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Goal - ideal - philosophy: an apology of the pile of dirt approach

Abandon analytical solutions, but find robust methods that can solve simple
QFTs non-perturbatively and, if possible, to machine precision, without cheating.

more on this on tilloy.wordpress.com
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Intuitive definition: canonical quantization
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Hamiltonian

A continuum of nearest neighbor coupled anharmonic oscillators

+ V(dKx))

on-site potential

H =

J R C [V (x))2
Rd 2

on-site inertia spatial stiffness

with canonical commutation relations [(?)(x),ﬁ(y)] = i89(x — y)1 (i.e. bosons)



Intuitive definition
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Hilbert space
Fock space et = Z[L?(RY)] - just like x, p — (a,a") do A, $ — xT),lT)T

“+o0o

|\P> = ZJdX]_dXQ 000 an fpn(Xsz, to axnll/l\)T(Xl){l\)T(X ) o '{l\)T(Xn) |vac)

n=0
wave function local oscillator creation




What are the problems - Hilbert space approach

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms oc P (x)pT(x)

<‘1’1|f-\ll‘1’2> = +oo and even <vac|l/-\l|vac> x 89(0) = +o00



What are the problems - Hilbert space approach

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms oc P (x)pT(x)

<‘1’1IICI|‘1’2> = 400 and even <vac|l/-\l|vac> x 89(0) = +o00

If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

VYY) e 2, <w,i_\lﬁnite’\y> = finite but IV, s.t. lim (Y, |Hsnitel¥Ys) = —00

n——+00



How are they are solved in the free case - Hamiltonian

Bogoliubov transform
Go from l/lB(X),l/l\)T(X) to a(p), af(p) with

A 7t
a(p) = % (\/w_pd)(p) + \/(wi)> with w, = +/p? + m?

p
which yields
1
Ho = Jdp Wp 5 (afa, + apal)



How are they are solved in the free case - Hamiltonian

Bogoliubov transform
Go from l/lB(X),l/l\)T(X) to a(p), af(p) with

A 7t
a(p) = % (\/w_pd)(p) + \/(wi)> with w, = +/p? + m?

p
which yields
1
Ho = Jdp Wp 5 (afa, + apal)

Solution
This solves the problematic free
> Take Horr =: H 35 part exactly, and allows to define
> |free ground state) = [vacuum), a finite interaction (in 1+ 1)

i ... gt
» 2 built from al, ---al [vacuum),
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Rigorous operator definition of cl)‘z1

Renormalized ¢3 theory

. . 2. 2
H:de'n2'3+'(vf) .a+m7:¢2:a+g:¢4:a

(note that : <> :, depends on m)

1. Rigorously defined relativistic QF T without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g < m? (perturbation theory)

4. Phase transition around f, = ;£; = 11 i.e. g ~ 2.7 in mass units



The variational method

Solving the non-exactly solvable by guessing well
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Ways to solve the non-exactly-solvable

The two main games in town
1. Perturbative expansions (+ Borel-Padé resummation)
2. Lattice Monte Carlo

Two “new” deterministic non-perturbative options:
1. Variational method — focus of today
2. Non-perturbative renormalization group (Kadanoff, FRG, Tensor RG, etc.)

The two new methods now rule on (low dimensional) lattice problems thanks to
tensor networks — QFT?



The variational method

In the Hamiltonian formulation:
» Guess a finite dimensional submanifold .7 of the QFT Hilbert space 77
» Find the ground state by minimizing (H):

(WIHW)
(Whp)

lground) ~ [\b) = argmin
o



The variational method

In the Hamiltonian formulation:
» Guess a finite dimensional submanifold .7 of the QFT Hilbert space 77

» Find the ground state by minimizing (H):

fground) = 1) = argmin %

Example: naive Hamiltonian truncation

With an IR cutoff, momenta are discrete. Take as submanifold .#Z the vector

space spanned by:
a};l 812 o ali,|0>3

where r < fnax and k < kmax (one possible truncation)
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Feynman'’s objection

Feynman’s requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization

Number of parameters o< L* at most for system size L
2. Computable expectation values

P known = (O(x)O(y))y, computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted

All methods so far break one at least:
» Hamiltonian truncation fails at 1 (but works fairly well through its
renormalized refinements)
» Tensor networks succeed at 1 and 2 but fail (a priori) at 3

Haegeman-Cirac-Osborne-Verschelde-Verstraete fix of 2010: regulate the UV by adding a Lagrange

multiplier in the Hamiltonian H — H + ﬁregulator



Tensor network states

The best guess for the many-body problem on the lattice



Tensor network states: a tool

Applications

» Quantum information
theory

» Statistical Mechanics

» Quantum gravity

» Many-body quantum

Negative theology

> Not
covariant/geometric
objects gyv or R,

» Not tensor models

[Rivasseau, Gurau, ...]



