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Relativistic continuous matrix product states

RCMPS: A variational ansatz to solve 1 + 1d relativitic QF T without
discretization or cutoff and to arbitrary precision

Two papers

» Variational method in relativisitic QF T without cutoff (short)
arXiv:2102.07733v1

» Relativistic continuous matrix product states for QF T without cutoff (long)
arXiv:2102.07741v1

New unpublished results soon to be in v2
» Computation of vertex operators

» Cost of optimization o« D> == numerically efficient



Outline

Scalar fields in 1 + 1 dimensions

Solving by discretizing

Variational method in the continuum

Continuous matrix product states and their limitations
Relativistic twist P — a

Making the numerics powerful D® — D3

Nk whe

Open questions



Basics of relativistic scalar field theory

from a condensed matter viewpoint



Intuitive definition: canonical quantization
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Hamiltonian

A continuum of nearest neighbor coupled anharmonic oscillators

+ V(dKx))

on-site potential

H =

J R C [V (x))2
Rd 2

on-site inertia spatial stiffness

with canonical commutation relations [(?)(x),ﬁ(y)] = i89(x — y)1 (i.e. bosons)



Intuitive definition
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Hilbert space
Fock space et = Z[L?(RY)] - just like x, p — (a,a") do A, $ — xT),lT)T

“+o0o

|\P> = ZJdX]_dXQ 000 an fpn(Xsz, to axnll/l\)T(Xl){l\)T(X ) o '{l\)T(Xn) |vac)

n=0
wave function local oscillator creation




What are the problems compared to non-relativistic
field theories

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms oc P(x)P(x)

(W;|H[W,) = +00 and even (vac|H|vac) x 57(0) = 400



What are the problems compared to non-relativistic
field theories

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms oc P(x)P(x)

(W;|H[W,) = +00 and even (vac|H|vac) x 57(0) = 400

If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

VW) €, (W Hgniel¥) = finite but 3 W, s.t. lim (Yol Heniee| W) = —00

n—-+o0o



How are they are solved in the free case - Hamiltonian

Bogoliubov transform
Go from l/lB(X),l/l\)T(X) to a(p), af(p) with

p

A 7t
a(p) = % (\/w_,,(b(p) + I\/((Ui)> with w, = +/p? + m?

which yields
1
Ho = Jdp Wp 5 (afa, + apal)



How are they are solved in the free case - Hamiltonian

Bogoliubov transform
Go from l/lB(X),l/l\)T(X) to a(p), af(p) with

A 7t
a(p) = % (\/w_,,(b(p) + I\/((Ui)> with w, = +/p? + m?

P
which yields
1
Ho = Jdp Wp 5 (afa, + apal)
Solution
> Take Hoee — < H - This solves the problematic free
ake Morr = - M- part exactly, and allows to define
> |free ground state) = [vacuum), a finite interaction (in 1+ 1)

i ... gt
» 2 built from al, ---al [vacuum),



Example: rigorous operator definition of ¢3

Renormalized ¢} theory
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(note that : <> :, depends on m)



Example: rigorous operator definition of ¢3

Renormalized ¢3 theory

. . 2. 2
H:de'n2'3+'(vg)) 'a+m7:cb2:a+g:(b4:a

(note that : <> :, depends on m)

1. Rigorously defined relativistic QF T without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g < m? (perturbation theory)

4. Phase transition around f, = ;£; = 11 i.e. g ~ 2.7 in mass units



Hilbert spaces of RQFT in 1+1

Two operator basis

The Vf(x) basis The a] basis
Local oscillator basis “Relativistic” oscillator basis
+ Local in ¢, 7 — Non-local
+ Natural for discretization — Less natural for discretization

— Divergent and ill-defined + Regular and well-defined



Solving by discretizing

the state of the art



Example: Lattice ¢3

Defined by action:

5(¢)=Z(¢ o +Z -+i7\ad>?

