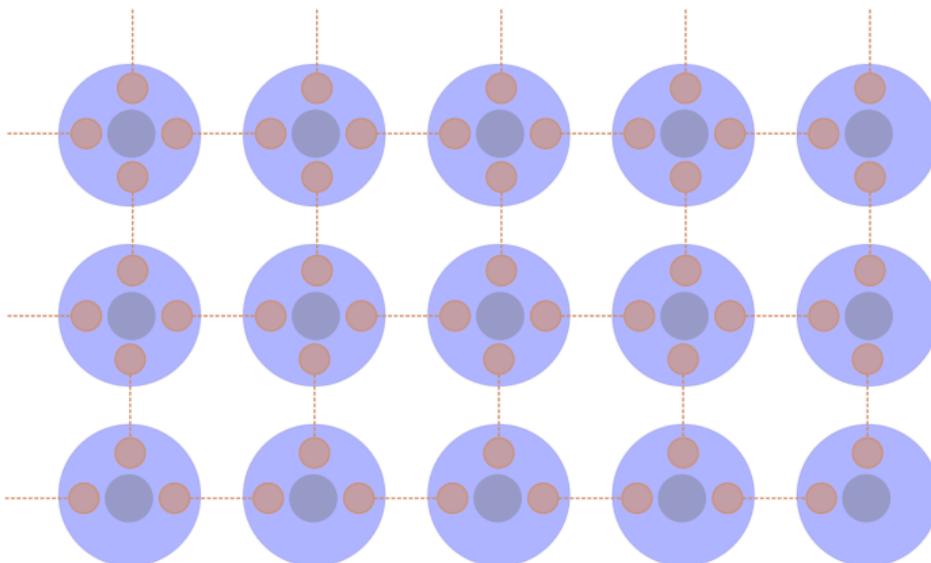
Constructing weakly entangled states



1. Put auxiliary **maximally entangled** states between sites

$$\text{---} = \sum_{j=1}^x |j\rangle|j\rangle$$

Constructing weakly entangled states



1. Put auxiliary **maximally entangled** states between sites

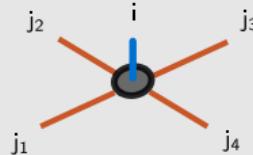
$$\bullet \cdots \bullet = \sum_{j=1}^x |j\rangle |j\rangle$$

2. Map to initial Hilbert space on each site

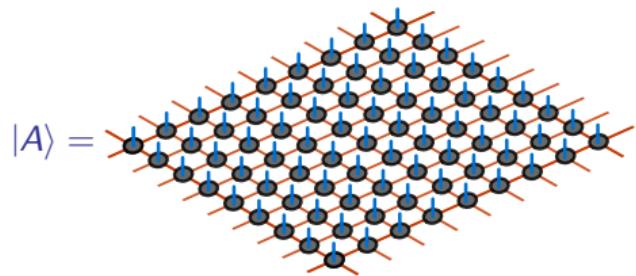
$$= A : \mathbb{C}^{4x} \rightarrow \mathbb{C}^D$$

Tensor network states: definition

Why “tensor” network?



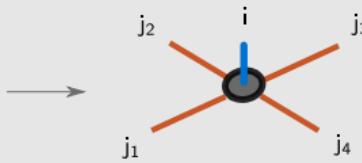
$$A: \mathbb{C}^{4x} \rightarrow \mathbb{C}^D \quad \rightarrow \quad A_{j_1, j_2, j_3, j_4}^i$$



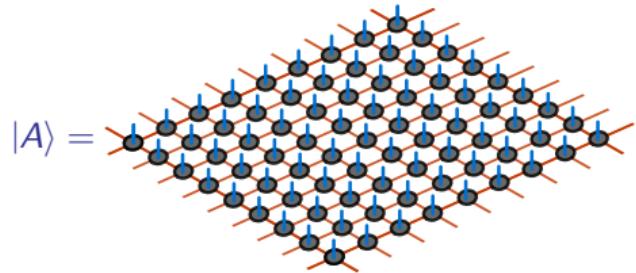
with tensor contractions on links

Tensor network states: definition

Why “tensor” network?



