
Variational method in relativistic QFT
without cutoff

Antoine Tilloy
Max Planck Institute of Quantum Optics, Garching, Germany

Thursday seminar of QUANTIC, Paris
March 11th, 2021



The problem of quantum field theory

Basics:
I Quantum field theory = most fundamental description of Nature
I Continuously infinite many-body problem

Historical Feynman diagram way:
I Free QFT are easy (both to define and solve)
I Perturbation theory to compute in non-free (and even define them!)
I (No “real world” QFT has been defined rigorously)

Bruteforce way:
I Non-perturbative computations are doable with lattice Monte-Carlo
I But many quantities of interest out of reach even with exascale computing

in lattice QCD
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Quantum field theory: a bit of philosophy
Two ways to attack real world quantum field theories non-perturbatively

1. Start simpler so that it becomes simpler [e.g. φ4
2]

2. Start more complex so that it becomes simpler [e.g. N = 4 SYM]

φ4
2 - pile of dirt QCD - Everest N = 4 SYM - Chrysler building

Goal - ideal - philosophy: an apology of the pile of dirt approach
Abandon analytical solutions, but find robust methods that can solve simple
QFTs non-perturbatively and, if possible, to machine precision, without cheating.

more on this on tilloy.wordpress.com

tilloy.wordpress.com
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Outline

1. φ4
2 for beginners

2. The variational method
3. Matrix product states and their continuum limit
4. Going relativistic
5. Results and discussion



φ4
2 for beginners

and condensed matter theorists



Intuitive definition: canonical quantization

Hamiltonian
A continuum of nearest neighbor coupled anharmonic oscillators

Ĥ =

∫
Rd

ddx π̂(x)2

2
on-site inertia

+
[∇φ̂(x)]2

2
spatial stiffness

+ V (φ̂(x))
on-site potential

with canonical commutation relations [φ̂(x), π̂(y)] = iδd(x − y)1 (i.e. bosons)



Intuitive definition

Hilbert space
Fock space HQFT = F [L2(Rd)] – just like x , p → (a, a†) do π̂, φ̂→ ψ̂, ψ̂†

|Ψ〉 =
+∞∑
n=0

∫
dx1dx2 · · · dxn ϕn(x1, x2, · · · , xn)︸ ︷︷ ︸

wave function

ψ̂†(x1)ψ̂
†(x2) · · · ψ̂†(xn)︸ ︷︷ ︸

local oscillator creation

|vac〉



Why relativistic? → functional integral
Insert 1 =

∫
Dφ |φ〉〈φ| in expression for correlation functions and t = iτ gives

Functional integral representation
Representation of correlation functions in terms of random fields

〈0|φ̂(τ1, x1) · · · φ̂(τn, xn)|0〉 :=
∫
φ(τ1, x1) · · ·φ(τ1, xn) e−S(φ) Dφ

“Lebesgue measure”

with the action / weight where π̂→ dφ
dτ

S(φ) =
∫

ddx dτ 1
2

[
dφ
dτ

]2

inertia a.k.a time stiffness

+
[∇φ]2

2
spatial stiffness

+ V (φ)
on-site potential

Inertia = time stiffness =⇒ Euclidean rotation invariance =⇒ Lorentz
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What are the problems - Hilbert space approach

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms ∝ ψ̂(x)ψ̂†(x)

〈Ψ1|Ĥ |Ψ2〉 = ±∞ and even 〈vac|Ĥ |vac〉 ∝ δd(0) = +∞

If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

∀ |Ψ〉 ∈H , 〈Ψ|Ĥfinite|Ψ〉 = finite but ∃ Ψn s.t. lim
n→+∞〈Ψn|Hfinite|Ψn〉 = −∞
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True vs Effective QFT
Against the “why bother since there is always a cutoff?”

Effective QFT
The theory has a momentum/energy
cutoff Λ large but finite Λ� m,
where m is the gap.
The fundamental theory is not
known, but in perturbation theory,
one can take Λ→∞ term by term
to get a good approximation of
physics at scale m.
Examples

1. QED with matter
2. φ4

4

True QFT
The limit Λ→ +∞ can be taken
exactly, and the theory is valid “all
the way down”.
All quantities exist
non-perturbatively in the limiting
theory, for arbitrarily high energy.
No cutoff whatsoever in principle.
Examples

