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My profile

3 years PhD (ENS), 4 years postdoc MPQ

3 main lines of inquiry

Continuous measurement Gravity and quantum Many-body & QFT
How to gently measure and Could gravity, in principle, How to efficiently parameterize
control quantum systems? not be quantum? many-body and QFT states




Quantum field theory: a bit of philosophy

Two ways to attack real world quantum field theories non-perturbatively
1. Start simpler so that it becomes simpler [e.g. self interacting scalar field ¢3]
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N =4 SYM - Chrysler building

2. is a good way to make fast progress first, but is limited in what it can achieve

Goal - ideal - philosophy: an apology of the pile of dirt approach

Abandon analytical solutions, but find robust methods that can solve simple QFTs
non-perturbatively and, if possible, to machine precision, without cheating.

more on this on tilloy.wordpress.com
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QFT: simplest non-trivial example

¢4 is a relativistic QFT in d = 1+ 1 dimensions defined by the Hamiltonian:

2
H:de %ﬁ2+%(V$)2+ T+ g

10

» |t exists as a true QFT (rigorously defined by constructive field theorists)
» It is not integrable, has no special structure simplifying computations

P |t has a phase transition which cannot be located perturbatively
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¢4 is a relativistic QFT in d = 1+ 1 dimensions defined by the Hamiltonian:
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H:de %ﬁ2+%(V$)2+ T+ g
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» |t exists as a true QFT (rigorously defined by constructive field theorists)
» It is not integrable, has no special structure simplifying computations
P |t has a phase transition which cannot be located perturbatively

= the ultimate pile of dirt: non-trivial, no cheating, but easy to define

S. Rychkov challenge ~ 2015

Compute everything one could want to compute about this model for all values of g. In
particular find the position of the phase transition (approximately at g/m? ~ 10 4 20%)
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Applications

» Quantum information theory
» Statistical Mechanics

» Quantum gravity

» Many-body quantum
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Applications

» Quantum information theory
» Statistical Mechanics

» Quantum gravity

» Many-body quantum

Negative theology
» Not covariant/geometric
objects guv or R, «

» Not tensor models
[Rivasseau, Gurau, ...]



Outline

1. Tensor networks on the lattice
2. Bringing QFT to the lattice
3. Bringing tensor networks to the continuum



Many-body problem

B

Problem Possible solutions

» Perturbation theory
Monte Carlo

Finding low energy states of >
» Bootstrap IR fixed point
>

N
A=S h

pue Variational optimization (e.g. Mean

Field, Hamiltonian truncation, tensor
is hard because dim # o D" networks)



Variational optimization

Generic state € J7:
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Exact variational optimization
To find the ground state:

min (WIHW)
wyer (Phb)
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Variational optimization

Generic state € J7:

D
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Approx. variational optimization
To find the ground state:

min (WIHR)
ez (Whp)

10) =

» dim.# o Poly(N) or fixed



Interesting states are weakly entangled

Low energy state

W) =10) or [1) ...

Reduced density matrix

p = trpe ) (W]

Entanglement entropy
S =—tr[plogp]

Area law

S x [0D]
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Typical states are strongly entangled

Random state

hp)

Unaarltrivial)

Reduced density matrix

()]
Entanglement entropy

- trDc

p

= —tr[plogp]

)

Volume law

S x |D




Constructing weakly entangled states
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1. Put auxiliary

® ® ® ® maximally entangled
states between sites
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Constructing weakly entangled states

1. Put auxiliary
maximally entangled
states between sites

X

o-0=) W

j=1

2. Map to initial Hilbert
space on each site

‘:A:C“X—)CD




Tensor network states: definition

Why “tensor” network?

. B s
o@e - X
\\. / 1 Ja

. (MAXx D i
ACX=C" — A

with tensor contractions on links



Tensor network states: definition

Why “tensor” network?

y . ; i i i
888 -
\\, . 1 Ja
A:C* 5P —

i
Al bors

Optimization
Find best A for fixed x (D x x* coeff.)