$$A: \mathbb{C}^{4x} \rightarrow \mathbb{C}^D \quad \rightarrow \quad A_{j_1, j_2, j_3, j_4}^i$$



with tensor contractions on links

Optimization

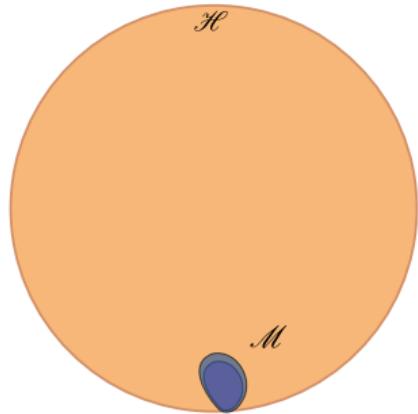
Find best A for fixed x ($D \times x^4$ coeff.)

$$E_0 \simeq \min_A \frac{\langle A | \hat{H} | A \rangle}{\langle A | A \rangle}$$

for example go down $\frac{\partial E}{\partial A_{j_1, j_2, j_3, j_4}^i}$

Some facts

$d = 1$ spatial dimension

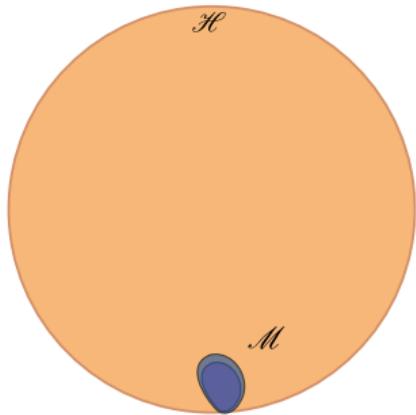


Theorems (colloquially)

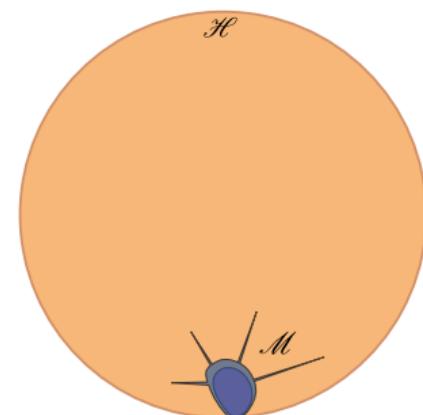
1. For gapped H , tensor network states $|A\rangle$ approximate well $|0\rangle$ with χ fixed
2. All $|A\rangle$ are ground states of gapped H

Some facts

$d = 1$ spatial dimension



$d \geq 2$ spatial dimension



Theorems (colloquially)

1. For gapped H , tensor network states $|A\rangle$ approximate well $|0\rangle$ with χ fixed
2. **All** $|A\rangle$ are ground states of gapped H

Folklore

1. For gapped H , tensor network states $|A\rangle$ approximate well $|0\rangle$ with χ fixed
2. **Most** $|A\rangle$ are ground states of gapped H

From condensed matter to QFT

Tensor network are excellent **theoretically** and **numerically** but limited to the **lattice**

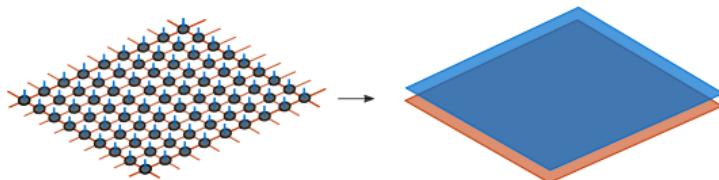
2 options:

- Discretize QFT, solve with best known tensor network algorithms

$$S(\phi) = \sum_{\langle i,j \rangle} \frac{(\phi_i - \phi_j)^2}{2a^2} + \sum_i \frac{1}{2} \mu_a^2 \phi_i^2 + \frac{1}{4} \lambda_a \phi_i^4$$

and take $a \rightarrow 0$

- Take the continuum limit of tensor networks, and apply to QFT directly



Lattice ϕ_2^4

Discretize the action:

$$S(\phi) = \sum_{\langle i,j \rangle} \frac{(\phi_i - \phi_j)^2}{2a^2} + \sum_i \frac{1}{2} \mu_a^2 \phi_i^2 + \frac{1}{4} \lambda_a \phi_i^4$$

Taking the limit

The right way to get the continuum limit is to take:

