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Quantum many-body problem on the lattice
Typical condensed matter problem: |ψ〉 =

∑
ci1,i2,··· ,in |i1, i2, · · · iN〉

Problem:

Finding the low energy states of

Ĥ =

N∑
k=1

ĥk

is hard because dim H ∝ 2N for spins

Possible solutions
I Perturbation theory

but weak coupling
I Monte Carlo

but imprecise and sign problem
I Compression 2N → Nα

with controllable error



The direct compression approach

Variational method for ground state search

1. Guess a manifold M ⊂H with few parameters ν i.e. dimM� dimH

2. Tune ν to minimize energy ν = argminν∈M
〈ν|H|ν〉
〈ν|ν〉 and get

|ground state〉 ' |ν〉

Reason for compression (classical)

cat image “typical” image

atypical =⇒ compressible

Reason for compression (quantum)

low energy state random state

area law = atypical =⇒ compressible
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Tensor network states in a nutshell

.zip or .jpg for complex quantum states that appear in Nature

1. Exponential reduction: 2N −→ N × D2d parameters
[N number of spins, D amount of entanglement, d space dimension (1, 2, 3)]

2. Efficient compression: compression error 6 e−D or 1/superpoly(D)
[For a large number of a priori non-trivial problems]



Many non-trivial problems are continuous

Non-relativistic QFT
including quantum
gases and fractional
quantum Hall phases

Relativistic QFT
including, ultimately,
quantum chromodynamics

Critical systems
classical and quantum
at 2nd order phase
transitions



The quantum many-body problem in the continuum
From the lattice to the continuum and Quantum Field Theory (QFT)

|Ψ〉 =
∑

i1,i2,··· ,iN

ci1i2···iN |i1i2 · · · iN〉 −→ |Ψ〉 =
∫
Dφ ψ(φ) |φ〉

New problem: 2N C-parameters → dimH =∞∞ even at finite size!

Question Can one compress ∞∞ down to a manageable number of parameters?
→ Feynman argued it was impossible in a 1987 conference



Feynman’s criticism

Feynman’s requirement in a nutshell

1. Extensive parameterization
Number of parameters ∝ Lα at most for system size L

2. Computable expectation values
ψ known =⇒ 〈O(x)O(y)〉ψ computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted



Numerical continuum limit

Change the model so you can apply known methods
1. Discretize

State: |Ψ〉 =
∫
Dφ ψ(φ) |φ〉 −→ |Ψε〉 =

∑
i1,i2,··· ,iN

ci1i2···iN |i1i2 · · · iN〉

Hamiltonian: H =

∫
dx h(x) −→ Hε =

∑
i

hi

2. Solve with tensor networks for fixed lattice spacing
3. Extrapolate to zero lattice spacing



Numerical continuum limit

Critical coupling for φ4
2 lattice field theory as a function of lattice spacing λ
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Working directly in the continuum

Big challenge
Compress field wavefunctions ψ(φ) and use them to solve the
continuous-many-body problem directly

Status– since Feynman, breakthrough in 2010 and recent progress

non-relativistic relativistic critical
d = 1 space Verstraete-Cirac

2010
2021

d > 2 space 2019

no idea heuristics clear definition algorithm



Outline

1. Continuous Matrix Product States
→ on the board - first half

2. (Relativistic) Continuous Matrix Product States
3. Continuous tensor networks in d > 2



Relativistic continuous matrix product states

RCMPS: A variational ansatz to solve 1 + 1d relativitic QFT without
discretization or cutoff and to arbitrary precision

Two papers
I Variational method in relativisitic QFT without cutoff (short)

arXiv:2102.07733v2
I Relativistic continuous matrix product states for QFT without cutoff (long)

arXiv:2102.07741v2
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Outline for relativistic QFT in 1+1

1. Scalar fields in 1 + 1 dimensions
2. Variational method in the continuum
3. Relativistic twist ψ→ a for CMPS
4. Numerics (and how to achieve D6 → D3)
5. Open questions



Basics of relativistic scalar field theory
from a condensed matter viewpoint



Intuitive definition: canonical quantization

Hamiltonian
A continuum of nearest neighbor coupled anharmonic oscillators

Ĥ =

∫
Rd

ddx π̂(x)2

2
on-site inertia

+
[∇φ̂(x)]2

2
spatial stiffness

+ V (φ̂(x))
on-site potential

with canonical commutation relations [φ̂(x), π̂(y)] = iδd(x − y)1 (i.e. bosons)



