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Quantum field theory: a bit of philosophy
Two ways to attack real world quantum field theories non-perturbatively

1. Start simpler so that it becomes simpler [e.g. φ4
2]

2. Start more complex so that it becomes simpler [e.g. N = 4 SYM]

φ4
2 - pile of dirt QCD - Everest N = 4 SYM - Chrysler building

Goal - ideal - philosophy: an apology of the pile of dirt approach
Abandon analytical solutions, but find robust methods that can solve simple
QFTs non-perturbatively and, if possible, to machine precision, without cheating.

more on this on tilloy.wordpress.com
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φ4
2 for beginners

and condensed matter theorists



Intuitive definition: canonical quantization

Hamiltonian
A continuum of nearest neighbor coupled anharmonic oscillators

Ĥ =

∫
Rd

ddx π̂(x)2

2
on-site inertia

+
[∇φ̂(x)]2

2
spatial stiffness

+ V (φ̂(x))
on-site potential

with canonical commutation relations [φ̂(x), π̂(y)] = iδd(x − y)1 (i.e. bosons)



Intuitive definition

Hilbert space
Fock space HQFT = F [L2(Rd)] – just like x , p → (a, a†) do π̂, φ̂→ ψ̂, ψ̂†

|Ψ〉 =
+∞∑
n=0

∫
dx1dx2 · · · dxn ϕn(x1, x2, · · · , xn)︸ ︷︷ ︸

wave function

ψ̂†(x1)ψ̂
†(x2) · · · ψ̂†(xn)︸ ︷︷ ︸

local oscillator creation

|vac〉



What are the problems - Hilbert space approach

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms ∝ ψ̂(x)ψ̂†(x)

〈Ψ1|Ĥ |Ψ2〉 = ±∞ and even 〈vac|Ĥ |vac〉 ∝ δd(0) = +∞

If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

∀ |Ψ〉 ∈H , 〈Ψ|Ĥfinite|Ψ〉 = finite but ∃ Ψn s.t. lim
n→+∞〈Ψn|Hfinite|Ψn〉 = −∞
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How are they are solved in the free case - Hamiltonian
Bogoliubov transform
Go from ψ̂(x), ψ̂†(x) to a(p), a†(p) with

a(p) = 1√
2

(
√
ωp φ̂(p) +

π̂(p)
√
ωp

)
with ωp =

√
p2 + m2

which yields
H0 =

∫
dpωp

1
2
(
a†pap + apa†p

)

Solution
I Take HQFT ≡ : H :a
I |free ground state〉 = |vacuum〉a
I H built from a†p1

· · · a†pn
|vacuum〉a

This solves the problematic free
part exactly, and allows to define
a finite interaction (in 1 + 1)



Rigorous operator definition of φ4
2

Renormalized φ4
2 theory

H =

∫
dx : π2 :a

2 +
: (∇φ)2 :a

2 +
m2

2 : φ2 :a +g : φ4 :a

(note that : ♦ :a depends on m)

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g � m2 (perturbation theory)
4. Phase transition around fc = g

4m2 = 11 i.e. g ' 2.7 in mass units
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The variational method
Solving the non-exactly solvable by guessing well



Ways to solve the non-exactly-solvable

The two main games in town
1. Perturbative expansions (+ Borel-Padé resummation)
2. Lattice Monte Carlo

Two “new” deterministic non-perturbative options:
1. Variational method → focus of today
2. Non-perturbative renormalization group (Kadanoff, FRG, Tensor RG, etc.)

The two new methods now rule on (low dimensional) lattice problems thanks to
tensor networks → QFT?
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The variational method

In the Hamiltonian formulation:
I Guess a finite dimensional submanifold M of the QFT Hilbert space H

I Find the ground state by minimizing 〈H〉:

|ground〉 ' |ψ〉 = argmin
M

〈ψ|H |ψ〉
〈ψ|ψ〉

Example: naive Hamiltonian truncation
With an IR cutoff, momenta are discrete. Take as submanifold M the vector
space spanned by:

a†k1
a†k2
· · · a†kr

|0〉a
where r 6 rmax and k 6 kmax (one possible truncation)
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Feynman’s objection
Feynman’s requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization
Number of parameters ∝ Lα at most for system size L

2. Computable expectation values
ψ known =⇒ 〈O(x)O(y)〉ψ computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted

All methods so far break one at least:
I Hamiltonian truncation fails at 1 (but works fairly well through its

renormalized refinements)
I Tensor networks succeed at 1 and 2 but fail (a priori) at 3

Haegeman-Cirac-Osborne-Verschelde-Verstraete fix of 2010: regulate the UV by adding a Lagrange

multiplier in the Hamiltonian H → H + 1
Λ2 regulator
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Tensor network states
The best guess for the many-body problem on the lattice