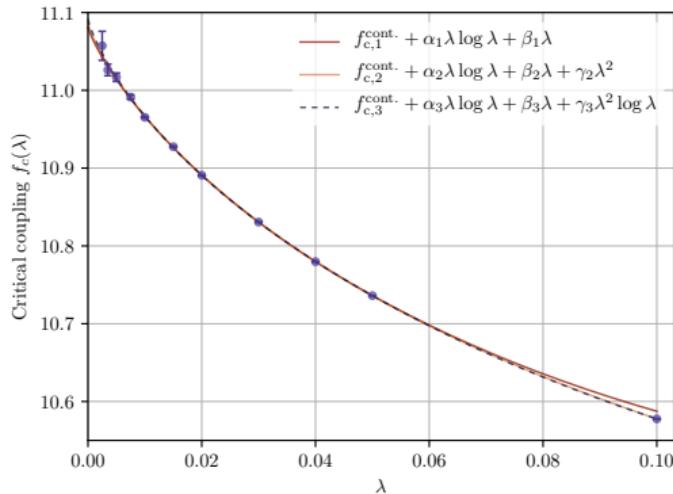
$$\begin{aligned}\mu_a^2 &= \mu^2 a^2 + \frac{3}{2} \log(a) a^2 \lambda \\ \lambda_a &= \lambda a^2\end{aligned}$$

which is equivalent to normal ordering

At first order in perturbation theory, the ϕ^4 term behaves like a ϕ^2 term times a log divergent constant.

Results with GILT tensor renormalization

With C. Delcamp, we found the critical point $f_c = \lim_{a \rightarrow 0} \frac{\lambda_a}{\mu_a^2}$ in the continuum limit to the highest precision ever arXiv:2003.12993



Method	$f_c^{\text{cont.}}$	Year	Ref.
Tensor network coarse-graining	10.913(56)	2019	[9]
Borel resummation	11.23(14)	2018	[6]
Renormalized Hamil. Trunc.	11.04(12)	2017	[5]
Matrix Product States	11.064(20)	2013	[7]
Monte Carlo	11.055(20)	2019	[15]
This work	11.0861(90)	2020	

TABLE I. Comparison of several estimates of the critical coupling constant $f_c^{\text{cont.}}$ in the continuum obtained using different methods.

The $a \log a$ correction of the critical point position as a function of lattice spacing a was not known before

Directly in the continuum

What was known (since 2010)

Continuous matrix product states for $1+1$ dimensional **non-relativistic** QFT

Directly in the continuum

What was known (since 2010)

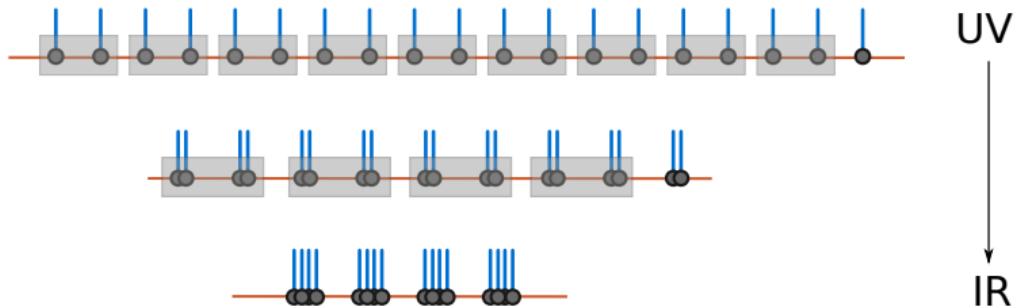
Continuous matrix product states for $1 + 1$ dimensional **non-relativistic** QFT

My contribution

- ▶ Define continuous tensor networks for $1 + d$ dimensional **non-relativistic** QFT [with I. Cirac]
- ▶ Demonstrate that they have the right UV properties and fast convergence [with T. Karanikolaou]
- ▶ Define relativistic continuous matrix product states for $1 + 1$ **relativistic** QFT [preliminary numerics]

Continuous Matrix Product states

[Verstraete & Cirac 2010]: continuum limit of **Matrix Product States** ($d = 1$ tensor networks)

