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Goal - ideal - philosophy: an apology of the pile of dirt approach

Abandon analytical solutions, but find robust methods that can solve simple
QFTs non-perturbatively and, if possible, to machine precision, without cheating.

more on this on tilloy.wordpress.com
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Fundamental Physics with tensor networks

To apply tensor networks to “fundamental” theories, we need to understand:
1. Weird degrees of freedom (Gauge theories)
2. The continuum limit

3. Peculiarities of relativistic Hamiltonians (CFT at short distance)



What we did so far on the continuum at MPQ

“Analytical” Continuous tensor networks

1. Introduce a “good"” definition of continuous tensor network in d > 2
(with Ignacio)

physical indices

boundary tensor ¢

<
o

2. Show that in a simple setup it does the job (with Teresa and Patrick)
(Parallel work in Ghent with Bastian, Quinten, and Jutho)

— both non-relativistic, “condensed-matter QFT"
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“Numerical” Continuous tensor networks

1. Discretize ¢3 on a super-fine lattice, solve with standard methods,
extrapolate the result to the continuum limit (with Clément)



True vs Effective QFT

Against the “why bother since there is always a cutoff?”

Effective QFT

The theory has a momentum /energy
cutoff A large but finite A > m,
where m is the gap.

The fundamental theory is not
known, but in perturbation theory,
one can take A — oo term by term
to get a good approximation of
physics at scale m.

Examples
1. QED with matter

2. ¢f
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True QFT

The limit A — +00 can be taken
exactly, and the theory is valid “all
the way down".

All quantities exist

non-perturbatively in the limiting
theory, for arbitrarily high energy.
No cutoff whatsoever in principle.

Examples
1. QCD without too much matter
2. ¢3 and O3
3. Sine-Gordon, Gross-Neveu, etc.



Outline
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¢* theory — the condensed matter way
Divergences and standard resolution
¢* theory — the rigorous way
[llustration on lattice based approach
cMPS to the rescue?

relativistic cMPS and preliminary results



Intuitive definition: canonical quantization
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Hamiltonian

A continuum of nearest neighbor coupled anharmonic oscillators

+ V(dKx))

on-site potential

H =

J R C [V (x))2
Rd 2

on-site inertia spatial stiffness

with canonical commutation relations [(?)(x),ﬁ(y)] = i89(x — y)1 (i.e. bosons)



Intuitive definition
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Hilbert space
Fock space et = Z[L?(RY)] - just like x, p — (a,a") do A, $ — xT),lT)T

“+o0o

|\P> = ZJdX]_dXQ 000 an fpn(Xsz, to axnll/l\)T(Xl){l\)T(X ) o '{l\)T(Xn) |vac)

n=0
wave function local oscillator creation




What are the problems - Hilbert space approach

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms oc P(x)PT(x)

(W;|H[W,) = +00 and even (vac|H|vac) x §7(0) = 400



What are the problems - Hilbert space approach

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms oc P(x)PT(x)

(W;|H[W,) = +00 and even (vac|H|vac) x §7(0) = 400

If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

V(W) € A, (Y|Frinieel¥) = finite but 3 W, st. lim (W, Hiniel¥,) = —00

n—-+o0o

and worse
0) .= lim [¥,) & 2

n—-+00



How are they are solved in the free case - Hamiltonian

Bogoliubov transform
Go from l/lB(X),l/l\)T(X) to a(p), af(p) with

A 7t
a(p) = % (\/w_pd)(p) + \/(wi)> with w, = +/p? + m?

p
which yields
1
Ho = Jdp Wp 5 (afa, + apal)

Solution

» Take Hoer =: H 2,

» |ground state) = [vacuum),

This solves the problematic free
part exactly, and allows to
define a finite interaction

> 7 built from af ---af lvacuum),



Rigorous operator definition of cl)‘21

Renormalized ¢3 theory:

H:de:ﬂ2:a (V)2 :, 2

m- 2. v
> + > +2.d).a+g.c|>.a

note that : > :, depends on m!

1. Rigorously defined relativistic QF T without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g < m? (perturbation theory)

4. Phase transition around f. = ;£; =11 i.e. g ~ 2.7 in mass units



Ways to solve ¢}

With a lattice of size a (UV cutoff) and fixed number of sites N (IR cutoff)
» Monte-Carlo
» Tensor network renormalization
With a lattice of size a (UV cutoff) and no IR cutoff
» Uniform MPS
With continuous space, an energy cutoff A (UV) and an IR cutoff
» Hamiltonian truncation
Without cutoff

» Perturbation theory + Borel-Padé resummation



Lattice ¢5

Discretize the action:
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Taking the limit
The right way to get the continuum limit is to take:

3 log(a)a®A

Ha:H32+2

A, = Aa®
which is equivalent to normal ordering

Basically, at first order in perturbation theory, the ¢* term behaves like a ¢p?
term times a log divergent constant.



Example with tensor network renormalization

Done with Clément [late 2019 — early 2020]
Discretize ¢, write Z =) S(¢) as a tensor network and contract it with TRG
+ GILT

svd

Technically: UV cutoff (lattice) and IR cutoff (number of RG steps)



Example with tensor network renormalization

Continuum limit taken numerically

111 11.10
[P+ agAlog A+ BiA |
FEP + apMlog A+ Bod + 7202 O8N
11.0 A S P+ agAlog A+ B3A + 3\ log A 11.06
i 104 11.04
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g
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A A

More costly as the UV cutoff gets small because:
1. Field becomes unbounded at short distance — large starting bond dimension
2. More RG steps (with max x) to get to the same scale



Limitation of numerical continuum limit

The “numerical” continuum limit is expensive for relativistic QFT. Is it a problem
of local basis choice?

