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RCMPS: A variational ansatz to solve 1 + 1d relativitic QFT without
discretization or cutoff and to arbitrary precision

Two papers
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New unpublished results soon to be in v2
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I Cost of optimization ∝ D3 =⇒ numerically efficient
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Outline

1. Scalar fields in 1 + 1 dimensions
2. Solving by discretizing
3. Variational method in the continuum
4. Continuous matrix product states and their limitations
5. Relativistic twist ψ→ a
6. Making the numerics powerful D6 → D3

7. Open questions



Basics of relativistic scalar field theory
from a condensed matter viewpoint



Intuitive definition: canonical quantization

Hamiltonian
A continuum of nearest neighbor coupled anharmonic oscillators

Ĥ =

∫
Rd

ddx π̂(x)2

2
on-site inertia

+
[∇φ̂(x)]2

2
spatial stiffness

+ V (φ̂(x))
on-site potential

with canonical commutation relations [φ̂(x), π̂(y)] = iδd(x − y)1 (i.e. bosons)



Intuitive definition

Hilbert space
Fock space HQFT = F [L2(Rd)] – just like x , p → (a, a†) do π̂, φ̂→ ψ̂, ψ̂†

|Ψ〉 =
+∞∑
n=0

∫
dx1dx2 · · · dxn ϕn(x1, x2, · · · , xn)︸ ︷︷ ︸

wave function

ψ̂†(x1)ψ̂
†(x2) · · · ψ̂†(xn)︸ ︷︷ ︸

local oscillator creation

|vac〉



What are the problems compared to non-relativistic
field theories

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms ∝ ψ̂(x)ψ̂†(x)

〈Ψ1|Ĥ |Ψ2〉 = ±∞ and even 〈vac|Ĥ |vac〉 ∝ δd(0) = +∞

If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

∀ |Ψ〉 ∈H , 〈Ψ|Ĥfinite|Ψ〉 = finite but ∃ Ψn s.t. lim
n→+∞〈Ψn|Hfinite|Ψn〉 = −∞
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How are they are solved in the free case - Hamiltonian
Bogoliubov transform
Go from ψ̂(x), ψ̂†(x) to a(p), a†(p) with

a(p) = 1√
2

(
√
ωp φ̂(p) + i π̂(p)√

ωp

)
with ωp =

√
p2 + m2

which yields
H0 =

∫
dpωp

1
2
(
a†pap + apa†p

)

Solution
I Take HQFT ≡ : H :a
I |free ground state〉 = |vacuum〉a
I H built from a†p1

· · · a†pn
|vacuum〉a

This solves the problematic free
part exactly, and allows to define
a finite interaction (in 1 + 1)
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Example: rigorous operator definition of φ4
2

Renormalized φ4
2 theory

H =

∫
dx : π2 :a

2 +
: (∇φ)2 :a

2 +
m2

2 : φ2 :a +g : φ4 :a

(note that : ♦ :a depends on m)

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g � m2 (perturbation theory)
4. Phase transition around fc = g

4m2 = 11 i.e. g ' 2.7 in mass units



Example: rigorous operator definition of φ4
2

Renormalized φ4
2 theory

H =

∫
dx : π2 :a

2 +
: (∇φ)2 :a

2 +
m2

2 : φ2 :a +g : φ4 :a

(note that : ♦ :a depends on m)

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g � m2 (perturbation theory)
4. Phase transition around fc = g

4m2 = 11 i.e. g ' 2.7 in mass units



Hilbert spaces of RQFT in 1 + 1

Two operator basis

The ψ†(x) basis

Local oscillator basis
+ Local in φ, π
+ Natural for discretization
− Divergent and ill-defined

The a†k basis

“Relativistic” oscillator basis
− Non-local
− Less natural for discretization
+ Regular and well-defined



Solving by discretizing
the state of the art



Example: Lattice φ4
2

Defined by action:

S(φ) =
∑
〈i,j〉

(φi − φj)
2

2a2 a2

(∇φ)2/2

+
∑

i

1
2µ

2
aφ

2
i +

1
4λaφ

4
i

Taking the limit
The right way to get the continuum limit is to take:

µa = µa2 +
3
2 log(a)a2λ

λa = λa2

≡ normal ordering the interaction term ≡ tadpole cancellation.