. (AIHIA)
Fo = min ~CAA)
0E

for example go down 57—
J1J25J35J4

with tensor contractions on links



Some facts

d =1 spatial dimension

Theorems (colloquially)

1. For gapped H, tensor network states |A)
approximate well |0) with x fixed

2. All |A) are ground states of gapped H



Some facts

d =1 spatial dimension d > 2 spatial dimension

Theorems (colloquially) Folklore
1. For gapped H, tensor network states |A) 1. For ga;_)ped H, tensor r)etwork states |A)
approximate well |0) with x fixed approximate well |0) with x fixed

2. All |A) are ground states of gapped H 2. Most |A) are ground states of gapped H



From condensed matter to QFT

Tensor network are excellent theoretically and numerically but limited to the lattice

2 options:

» Discretize QFT, solve with best known tensor network algorithms
(i — b)) L oo 1, 4
S(e) = Z —Hp ? + Z Euad)i + 17\3(1);
(i) (Vd)2/2 i

and take a =+ 0
» Take the continuum limit of tensor networks, and apply to QFT directly




Lattice ¢

Discretize the action:

(i — bj)? 1 1
S(p) =) S e &+ ) SuiF + g Aad!
(i) (V)2/2 i

Taking the limit

The right way to get the continuum limit is to take:

3
u2 = pa% + 5 log(a)a®A

Aa = A&
which is equivalent to normal ordering

At first order in perturbation theory, the ¢* term behaves like a ¢? term times a log divergent
constant.



Results with GILT tensor renormalization

With C. Delcamp, we found the critical point f, = lim,_o % in the continuum limit to the

highest precision ever arXiv:2003.12993
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Method feont Year Ref.
Tensor network coarse-graining 10.913(56) 2019  [9]

Borel resummation 11.23(14) 2018 [6]

Renormalized Hamil. Trunc. 11.04(12) 2017 [5]

Matrix Product States 11.064(20) 2013 [7]

Monte Carlo 11.055(20) 2019 [15]
This work 11.0861(90) 2020

TABLE I. Comparison of several estimates of the critical cou-
pling constant f°™ in the continuum obtained using different

methods.

The alog a correction of the critical point position as a function of lattice spacing a was not

known before



Directly in the continuum

What was known (since 2010)

Continuous matrix product states for 1 + 1 dimensional non-relativistic QF T
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Continuous matrix product states for 1 + 1 dimensional non-relativistic QF T

My contribution

» Define continuous tensor networks for 1 + d dimensional non-relativistic QF T
[with I. Cirac]

» Demonstrate that they have the right UV properties and fast convergence
[with T. Karanikolaou]

» Define relativistic continuous matrix product states for 1 + 1 relativistic QF T
[preliminary numerics]



Continuous Matrix Product states

[Verstraete & Cirac 2010]: continuum limit of Matrix Product States (d = 1 tensor networks)

dA4ildddl
LLaLu R

Works for Lieb-Liniger model (boson with contact interactions)
Best method on the market for 1 + 1 non-relativistic QF T

But no version for d +1 QFT, even "no-go” theorems



Continuous Tensor Networks: blocking

Upon blocking:

¢ The physical Hilbert space
dimension D increases

¢ The bond (auxiliary space)
dimension x increases too




Result

physical degrees of fredom physical field

auxiliary field
auxiliary degrees of fredom

AT, J. I. Cirac, Phys. Rev. X 2019



Result

physical degrees of fredom

physical field

auxiliary field

auxiliary degrees of fredom

AT, J. I. Cirac, Phys. Rev. X 2019
Continuous tensor network state (heuristically)
State |ot) of d + 1 QFT from an auxiliary d dimensional theory of random fields ¢:

0 = [ 20 e { - [ 4% L1600~ alot §110 } 102

creation

1. Genuine continuum limit of discrete tensor networks

2. Right UV scaling and exponential convergence to the ground state as the number of
auxiliary fields ¢ in increased arXiv:2006.13143



Preliminary continuous relativistic results in 1 + 1

1 1 ~ m2/\ 8 x
H = *’ﬁ2 - 2 a2 S . 4:
J‘dx2 +2(Vd))+2<1>+4 ¢

Test of a brand new relativistic continuous matrix product state ansatz at g = 4 (deeply
non perturbative). No UV nor IR cutoffs!
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Seems exponentially convergent! First rigorous bound on ¢* energy



Summary of tensor networks in QFT

Tensor networks are promising for non-perturbative QFT:
» They are already the best numerical method for QFT in 1+ 1 dimensions
» They can now be applied to (non-relativistic) QFT in 1 + d

» They will very soon give rigorous results for relativistic QFT in 1 + 1 dimensions

In the near future:
» Push lattice based approach to lattice gauge theory (go beyond scalar)
» Push continuous approach to relativistic 1 4+ d