1. QCD without too much matter
2. φ4

2 and φ4
3

3. Sine-Gordon, Gross-Neveu, etc.
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How problems are solved in the free case
Bogoliubov transform
Go from ψ̂(x), ψ̂†(x) to a(p), a†(p) with

a(p) = 1√
2

(
√
ωp φ̂(p) +

π̂(p)
√
ωp

)
with ωp =

√
p2 + m2

which yields
H0 =

∫
dpωp

1
2
(
a†pap + apa†p

)

Solution
I Take HQFT ≡ : H :a
I |free ground state〉 = |vacuum〉a
I H built from a†p1

· · · a†pn
|vacuum〉a

This solves the problematic free
part exactly, and allows to define
a finite interaction (in 1 + 1)



Rigorous operator definition of φ4
2

Renormalized φ4
2 theory

H =

∫
dx : π2 :a

2 +
: (∇φ)2 :a

2 +
m2

2 : φ2 :a +g : φ4 :a

(note that : ♦ :a depends on m)

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g � m2 (perturbation theory)
4. Phase transition around fc = g

4m2 = 11 i.e. g ' 2.7 in mass units



“Skyscrapering” the pile of dirt

Scattering is complicated in φ4
2, particle number is not conserved

→ tweak the potential V to cancel all contributions terms

Sinh-Gordon theory

H =

∫
dx : π2 :a

2 +
: (∇φ)2 :a

2 +
m4

g : cosh
( g

m2φ
)
:a

I Gives φ4 theory + corrections by Taylor expanding cosh
I Infinitely many Feynman diagram
I Exactly solvable with Bethe Ansatz!
I But very peculiar / non-generic physics
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The variational method
Solving the non-exactly solvable by guessing well



Ways to solve the non-exactly-solvable

The two main games in town
1. Perturbative expansions (+ Borel-Padé resummation)
2. Lattice Monte Carlo

Two “new” deterministic non-perturbative options:
1. Variational method → focus of today
2. Non-perturbative renormalization group (Kadanoff, FRG, Tensor RG, etc.)

The two new methods now rule on (low dimensional) lattice problems thanks to
tensor networks → QFT?



The variational method

In the Hamiltonian formulation:
I Guess a finite dimensional submanifold M of the QFT Hilbert space H

I Find the ground state by minimizing 〈H〉:

|ground〉 ' |ψ〉 = argmin
M

〈ψ|H |ψ〉
〈ψ|ψ〉

Example: naive Hamiltonian truncation
With an IR cutoff, momenta are discrete. Take as submanifold M the vector
space spanned by:

a†k1
a†k2
· · · a†kr

|0〉a
where r 6 rmax and k 6 kmax (one possible truncation)
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Feynman’s objection
Feynman’s requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization
Number of parameters ∝ Lα at most for system size L

2. Computable expectation values
ψ known =⇒ 〈O(x)O(y)〉ψ computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted

All methods so far break one at least:
I Hamiltonian truncation fails at 1 (but works fairly well through its

renormalized refinements)
I Tensor networks succeed at 1 and 2 but fail (a priori) at 3

Haegeman-Cirac-Osborne-Verschelde-Verstraete fix of 2010: regulate the UV by adding a Lagrange

multiplier in the Hamiltonian H → H + 1
Λ2 regulator
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(Continuous) matrix product states
Taking the simplest tensor network and scaling it up to QFT



MPS in graphical notation
|A, L,R〉 =

∑
i1,i2,··· ,in〈L|Ai1(1)Ai2(2) · · ·Ain(n)|R〉 |i1, · · · , in〉

Notation: [Ai ]k,l = and k l =
∑
δk,l gives:

|A, L,R〉 =

Example: computation of correlations

〈A|O(ik)O(i`)|A〉 =

can be done efficiently by iterating 2 maps:

Φ = and ΦO =



Continuous Matrix Product States
Type of ansatz for bosons on a fine grained lattice
I Matrices Aik (x) where the index ik corresponds to ψ†ik (x)|0〉 in physical

space.

Informal cMPS definition

A0 = 1+ εQ
A1 = εR

A2 =
(εR)2
√

2
· · ·

An =
(εR)n
√

n

so we go from ∞ to 2 matrices

Fixed by:
I Finite particle number

I Consistency



Continuous Matrix Product States

Introduced by Verstraete and Cirac in 2010

Definition

|Q,R,ω〉 = 〈ωL|P exp
{∫L

0
dx Q ⊗ 1+ R ⊗ψ†(x)

}
|ωR〉 |0〉ψ

I Q,R are D × D matrices,
I |ωL〉 and |ωR〉 are boundary vectors ∈ CD, for p.b.c. 〈ωL| · |ωR〉 → tr[ · ]
I [ψ(x), ψ†(y)] = δ(x − y)