At 1st order in perturbation theory, φ4 ∝ log(a−1)φ2



Example with tensor network renormalization

Done with Clément Delcamp in 2020
Discretize φ, write Z =

∑
S(φ) as a tensor network and contract it with TRG

+ GILT

Technically: UV cutoff (lattice) and IR cutoff (number of RG steps)



Example with tensor network renormalization
Continuum limit taken numerically

0.00 0.02 0.04 0.06 0.08 0.10

λ

10.6

10.7

10.8

10.9

11.0

11.1

C
ri

ti
ca

l
co

u
p

li
n

g
f c

(λ
)

f cont.
c,1 + α1λ log λ+ β1λ

f cont.
c,2 + α2λ log λ+ β2λ+ γ2λ

2

f cont.
c,3 + α3λ log λ+ β3λ+ γ3λ

2 log λ

0.000 0.005 0.010 0.015

λ

10.92

10.94

10.96

10.98

11.00

11.02

11.04

11.06

11.08

11.10

More costly as the UV cutoff gets small because:
1. Field becomes unbounded at short distance → large starting bond dimension
2. More RG steps (with max χ) to get to the same scale



Limitation of numerical continuum limit

The “numerical” continuum limit is expensive for relativistic QFT. Problem of
local basis choice?

No:
1. UV fixed point is a free CFT =⇒ continuum of singular values
2. Interaction is super renormalizable / strongly relevant hence −→ 0 in

continuum limit

=⇒ even theory independent: would apply to QCD (asymptotic freedom)



Limitation of numerical continuum limit

The “numerical” continuum limit is expensive for relativistic QFT. Problem of
local basis choice?

No:
1. UV fixed point is a free CFT =⇒ continuum of singular values
2. Interaction is super renormalizable / strongly relevant hence −→ 0 in

continuum limit

=⇒ even theory independent: would apply to QCD (asymptotic freedom)



Limitation of numerical continuum limit

The “numerical” continuum limit is expensive for relativistic QFT. Problem of
local basis choice?

No:
1. UV fixed point is a free CFT =⇒ continuum of singular values
2. Interaction is super renormalizable / strongly relevant hence −→ 0 in

continuum limit

=⇒ even theory independent: would apply to QCD (asymptotic freedom)



Results
For φ4

2, critical coupling fc = λ/µ2

New results fresh from Ghent with MPS + finite entanglement scaling +
continuum limit scaling fc = 11.09698(31) [arXiv:2104.10564]
see tilloy.wordpress.com for a discussion

tilloy.wordpress.com


The variational method
in the continuum



The variational method

In the Hamiltonian formulation:
I Guess a finite dimensional submanifold M of the QFT Hilbert space H

I Find the ground state by minimizing 〈H〉:

|ground〉 ' |ψ〉 = argmin
M

〈ψ|H |ψ〉
〈ψ|ψ〉

Example: naive Hamiltonian truncation
With an IR cutoff, momenta are discrete. Take as submanifold M the vector
space spanned by:

a†k1
a†k2
· · · a†kr

|0〉a
where r 6 rmax and k 6 kmax (one possible truncation)



The variational method

In the Hamiltonian formulation:
I Guess a finite dimensional submanifold M of the QFT Hilbert space H

I Find the ground state by minimizing 〈H〉:

|ground〉 ' |ψ〉 = argmin
M

〈ψ|H |ψ〉
〈ψ|ψ〉

Example: naive Hamiltonian truncation
With an IR cutoff, momenta are discrete. Take as submanifold M the vector
space spanned by:

a†k1
a†k2
· · · a†kr

|0〉a
where r 6 rmax and k 6 kmax (one possible truncation)



Feynman’s objection

Feynman’s requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization
Number of parameters ∝ Lα at most for system size L

2. Computable expectation values
ψ known =⇒ 〈O(x)O(y)〉ψ computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted

All methods so far break one at least:
I Hamiltonian truncation fails at 1 (but works fairly well through its

renormalized refinements)
I Tensor networks succeed at 1 and 2 but fail (a priori) at 3
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Continuous matrix product states



Continuous Matrix Product States
Introduced by Verstraete and Cirac in 2010

Definition

|Q,R〉 = tr
[
P exp

{∫L

0
dx Q ⊗ 1+ R ⊗ψ†(x)

}]
|0〉ψ

I Q,R are D × D matrices,
I The trace is taken over this matrix space
I [ψ(x), ψ†(y)] = δ(x − y)
I ψ†(x) is non-relativistic creation operator (i.e. φ(x) = 1√