(i, (V)2/2

Taking the limit
The right way to get the continuum limit is to take:

3 log(a)a®A

_ 2
Ha = Ha” + 5

A, = Aa?
= normal ordering the interaction term = tadpole cancellation.

At 1st order in perturbation theory, ¢p* o< log(a=1) 2



Example with tensor network renormalization

Done with Clément Delcamp in 2020
Discretize ¢, write Z =) S(¢) as a tensor network and contract it with TRG
+ GILT

svd

Technically: UV cutoff (lattice) and IR cutoff (number of RG steps)



Example with tensor network renormalization

Continuum limit taken numerically

111 11.10
[P+ agAlog A+ BiA |
FEP + apMlog A+ Bod + 7202 O8N
11.0 A S P+ agAlog A+ B3A + 3\ log A 11.06
i 104 11.04
=
E 11.02
g
ERUEE 11.00
g
f= 10.98
© 1074
10.96
106 10.94
. . . . . 10.92 : : :
0.00 0.02 0.04 0.06 0.08 0.10 0.000 0.005 0.010 0.015
A A

More costly as the UV cutoff gets small because:
1. Field becomes unbounded at short distance — large starting bond dimension
2. More RG steps (with max x) to get to the same scale



Limitation of numerical continuum limit

The “numerical” continuum limit is expensive for relativistic QFT. Problem of
local basis choice?
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Limitation of numerical continuum limit

The “numerical” continuum limit is expensive for relativistic QFT. Problem of
local basis choice?

No:
1. UV fixed point is a free CFT = continuum of singular values

2. Interaction is super renormalizable / strongly relevant hence — 0 in
continuum limit

—> even theory independent: would apply to QCD (asymptotic freedom)



Results

For ¢4, critical coupling . = A/u?

Method cont. Year Ref.
Tensor network coarse-graining 10.913(56) 2019  [9]
Borel resummation 11.23(14) 2018  [6]
Renormalized Hamil. Trunc. 11.04(12) 2017 [5]
Matrix Product States 11.064(20) 2013 [7]
Monte Carlo 11.055(20) 2019 [15]
This work 11.0861(90) 2020

TABLE I. Comparison of several estimates of the critical cou-

pling constant £5°™ in the continuum obtained using different

methods.

New results fresh from Ghent with MPS + finite entanglement scaling +
continuum limit scaling f, = 11.09698(31)  [arXiv:2104.10564]

see tilloy.wordpress.com for a discussion


tilloy.wordpress.com

The variational method

in the continuum



The variational method

In the Hamiltonian formulation:
» Guess a finite dimensional submanifold .7 of the QFT Hilbert space 77
» Find the ground state by minimizing (H):

(WIHW)
(Whp)

lground) ~ [\b) = argmin
o



The variational method

In the Hamiltonian formulation:
» Guess a finite dimensional submanifold .7 of the QFT Hilbert space 77

» Find the ground state by minimizing (H):

fground) = 1) = argmin %

Example: naive Hamiltonian truncation

With an IR cutoff, momenta are discrete. Take as submanifold .#Z the vector

space spanned by:
a};l 812 o ali,|0>3

where r < fnax and k < kmax (one possible truncation)



Feynman'’s objection

Feynman’s requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization
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Feynman'’s objection

Feynman’s requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization
Number of parameters o< L* at most for system size L

2. Computable expectation values
P known = (O(x)O(y)), computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted

All methods so far break one at least:

» Hamiltonian truncation fails at 1 (but works fairly well through its
renormalized refinements)

» Tensor networks succeed at 1 and 2 but fail (a priori) at 3



Continuous matrix product states



Continuous Matrix Product States
Introduced by Verstraete and Cirac in 2010

Definition

L
|Q,R) =tr [iPexp {J dx Q1+ R ®1|)T(X)}} 10}y
0
» Q, R are D x D matrices,

» The trace is taken over this matrix space

> [ (x), b (y)] = 8(x —y)

» T(x) is non-relativistic creation operator (i.e. d(x) = —=[b(x) + T (x)])