No:
1. UV fixed point is a free CFT, so technically continuum of singular values

2. Interaction is super renormalizable / strongly relevant, so its impact on the
tensors — 0 in continuum limit

=—> even theory independent: would apply to QCD (asymptotic freedom), but
worse for super-renormalizable theories



Continuous Matrix Product States

Type of ansatz for bosons on a fine grained d = 1 lattice

» Matrices A, (x) where the index iy corresponds to {1’ (x)|0) in physical
space.

Informal cMPS definition

Fixed by:
A =1+¢Q » Finite particle number
Al =¢R 90069909
HHHHHHT 1
A2:(€R)2 010000
V2 BEOOEE « e
» Consistency
A, = ER) 1o 7 9
\/ﬁ e T e R . B T

so we go from oo to 2 matrices



Continuous Matrix Product States

Definition
L
1Q, R, w) = (w,|Pexp {J dx Q1+ R ®1|)T(X)} |wg) [0)y
0

» Q,R are D x D matrices,
» |w;) and |wg) are boundary vectors € CP, for p.b.c. {w;|-|wg) — tr[-]

> [W(x), ()] =8(x —y)

Idea:

A(x) 2 Aol + AppT(x)
~1®1+eR®1L+eRUPI(x)
~exple (Q® 1L+ R®VPI(x))]



Computations

Some correlation functions

With T=Q®1+12Q+R®

Example

Lieb-Liniger Hamiltonian

I R L L N T P SN
%—de [Kd—— i e

Solve by minimizing: (Q, R|H|Q,R) = f(Q, R)



Standard CMPS and ¢*

Applying cMPS to the ¢* Hamiltonian

(Q, RIhgs|Q, R) = 0
Oh no!

The short distance behavior of cMPS is the wrong one, even the free theory is
hard to approximate.



Feynman'’s objection

Feynman’s requirement for variational wavefunctions in RQFT

1. Extensive
2. Computable expectation values
3. Not oversensitive to the UV

CMPS do 1 and 2 but struggle with 3.
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Feynman’s requirement for variational wavefunctions in RQFT

1. Extensive
2. Computable expectation values
3. Not oversensitive to the UV

CMPS do 1 and 2 but struggle with 3.

Haegeman-Cirac-Osborne-Verschelde-Verstraete fix of 2010: regulate the UV by
adding a Lagrange multiplier in the Hamiltonian

1
H— H+ ﬁregulator
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Towards relativistic CMPS

Local basis in position of the QFT: T, &, 7, 0)y,
Diagonal basis of the free part: al , 10),

Bogoliubov transform
Go from ﬂ)(x),l/l\ﬂ(x) to a(p), af(p) with

a(p) = % (\/w_p(/f)(p) + j(:);)> with w, = +/p? + m?

p

which yields
1
Ho = Jdp Wp 5 (afa, + apal)

Go from [0)y, to |0),
and
Go from P(x) to a(x) = [dp a(p)e # P(x)



Relativistic CMPS

Definition
IR, Q) = tr {CPexp de RRT+R® aT(x)} } 0),

Some properties

1. |0,0) = |0), is the ground state of Hy hence exact CFT UV fixed point
(because interaction super-renormalizable)

2. (Q, Rlh44|Q, R) is finite for all Q, R (not trivial)



Consequence on the Hamiltonian

Hamiltonian density in a(x) basis

H is local in {P(x), not in a(x)...

H = J XmdXQD(Xl — XQ)BT (xl)a(x2)

+ J dxidxodxsdxa K (x1, X0, X3, Xa)a(x1)a(x2) a(x3)a(xs) + 4a' aaa + 3a'a'aa

+ h.c.

mlx|

But fortunately exponentially decreasing: K is horrible, but decays o< e~



The nightmarish optimization

Compute ey = (Q, R|hg4+|Q, R) and Vg reg
1. Contains an algebraic part identical to standard cMPS

2. Involves horrible quadruple integrals without analytic solutions

Optimization with naive gradient descent, BFGS, or conjugate gradient leads to
plateaus = does not work

One needs to do TDVP (i.e. variational optimization with a metric), slightly
more complicated but “standard” (in Ghent at least) and works. Equivalent with
imaginary time evolution with large time-step.
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Compared with the Renormalized Hamiltonian Truncation results of Rychkov and
Vitale from 2015.
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Compared with the “high precision” Renormalized Hamiltonian Truncation results
of Elias Miro, Rychkov, and Vitale from 2017 for g =1 and g =2
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What now

On the immediate numerical side:
1. Improve the runtime (3 days, 40 cores for D = 9 with my spaghetti code)

2. Explore the modest improvement brought by changing the a,, to as for
different masses

3. Compute more observables/dynamics

4. Get closer to criticality

On the more ambitious theory front:
1. Use RCMPS to compute expectation values of d = 2 (non-relativistic) CTNS
2. Do fermions: are there new regularity conditions?
3. CMERA for relativistic QFT? (i.e. a flow between UV and IR CFT)



Summary

ol

New ansatz for 1 + 1 relativistic QF T
No cutoff, UV or IR (a first?)

UV is captured exactly even at D =0
Rigorous (variational)