Idea: A generalized coherent state



Computations
Some correlation functions〈

ψ̂(x)†ψ̂(x)
〉
= Tr

[
eTL(R ⊗ R)

]〈
ψ̂(x)†ψ̂(0)†ψ̂(0)ψ̂(x)

〉
= Tr

[
eT(L−x)(R ⊗ R)eTx(R ⊗ R)

]〈
ψ̂(x)†

[
−

d2

dx2

]
ψ̂(x)

〉
= Tr

[
eTL([Q,R]⊗ [Q,R])

]
with T = Q ⊗ 1+ 1⊗ Q̄ + R ⊗ R̄
Example
Lieb-Liniger Hamiltonian

H =

∫+∞
−∞ dx

[
dψ̂†
dx

dψ̂
dx − µψ̂†ψ̂+ cψ̂†ψ̂†ψ̂ψ̂

]

Solve by minimizing: 〈Q,R | H |Q,R〉 = f (Q,R)



Standard CMPS and φ4

Applying cMPS to the φ4 Hamiltonian

〈Q,R |ĥφ4 |Q,R〉 =∞
Oh no!

The short distance behavior of cMPS is the wrong one, even the free theory is
hard to approximate.



Going relativistic
Infusing some “high-energy” knowledge into tensor networks



Towards relativistic CMPS
Local basis in position of the QFT: ψ†, φ, π, |0〉ψ
Diagonal basis of the free part: a†k , |0〉a

Bogoliubov transform
Go from ψ̂(x), ψ̂†(x) to a(p), a†(p) with

a(p) = 1√
2

(
√
ωp φ̂(p) +

π̂(p)
√
ωp

)
with ωp =

√
p2 + m2

which yields
H0 =

∫
dpωp

1
2
(
a†pap + apa†p

)
Go from |0〉ψ to |0〉a
and
Go from ψ(x) to a(x) =

∫
dp a(p)eipx 6= ψ(x)



Relativistic CMPS

Definition

|R,Q〉 = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0〉a

Some properties
1. |0, 0〉 = |0〉a is the ground state of H0 hence exact CFT UV fixed point

(because interaction super-renormalizable)
2. 〈Q,R |hφ4 |Q,R〉 is finite for all Q,R (not trivial)



Consequence on the Hamiltonian

Hamiltonian density in a(x) basis

H is local in ψ(x), not in a(x)...

H =

∫
dx1dx2D(x1 − x2)a†(x1)a(x2)

+

∫
dx1dx2dx3dx4K (x1, x2, x3, x4)a(x1)a(x2)a(x3)a(x4) + 4a†aaa + 3a†a†aa

+ h.c.

But fortunately exponentially decreasing: K is horrible, but decays ∝ e−m|x |.



The nightmarish optimization

Compute e0 = 〈Q,R |hφ4 |Q,R〉 and ∇Q,Re0

1. Contains an algebraic part identical to standard cMPS
2. Involves horrible quadruple integrals without analytic solutions

Optimization with naive gradient descent, BFGS, or conjugate gradient leads to
plateaus =⇒ does not work

One needs to do TDVP (i.e. variational optimization with a metric). Equivalent
with imaginary time evolution with large time-step.
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Results and discussion
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Comparison with renormalized Hamiltonian truncation

Ren. Hamiltonian truncation
IR cutoff L, energy truncation ET

I Uses a vector space
I Function to minimize is

quadratic, hence linear problem
I Number of parameters ∝ eL×ET

I Error ∝ 1/E 3
T

I Spectrum easy

Relativistic CMPS
entanglement truncation D
I Uses a manifold
I Minimization is a priori

non-trivial but doable
I Number of parameters ∝ D2

I Error o(1/Dα), ∀ α (folklore)
I Fixed t correl. functions easy

Note: real world not asymptotic. RCMPS has expensive prefactors, and RHT can
use reliable extrapolations



Extensions

I To other bosonic theories in 1 + 1 with poly V (φ) → easy
I To fermionic theories in 1 + 1 → feasible
I To 2 + 1 and 3 + 1 dimensions → very difficult

(lattice tensor networks will probably rule in 2 + 1 and 3 + 1 for numerics)



Summary

1. New ansatz for 1 + 1 relativistic QFT
2. No cutoff, UV or IR (a first?)
3. UV is captured exactly even at D = 0
4. Efficient (cost poly D, error superpoly 1/D)
5. Rigorous (variational)