» |0)y, is the associated Fock vacuum

Idea:
» From MPS: a continuum limit

» From QFT: a sort of generalized “non-commutative” coherent state



Computations
Some correlation functions

With T=Q®1+19Q+R®R



Computations

Some correlation functions

With T=Q®1+12Q+R®

Example

Lieb-Liniger Hamiltonian

I R L L N T P SN
%—de [Kd—— i e

Solve by minimizing: (Q, R|H|Q,R) = f(Q, R)



State of the art on CMPS

Contrary to common beliefs, CMPS are fairly efficient

1. Fully variational calculations at D = 256 by Ganahl-Rincon-Vidal 2016

2. Recently Tuybens-De Nardis-Haegeman-Verstraete arXiv:2006.01801
included open-boundaries efficiently



Standard CMPS and relativistic fields

Applying cMPS to e.g. the ¢* Hamiltonian

(Q, RIhgs|Q, R) = 00
Oh no!

The short distance behavior of cMPS is the wrong one, even the free theory is
hard to approximate.

A possible fix by Haegeman-Cirac-Osborne-Verschelde-Verstraete 2010:
1 2
[or 210

H—s Hy = H+ —
— FA T 2



Going relativistic

Changing of operator basis



Towards relativistic CMPS

Local basis in position of the QFT: T, &, 7, 0)y,
Diagonal basis of the free part: al , 10),

Bogoliubov transform
Go from ﬂ)(x),l/l\ﬂ(x) to a(p), af(p) with

a(p) = % (\/w_p(/f)(p) + Ij(wi)) with w, = +/p? + m?

p

which yields
1
Ho = Jdp Wp 5 (afa, + apal)

Go from [0)y, to |0),
and
Go from P(x) to a(x) = [dp a(p)e # P(x)



Relativistic CMPS

Definition
IR, Q) =tr {ﬂ)exp de Q1+ R® aT(X)] } 0),

Some properties

1. |0,0) = |0), is the ground state of Hy hence exact CFT UV fixed point
(because interaction super-renormalizable)

2. (Q, Rlhgs1Q, R) is finite for all Q, R (not trivial)



Relativistic CMPS

Definition
IR, Q) =tr {Texp de Q1+ R® aT(X)] } 0),

Some properties

1. |0,0) = |0), is the ground state of Hy hence exact CFT UV fixed point
(because interaction super-renormalizable)

2. (Q, Rlhgs1Q, R) is finite for all Q, R (not trivial)

a(x) is not covariant but the state cannot be exactly Poincaré invariant anyway!



Consequence on the Hamiltonian

Hamiltonian density in a(x) basis

H is local in {P(x), not in a(x)...

H = J dxidx; D(x; — Xz)aT(Xl)a(Xz)

+ J dx1dxodxzdxs K (x1, X0, X3, Xa)a(x1)a(xz)a(x3)a(xs) + 4a' aaa + 3a'a' aa

+ h.c.

But fortunately exponentially decreasing: K decays o< e~ ™! for [x| > m.



The variational algorithm

Procedure:
Compute ey = (Q, Rlhy+|Q, R) and V¢ rep
Minimize ey with TDVP aka gradient descent with a metric

Computations of ¢y and Vegin a nutshell:
1. Contains an algebraic part identical to standard cMPS

2. Involves quadruple integrals without analytic solutions
Initial v1 idea: compute the integrals with Quadpack



Initial results
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Compared with the Renormalized Hamiltonian Truncation results of Rychkov and
Vitale from 2015.



Results
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Compared with the “high precision” Renormalized Hamiltonian Truncation results
of Elias Miro, Rychkov, and Vitale from 2017 for g =1 and g = 2.