Tensor networks in a nutshell

Tensor network states provide a compressed representation of low energy states
of local Hamiltonians on the lattice

I Compression possible because area law: such states are weakly entangled
I The “bond dimension” D quantifies the number of parameters
I In 1 space dimension, provably efficient (cost poly D, error superpoly 1/D)



Matrix Product States (MPS)

Definition
A MPS for a translation invariant chain of N qudits (Cd) with periodic boundary
conditions is a state

|ψ(A)〉 :=
∑

i1,i2,...,iN

tr [Ai1Ai2 · · ·AiN ] |i1, i2, . . . , iN〉

where Ai are d matrices ∈MD(C).

I The matrices Ai for i = 1 . . . d are the free parameters
I The size D of the matrices is the bond dimension (quantifies freedom)
I Correlation functions (and 〈H〉) efficiently computable
I Optimizing over A provably gives good results for gapped H



MPS in graphical notation
|A, L,R〉 =

∑
i1,i2,··· ,in〈L|Ai1(1)Ai2(2) · · ·Ain(n)|R〉 |i1, · · · , in〉

Notation: [Ai ]k,l = and k l =
∑
δk,l gives:

|A, L,R〉 =

Example: computation of correlations

〈A|O(ik)O(i`)|A〉 =

can be done efficiently by iterating 2 maps:

Φ = and ΦO =



(Continuous) matrix product states
Taking the simplest tensor network and scaling it up to QFT



Continuous Matrix Product States
Type of ansatz for bosons on a fine grained lattice
I Matrices Aik (x) where the index ik corresponds to ψ†ik (x)|0〉 in physical

space.

Informal cMPS definition

A0 = 1+ εQ
A1 = εR

A2 =
(εR)2
√

2
· · ·

An =
(εR)n
√

n

so we go from ∞ to 2 matrices

Fixed by:
I Finite particle number

I Consistency



Continuous Matrix Product States

Introduced by Verstraete and Cirac in 2010

Definition

|Q,R,ω〉 = tr
[
P exp

{∫L

0
dx Q ⊗ 1+ R ⊗ψ†(x)

}]
|0〉ψ

I Q,R are D × D matrices,
I The trace is taken over this auxiliary matrix space
I [ψ(x), ψ†(y)] = δ(x − y) acts on the physical QFT Hilbert space

Idea: A generalized coherent state



Computations
Some correlation functions〈

ψ̂(x)†ψ̂(x)
〉
= Tr

[
eTL(R ⊗ R)

]〈
ψ̂(x)†ψ̂(0)†ψ̂(0)ψ̂(x)

〉
= Tr

[
eT(L−x)(R ⊗ R)eTx(R ⊗ R)

]〈
ψ̂(x)†

[
−

d2

dx2

]
ψ̂(x)

〉
= Tr

[
eTL([Q,R]⊗ [Q,R])

]
with T = Q ⊗ 1+ 1⊗ Q̄ + R ⊗ R̄
Example
Lieb-Liniger Hamiltonian

H =

∫+∞
−∞ dx

[
dψ̂†
dx

dψ̂
dx − µψ̂†ψ̂+ cψ̂†ψ̂†ψ̂ψ̂

]

Solve by minimizing: 〈Q,R | H |Q,R〉 = f (Q,R)



Standard CMPS and φ4

Applying cMPS to the φ4 Hamiltonian

〈Q,R |ĥφ4 |Q,R〉 =∞
Oh no!

The short distance behavior of cMPS is the wrong one, even the free theory is
hard to approximate.



Going relativistic
Infusing some “high-energy” knowledge into tensor networks



Towards relativistic CMPS
Local basis in position of the QFT: ψ†, φ, π, |0〉ψ
Diagonal basis of the free part: a†k , |0〉a

Bogoliubov transform
Go from ψ̂(x), ψ̂†(x) to a(p), a†(p) with

a(p) = 1√
2

(
√
ωp φ̂(p) +

π̂(p)
√
ωp

)
with ωp =

√
p2 + m2

which yields
H0 =

∫
dpωp

1
2
(
a†pap + apa†p

)
Go from |0〉ψ to |0〉a
and
Go from ψ(x) to a(x) =

∫
dp a(p)eipx 6= ψ(x)



Relativistic CMPS

Definition

|R,Q〉 = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0〉a

Some properties
1. |0, 0〉 = |0〉a is the ground state of H0 hence exact CFT UV fixed point

(because interaction super-renormalizable)
2. 〈Q,R |hφ4 |Q,R〉 is finite for all Q,R (not trivial)



Consequence on the Hamiltonian

Hamiltonian density in a(x) basis

H is local in ψ(x), not in a(x)...