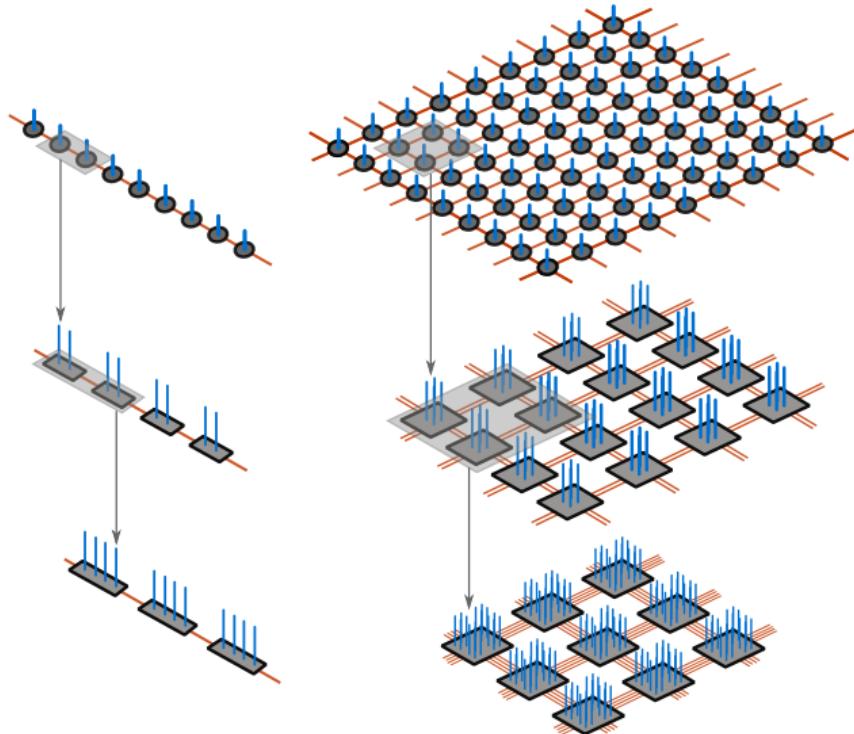


Works for Lieb-Liniger model (boson with contact interactions)

Best method on the market for $1+1$ non-relativistic QFT

But no version for $d+1$ QFT, even “no-go” theorems

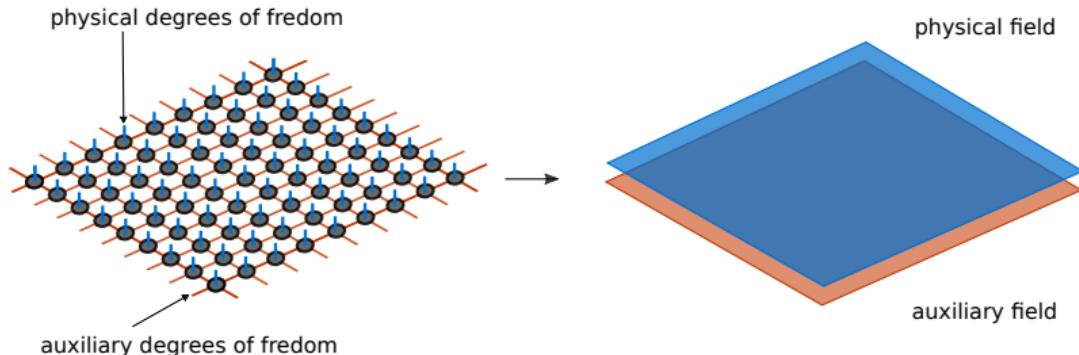
Continuous Tensor Networks: blocking



Upon **blocking**:

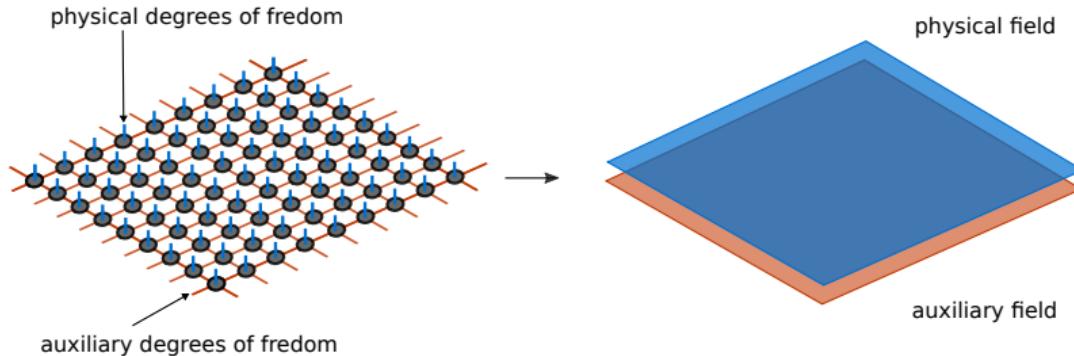
- ◊ The **physical** Hilbert space dimension D increases
- ◊ The **bond** (auxiliary space) dimension x increases too