Many-body problem

Problem
Finding low energy states of
N
A=) h
k=1

is hard because dim 5# o DN



Variational optimization

Generic (spin d/2) state € -

|11)> = Z Ciryiy o iy |i1> T )iN>

15025+ yin




Variational optimization

Generic (spin d/2) state € J:

W) = Z Civyioyeeeyiy 1y *++ 5 i)

15025+ yin

Approx. variational
optimization

To find the ground state:

_ min (WIAR)
|0>_|w>e/f (Whp)

» dim.Z o Poly(N) or fixed



Interesting states are weakly entangled

Low energy state

W) =10) or 1) ..

Reduced density
matrix

p = tre 1) (]
Entanglement
entropy

S = —tr[plog p]

Area law

S x [0D|
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Typical states are strongly entangled

Random state
W) = Upaarltrivial)

Reduced density
matrix

p = trpe ) (W]

Entanglement
entropy
S= —tr[p log p]

Volume law

S x |D|



Constructing weakly entangled states



Constructing weakly entangled states

1. Put auxiliary
maximally entangled
states between sites

=)

Jj=1



Constructing weakly entangled states

1. Put auxiliary
maximally entangled
states between sites

i

Map to initial Hilbert
space on each site

‘:A: (CP)®* — ¢




Tensor network states: definition

Why “tensor” network?

A:(COH®* 5 ¢d — A

J1,J25J3 )4

with tensor contractions on links



Tensor network states: definition

Why “tensor” network?

J2 i 3

o@e - X A) =

I Ja

. (D\®4 d i
AL (CO) =€ — Al _ _ _
with tensor contractions on links

Optimization

Find best A for fixed x  (d x D* coeff.)

J0E

i
0 AJ'1 25J3 4

for example go down




Some facts
1 spatial dimension

H

M

Theorems (colloquially)

1. For gapped H, tensor network
states |A) approximate well |0) as
D increases

2. All |A) are ground states of local
gapped H



Some facts
1 spatial dimension > 2 spatial dimension

A 2

X =

Theorems (colloquially) Folklore
1. For gapped H, tensor network 1. For gapped H, tensor network
states |A) approximate well [0) as states |A) approximate well |0) as
D increases D increases
2. All |A) are ground states of local 2. Most |A) are ground states of

gapped H local gapped H



(Continuous) matrix product states

Taking the simplest tensor network and scaling it up to QFT



Matrix Product States (MPS)

Definition
A MPS for a translation invariant chain of N qudits (C?) with periodic boundary
conditions is a state

N)(A)> = Z tr [A,'lAiz"'AiN] |i1)i2)-'°)iN>

i1,i2,...,i/\/

where A; are d matrices € Mp(C).

» The matrices A; for i = 1...d are the free parameters

» The size D of the matrices is the bond dimension (quantifies freedom)
» Correlation functions (and (H)) efficiently computable

» Optimizing over A provably gives good results for gapped H



MPS in graphical notation
AL R) =2 i (LA (L)AL(2) - - Ay (n)IR) lity -+ in)

Notation: [A]x = —l— and k—— 1=} 8, gives:

AR =t LLLLLL LV LU L,
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AL R) =2 i (LA (L)AL(2) - - Ay (n)IR) lity -+ in)

Notation: [A]x = —l— and k—— 1=} 8, gives:

AR =t LLLLLL LV LU L,

Example: computation of correlations

(AlO(i)O(ic)|A) = i U i I




MPS in graphical notation
ALR) =3 o i (LA (L)AL (2) - A (n)[R) |iry - -+ in)

“yln

Notation: [A]x = —l— and k—— 1=} 8, gives:

AR =t LLLLLL LV LU L,

Example: computation of correlations

(AlO(i)O(ic)|A) = } U i I

can be done efficiently by iterating 2 maps:

——
O = and @y = z
—o—




Continuous Matrix Product States

Type of ansatz for bosons on a fine grained lattice

» Matrices A, (x) where the index iy corresponds to {1’ (x)|0) in physical
space.