H =

∫
dx1dx2D(x1 − x2)a†(x1)a(x2)

+

∫
dx1dx2dx3dx4K (x1, x2, x3, x4)a(x1)a(x2)a(x3)a(x4) + 4a†aaa + 3a†a†aa

+ h.c.

But fortunately exponentially decreasing: K is horrible, but decays ∝ e−m|x |.



The nightmarish optimization

Compute e0 = 〈Q,R |hφ4 |Q,R〉 and ∇Q,Re0

1. Contains an algebraic part identical to standard cMPS
2. Involves horrible quadruple integrals without analytic solutions

Optimization with naive gradient descent, BFGS, or conjugate gradient leads to
plateaus =⇒ does not work

One needs to do TDVP (i.e. variational optimization with a metric), slightly
more complicated but “standard” and works. Equivalent with imaginary time
evolution with large time-step.
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Results and discussion



Results
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Comparison with renormalized Hamiltonian truncation

Ren. Hamiltonian truncation
IR cutoff L, energy truncation ET

I Uses a vector space
I Function to minimize is

quadratic, hence linear problem
I Number of parameters ∝ eL×ET

I Error ∝ 1/E 3
T

I Spectrum easy

Relativistic CMPS
entanglement truncation D
I Uses a manifold
I Minimization is a priori

non-trivial but doable
I Number of parameters ∝ D2

I Error o(1/Dα), ∀ α (folklore)
I Fixed t correl. functions easy

Note: real world not asymptotic. RCMPS has expensive prefactors, and RHT can
use reliable extrapolations
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Extensions

I To other bosonic theories in 1 + 1 with poly V (φ) → easy
I To fermionic theories in 1 + 1 → feasible
I To 2 + 1 and 3 + 1 dimensions → very difficult

(lattice tensor networks will probably rule in 1 + 1 and 2 + 1 for numerics)



Summary

1. New ansatz for 1 + 1 relativistic QFT
2. No cutoff, UV or IR (a first?)
3. UV is captured exactly even at D = 0
4. Efficient (cost poly D, error superpoly 1/D)
5. Rigorous (variational)



Bonus: more on tensor network states



Tensor network states: a tool
Applications

I Quantum information
theory

I Statistical Mechanics
I Quantum gravity
I Many-body quantum

Negative theology

I Not
covariant/geometric
objects gµν or Rσµνκ

I Not tensor models
[Rivasseau, Gurau, ...]



Many-body problem

Problem

Finding low energy states of

Ĥ =

N∑
k=1

ĥk

is hard because dim H ∝ DN



Variational optimization
Generic (spin d/2) state ∈H :

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN〉

Exact variational
optimization
To find the ground state:

|0〉 = min
|ψ〉∈H

〈ψ|H |ψ〉
〈ψ|ψ〉

I dim H = dN



Variational optimization
Generic (spin d/2) state ∈H :

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN〉

Approx. variational
optimization
To find the ground state:

|0〉 = min
|ψ〉∈M

〈ψ|H |ψ〉
〈ψ|ψ〉

I dim M ∝ Poly(N) or fixed



Interesting states are weakly entangled
Low energy state
|ψ〉 = |0〉 or |1〉 ...

Reduced density
matrix
ρ = trDc

[
|ψ〉〈ψ|

]
Entanglement
entropy
S = −tr

[
ρ log ρ

]
Area law

S ∝ |∂D|
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Typical states are strongly entangled
Random state
|ψ〉 = UHaar|trivial〉

Reduced density
matrix
ρ = trDc

[
|ψ〉〈ψ|

]
Entanglement
entropy
S = −tr

[
ρ log ρ

]
Volume law

S ∝ |D|



Constructing weakly entangled states

1. Put auxiliary
maximally entangled
states between sites

=

D∑
j=1

|j〉|j〉

2. Map to initial Hilbert
space on each site

= A : C4D → Cd
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Tensor network states: definition
Why “tensor” network?

A : C4D → Cd −→ Ai
j1,j2,j3,j4

|A〉 =

with tensor contractions on links

Optimization
Find best A for fixed χ (d ×D4 coeff.)

E0 ' min
A

〈A|Ĥ |A〉
〈A|A〉

for example go down ∂E
∂Ai

j1,j2,j3,j4



Some facts
1 spatial dimension

Theorems (colloquially)

1. For gapped H , tensor network
states |A〉 approximate well |0〉 as
D increases

2. All |A〉 are ground states of local
gapped H

> 2 spatial dimension

Folklore

1. For gapped H , tensor network
states |A〉 approximate well |0〉 as
D increases

2. Most |A〉 are ground states of
local gapped H