Scaling comparison with renormalized Hamiltonian
truncation

Ren. Hamiltonian truncation
IR cutoff L, energy truncation Et
» Uses a vector space

» Function to minimize is

quadratic, hence linear problem

» Number of parameters oc el <7

» Error oc 1/E3



Scaling comparison with renormalized Hamiltonian

truncation

Ren. Hamiltonian truncation
IR cutoff L, energy truncation Et
» Uses a vector space

» Function to minimize is

quadratic, hence linear problem

» Number of parameters oc el <7

» Error oc 1/E3

Relativistic CMPS
entanglement truncation D
» Uses a manifold
» Minimization is a priori
non-trivial but doable
» Number of parameters oc D?
» Error o(1/D%), V « (folklore)



Improving the algorithm



Computing vertex operators
Main insight
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Computing vertex operators
Main insight
(:eP®X):) or computable by solving an ODE with cost oc D3

Going from ¢(x) to a(x) gives:

(e0):) g = <exp {bJJ(x)a*(x)} exp HJ(X)a(X)D 0
Q,R

)

= ZbJbJ
with )
J(x) = | dk——=e™" 2
() = | dk e @
and Zj j, is just the generating functional

Zjl,jzztr [?eXpJT+j1(X)R®]l++j2(X)ﬂ®RdX (3)



Algorithm v2 o D?

1. Compute Z; s by solving the ODE
0xp = Lp + bJ(x)(Rp + pRT)

and taking the trace at x = 400
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Algorithm v2 o D?

1. Compute Z; s by solving the ODE
0xp = Lp + bJ(x)(Rp + pRT)

and taking the trace at x = 400
2. Compute all other expectation values, e.g. {: ¢*:) by a%
3. Compute the gradient with same cost by solving the adjoint ODE (aka
backprop.)
Bottom line

Solve with cost oc D? all theories with V/(¢) poly : ¢" : or exponential : e?¢ :
(including Sine/Sinh-Gordon and thus Fermionic theories via bosonization)



New results
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Approximately exact value extrapolated from D = 25 (boostrapped error
< 10™*). More precise than high precision RHT. Pushable to D > 40



New results
Magnetization ()
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Some points near criticality missing because computations not yet finished...



New results
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New results
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Open problems and perspectives



New entanglement entropy

Conjecture

For the notion of space locality is induced by a'(x), a(x) (instead of usual ¢(x)),
gapped QFT ground states verify the area law with a finite prefactor.

» This entanglement entropy is weird from a relativistic point of view

» But captures the notion of approximability with tensor network states

Useful notion? Can the conjecture be proved?



More general short distance behavior

RCMPS have the short distance behavior of a free CFT (fairly generic in HEP)
Can one deal with relevant perturbations of other UV CFTs (e.g. Ising)?

Equivalent of a(x)? Coulomb gas construction?



Relativistic CMERA

MERA is non-relativistic (not a CFT) at short distance

Is RCMERA possible? I.e. CMERA for critical RQFT
1

x—yl—=0 |x — y[?M
1

[x—y|—+o0 |X — y|2A2

<1|)rcmera’d)(x)cb(y)M)rcmera> [UV CFT]

<1brcmera|J)(X)(i')(y)|'Lbrcmera> [|R CFT]



Higher dimensions

RQFT difficulty

Normal ordering / tadpole cancellation no longer sufficient
Whightman QFT still have Hilbert space, but less explicit (not free Fock space)



Higher dimensions

RQFT difficulty

Normal ordering / tadpole cancellation no longer sufficient
Whightman QFT still have Hilbert space, but less explicit (not free Fock space)

(non-relativistic) Tensor network difficulty

Continuous tensor network states less developed in 2 4 1

1. Proposal with Ignacio Cirac: R, Q promoted to fields, needed to preserve
Euclidean invariance

2. Successfully tested on Gaussian problems with Teresa Karanikolaou (also
independently in Ghent by Bastiaan Aelbrecht)

3. Need to solve a boundary 1+ 1 RQFT to compute more general expectation
values

Non-relativistic 2 + 1 now seems feasible thanks to RCMPS...



Summary

Ansatz for 1 + 1 relativistic QF T

No cutoff, UV or IR

UV is captured exactly even at D =0

Efficient (cost poly D, error at most superpoly 1/D) and now competitive
Rigorous (variational)

LAl o A .