2ν [ψ(x) +ψ
†(x)])

I |0〉ψ is the associated Fock vacuum

Idea:
I From MPS: a continuum limit
I From QFT: a sort of generalized “non-commutative” coherent state



Computations
Some correlation functions〈

ψ̂(x)†ψ̂(x)
〉
= Tr

[
eTL(R ⊗ R)

]〈
ψ̂(x)†ψ̂(0)†ψ̂(0)ψ̂(x)

〉
= Tr

[
eT(L−x)(R ⊗ R)eTx(R ⊗ R)

]〈
ψ̂(x)†

[
−

d2

dx 2

]
ψ̂(x)

〉
= Tr

[
eTL([Q,R]⊗ [Q,R])

]
with T = Q ⊗ 1+ 1⊗ Q̄ + R ⊗ R̄

Example
Lieb-Liniger Hamiltonian

H =

∫+∞
−∞ dx

[
dψ̂†
dx

dψ̂
dx − µψ̂†ψ̂+ cψ̂†ψ̂†ψ̂ψ̂

]

Solve by minimizing: 〈Q,R | H |Q,R〉 = f (Q,R)
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State of the art on CMPS

Contrary to common beliefs, CMPS are fairly efficient

1. Fully variational calculations at D = 256 by Ganahl-Rincon-Vidal 2016
2. Recently Tuybens-De Nardis-Haegeman-Verstraete arXiv:2006.01801

included open-boundaries efficiently



Standard CMPS and relativistic fields

Applying cMPS to e.g. the φ4 Hamiltonian

〈Q,R |ĥφ4 |Q,R〉 =∞
Oh no!

The short distance behavior of cMPS is the wrong one, even the free theory is
hard to approximate.

A possible fix by Haegeman-Cirac-Osborne-Verschelde-Verstraete 2010:

H → HΛ := H +
1
Λ2

∫
dx (∂xπ)

2

2



Going relativistic
Changing of operator basis



Towards relativistic CMPS
Local basis in position of the QFT: ψ†, φ, π, |0〉ψ
Diagonal basis of the free part: a†k , |0〉a

Bogoliubov transform
Go from ψ̂(x), ψ̂†(x) to a(p), a†(p) with

a(p) = 1√
2

(
√
ωp φ̂(p) + i π̂(p)√

ωp

)
with ωp =

√
p2 + m2

which yields
H0 =

∫
dpωp

1
2
(
a†pap + apa†p

)
Go from |0〉ψ to |0〉a
and
Go from ψ(x) to a(x) =

∫
dp a(p)eipx 6= ψ(x)



Relativistic CMPS

Definition

|R,Q〉 = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0〉a

Some properties
1. |0, 0〉 = |0〉a is the ground state of H0 hence exact CFT UV fixed point

(because interaction super-renormalizable)
2. 〈Q,R |hφ4 |Q,R〉 is finite for all Q,R (not trivial)

a(x) is not covariant but the state cannot be exactly Poincaré invariant anyway!
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Consequence on the Hamiltonian

Hamiltonian density in a(x) basis

H is local in ψ(x), not in a(x)...

H =

∫
dx1dx2D(x1 − x2)a†(x1)a(x2)

+

∫
dx1dx2dx3dx4K (x1, x2, x3, x4)a(x1)a(x2)a(x3)a(x4) + 4a†aaa + 3a†a†aa

+ h.c.

But fortunately exponentially decreasing: K decays ∝ e−m|x | for |x |� m.



The variational algorithm

Procedure:
Compute e0 = 〈Q,R |hφ4 |Q,R〉 and ∇Q,Re0
Minimize e0 with TDVP aka gradient descent with a metric

Computations of e0 and ∇e0in a nutshell:
1. Contains an algebraic part identical to standard cMPS
2. Involves quadruple integrals without analytic solutions

Initial v1 idea: compute the integrals with Quadpack



Initial results
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Compared with the Renormalized Hamiltonian Truncation results of Rychkov and
Vitale from 2015.



Results
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Compared with the “high precision” Renormalized Hamiltonian Truncation results
of Elias Miro, Rychkov, and Vitale from 2017 for g = 1 and g = 2.