Result



AT, J. I. Cirac, *Phys. Rev. X* 2019

Result



AT, J. I. Cirac, *Phys. Rev. X* 2019

Continuous tensor network state (heuristically)

State $|\alpha\rangle$ of $d + 1$ QFT from an auxiliary d dimensional theory of random fields ϕ :

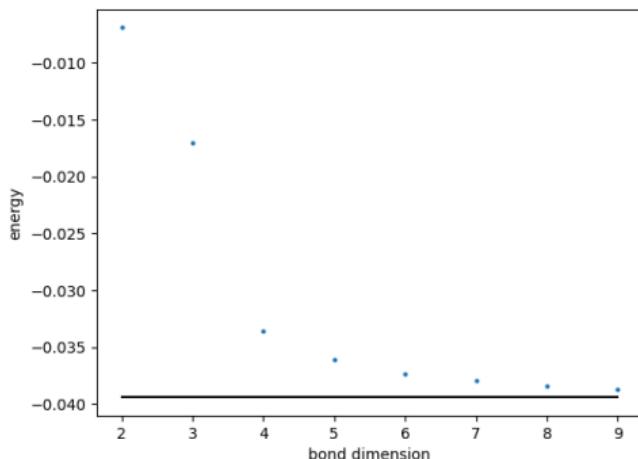
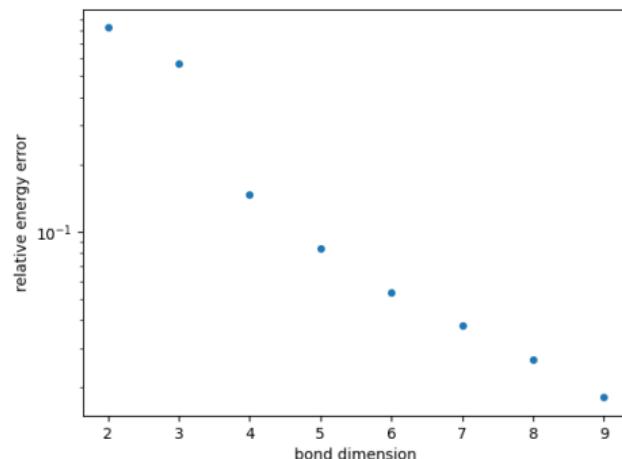
$$|\alpha\rangle = \int \mathcal{D}\phi \exp \left\{ - \int d^d x \mathcal{L}[\phi(x)] - \alpha[\phi(x)] \hat{\psi}^\dagger(x) \right\} |\Omega\rangle$$

1. Genuine continuum limit of discrete tensor networks
2. Right UV scaling and exponential convergence to the ground state as the number of auxiliary fields ϕ in increased arXiv:2006.13143

Preliminary continuous relativistic results in $1+1$

$$H = \int dx \frac{1}{2} \hat{\pi}^2 + \frac{1}{2} (\nabla \hat{\phi})^2 + \frac{m^2}{2} \hat{\phi}^2 + \frac{g}{4} : \hat{\phi}^4 :$$

Test of a brand new **relativistic continuous matrix product state ansatz** at $g = 4$ (deeply non perturbative). No **UV** nor **IR** cutoffs!



Seems exponentially convergent! First rigorous bound on ϕ^4 energy

Summary of tensor networks in QFT

Tensor networks are promising for non-perturbative QFT:

- ▶ They are already the best numerical method for QFT in $1+1$ dimensions
- ▶ They can now be applied to (non-relativistic) QFT in $1+d$
- ▶ They will very soon give **rigorous** results for relativistic QFT in $1+1$ dimensions

In the near future:

- ▶ Push lattice based approach to lattice gauge theory (go beyond scalar)
- ▶ Push continuous approach to relativistic $1+d$