Informal cMPS definition

Fixed by:
A =1+¢Q » Finite particle number
Al =¢R 90069909
HHHHHHT 1
A2:(€R)2 010000
V2 BEOOEE « e
» Consistency
A, = ER) 1o 7 9
\/ﬁ e T e R . B T

so we go from oo to 2 matrices



Continuous Matrix Product States

Introduced by Verstraete and Cirac in 2010

Definition

L
|Q, R, w) = tr [(Pexp {J dx Q1+ R®1|)T(X)H 0),

0

» Q,R are D x D matrices,
» The trace is taken over this matrix space

> [W(x), $i(y)] =8(x—y)

» T (x) is non-relativistic creation operator (i.e. ¢(x) =

» [0)y, is the associated Fock vacuum

Idea: A generalized coherent state



Computations

Some correlation functions

With T=Q®1+12Q+R®

Example

Lieb-Liniger Hamiltonian

I R L L N T P SN
%—de [Kd—— i e

Solve by minimizing: (Q, R|H|Q,R) = f(Q, R)



Standard CMPS and ¢*

Applying cMPS to the ¢p* Hamiltonian
(Q, Rlhge| @, R) = 00
Oh no!

The short distance behavior of cMPS is the wrong one, even the free theory is
hard to approximate.



Going relativistic

Infusing some “high-energy” knowledge into tensor networks



Towards relativistic CMPS

Local basis in position of the QFT: T, &, 7, 0)y,
Diagonal basis of the free part: al , 10),

Bogoliubov transform
Go from ﬂ)(x),l/l\ﬂ(x) to a(p), af(p) with

a(p) = % (\/w_p(/f)(p) + j(:);)> with w, = +/p? + m?

p

which yields
1
Ho = Jdp Wp 5 (afa, + apal)

Go from [0)y, to |0),
and
Go from P(x) to a(x) = [dp a(p)e # P(x)



Relativistic CMPS

Definition
IR, Q) = tr {CPexp de RRT+R® aT(x)} } 0),

Some properties

1. |0,0) = |0), is the ground state of Hy hence exact CFT UV fixed point
(because interaction super-renormalizable)

2. (Q, Rlh44|Q, R) is finite for all Q, R (not trivial)



Consequence on the Hamiltonian

Hamiltonian density in a(x) basis

H is local in {P(x), not in a(x)...

H = J XmdXQD(Xl — XQ)BT (xl)a(x2)

+ J dxidxodxsdxa K (x1, X0, X3, Xa)a(x1)a(x2) a(x3)a(xs) + 4a' aaa + 3a'a'aa

+ h.c.

mlx|

But fortunately exponentially decreasing: K is horrible, but decays o< e~



The nightmarish optimization

Procedure:
Compute ey = (Q, R|hg+|Q, R) and Vg rey and minimize

Computations in a nutshell:
1. Contains an algebraic part identical to standard cMPS
2. Involves horrible quadruple integrals without analytic solutions

Optimization a priori non-trivial but efficient with geometric methods (gradient
descent on a manifold with a natural metric)



Results and discussion



Results
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Compared with the Renormalized Hamiltonian Truncation results of Rychkov and
Vitale from 2015.



Results
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Compared with the “high precision” Renormalized Hamiltonian Truncation results
of Elias Miro, Rychkov, and Vitale from 2017 for g =1 and g =2



Results
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Comparison with renormalized Hamiltonian truncation

Ren. Hamiltonian truncation
IR cutoff L, energy truncation Et
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» Function to minimize is
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» Number of parameters oc e <7
» Error oc 1/E3

» Spectrum easy
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Comparison with renormalized Hamiltonian truncation

Ren. Hamiltonian truncation Relativistic CMPS

IR cutoff L, energy truncation Et entanglement truncation D
» Uses a vector space » Uses a manifold
» Function to minimize is » Minimization is a priori

quadratic, hence linear problem non-trivial but doable

» Number of parameters oc e <7 » Number of parameters oc D?
» Error oc 1/E3 » Error o(1/D%), V « (folklore)
» Spectrum easy » Fixed t correl. functions easy

Note: real world not asymptotic. RCMPS has expensive prefactors, and RHT can
use reliable extrapolations



Extensions

» To other bosonic theories in 1+ 1 with poly V(¢d) — easy
» To fermionic theories in 1 +1 — feasible

» To 2+ 1 and 3+ 1 dimensions — very difficult
(lattice tensor networks will probably rule in 241 and 3 + 1 for numerics)



Summary

New ansatz for 1 + 1 relativistic QFT

No cutoff, UV or IR (a first?)

UV is captured exactly even at D =0
Efficient (cost poly D, error superpoly 1/D)

LAl o A .

Rigorous (variational)