Scaling comparison with renormalized Hamiltonian
truncation

Ren. Hamiltonian truncation
IR cutoff L, energy truncation ET

I Uses a vector space
I Function to minimize is

quadratic, hence linear problem
I Number of parameters ∝ eL×ET

I Error ∝ 1/E 3
T

Relativistic CMPS
entanglement truncation D
I Uses a manifold
I Minimization is a priori

non-trivial but doable
I Number of parameters ∝ D2

I Error o(1/Dα), ∀ α (folklore)



Scaling comparison with renormalized Hamiltonian
truncation

Ren. Hamiltonian truncation
IR cutoff L, energy truncation ET

I Uses a vector space
I Function to minimize is

quadratic, hence linear problem
I Number of parameters ∝ eL×ET

I Error ∝ 1/E 3
T

Relativistic CMPS
entanglement truncation D
I Uses a manifold
I Minimization is a priori

non-trivial but doable
I Number of parameters ∝ D2

I Error o(1/Dα), ∀ α (folklore)



Improving the algorithm



Computing vertex operators
Main insight
〈:ebφ(x) :〉QR computable by solving an ODE with cost ∝ D3

Going from φ(x) to a(x) gives:

〈:ebφ(0) :〉QR =

〈
exp
[

b
∫

J(x)a†(x)
]

exp
[

b
∫

J(x)a(x)
]〉

Q,R

= ZbJ,bJ

(1)

with
J(x) =

∫
dk 1√

2ωk
e ikx (2)

and Zj1,j2 is just the generating functional

Zj1,j2 = tr
[
P exp

∫
T+ j1(x)R ⊗ 1++j2(x)1⊗ R̄ dx

]
(3)
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Algorithm v2 ∝ D3

1. Compute ZbJ,bJ by solving the ODE

∂xρ = Lρ+ bJ(x)(Rρ+ ρR†)

and taking the trace at x = +∞

2. Compute all other expectation values, e.g. 〈: φ4 :〉 by ∂
∂b

3. Compute the gradient with same cost by solving the adjoint ODE (aka
backprop.)

Bottom line
Solve with cost ∝ D3 all theories with V (φ) poly : φn : or exponential : ebφ :
(including Sine/Sinh-Gordon and thus Fermionic theories via bosonization)
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New results
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< 10−4). More precise than high precision RHT. Pushable to D > 40



New results
Magnetization 〈φ〉
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Some points near criticality missing because computations not yet finished...



New results
〈: φ3 :〉
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New results
〈: cosh(φ) :〉
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Open problems and perspectives



New entanglement entropy

Conjecture
For the notion of space locality is induced by a†(x), a(x) (instead of usual φ(x)),
gapped QFT ground states verify the area law with a finite prefactor.

I This entanglement entropy is weird from a relativistic point of view
I But captures the notion of approximability with tensor network states

Useful notion? Can the conjecture be proved?



More general short distance behavior

RCMPS have the short distance behavior of a free CFT (fairly generic in HEP)

Can one deal with relevant perturbations of other UV CFTs (e.g. Ising)?

Equivalent of a(x)? Coulomb gas construction?



Relativistic CMERA

MERA is non-relativistic (not a CFT) at short distance

Is RCMERA possible? I.e. CMERA for critical RQFT

〈ψrcmera|φ(x)φ(y)|ψrcmera〉 ∼
|x−y |→0

1
|x − y |2∆1

[UV CFT]

〈ψrcmera|φ̃(x)φ̃(y)|ψrcmera〉 ∼
|x−y |→+∞

1
|x − y |2∆2

[IR CFT]



Higher dimensions

RQFT difficulty
Normal ordering / tadpole cancellation no longer sufficient
Whightman QFT still have Hilbert space, but less explicit (not free Fock space)

(non-relativistic) Tensor network difficulty

Continuous tensor network states less developed in 2 + 1
1. Proposal with Ignacio Cirac: R,Q promoted to fields, needed to preserve

Euclidean invariance
2. Successfully tested on Gaussian problems with Teresa Karanikolaou (also

independently in Ghent by Bastiaan Aelbrecht)
3. Need to solve a boundary 1 + 1 RQFT to compute more general expectation

values

Non-relativistic 2 + 1 now seems feasible thanks to RCMPS...
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Summary

1. Ansatz for 1 + 1 relativistic QFT
2. No cutoff, UV or IR
3. UV is captured exactly even at D = 0
4. Efficient (cost poly D, error at most superpoly 1/D) and now competitive
5. Rigorous (variational)