Intuitive definition

Hilbert space
Fock space HQFT = F [L2(Rd)] – just like x , p → (a, a†) do π̂, φ̂→ ψ̂, ψ̂†

|Ψ〉 =
+∞∑
n=0

∫
dx1dx2 · · · dxn ϕn(x1, x2, · · · , xn)︸ ︷︷ ︸

wave function

ψ̂†(x1)ψ̂
†(x2) · · · ψ̂†(xn)︸ ︷︷ ︸

local oscillator creation

|vac〉



What are the problems compared to non-relativistic
field theories

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms ∝ ψ̂(x)ψ̂†(x)

〈Ψ1|Ĥ |Ψ2〉 = ±∞ and even 〈vac|Ĥ |vac〉 ∝ δd(0) = +∞

If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

∀ |Ψ〉 ∈H , 〈Ψ|Ĥfinite|Ψ〉 = finite but ∃ Ψn s.t. lim
n→+∞〈Ψn|Hfinite|Ψn〉 = −∞
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How are they are solved in the free case - Hamiltonian
Bogoliubov transform
Go from ψ̂(x), ψ̂†(x) to a(p), a†(p) with

a(p) = 1√
2

(
√
ωp φ̂(p) + i π̂(p)√

ωp

)
with ωp =

√
p2 + m2

which yields
H0 =

∫
dpωp

1
2
(
a†pap + apa†p

)

Solution
I Take HQFT ≡ : H :a
I |free ground state〉 = |vacuum〉a
I H built from a†p1

· · · a†pn
|vacuum〉a

This solves the problematic free
part exactly, and allows to define
a finite interaction (in 1 + 1)
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Example: rigorous operator definition of φ4
2

Renormalized φ4
2 theory

H =

∫
dx : π2 :a

2 +
: (∇φ)2 :a

2 +
m2

2 : φ2 :a +g : φ4 :a

(note that : ♦ :a depends on m)

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g � m2 (perturbation theory)
4. Phase transition around fc = g

4m2 = 11 i.e. g ' 2.7 in mass units
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Hilbert spaces of RQFT in 1 + 1

Two operator basis

The ψ†(x) basis

Local oscillator basis
+ Local in φ, π
+ Natural for discretization
− Divergent and ill-defined

The a†k basis

“Relativistic” oscillator basis
− Non-local
− Less natural for discretization
+ Regular and well-defined



The variational method
in the continuum



The variational method

In the Hamiltonian formulation:
I Guess a finite dimensional submanifold M of the QFT Hilbert space H

I Find the ground state by minimizing 〈H〉:

|ground〉 ' |ψ〉 = argmin
M

〈ψ|H |ψ〉
〈ψ|ψ〉

Example: naive Hamiltonian truncation
With an IR cutoff, momenta are discrete. Take as submanifold M the vector
space spanned by:

a†k1
a†k2
· · · a†kr

|0〉a
where r 6 rmax and k 6 kmax (one possible truncation)
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Feynman’s objection

Feynman’s requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization
Number of parameters ∝ Lα at most for system size L

2. Computable expectation values
ψ known =⇒ 〈O(x)O(y)〉ψ computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted

All methods so far break one at least:
I Hamiltonian truncation fails at 1 (but works fairly well through its

renormalized refinements)
I Tensor networks succeed at 1 and 2 but fail (a priori) at 3
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Continuous matrix product states



Continuous Matrix Product States
Introduced by Verstraete and Cirac in 2010

Definition

|Q,R〉 = tr
[
P exp

{∫L

0
dx Q ⊗ 1+ R ⊗ψ†(x)

}]
|0〉ψ

I Q,R are D × D matrices,
I The trace is taken over this matrix space
I [ψ(x), ψ†(y)] = δ(x − y)
I ψ†(x) is non-relativistic creation operator (i.e. φ(x) = 1√

2ν [ψ(x) +ψ
†(x)])

I |0〉ψ is the associated Fock vacuum

Idea:
I From MPS: a continuum limit
I From QFT: a sort of generalized “non-commutative” coherent state



Computations
Some correlation functions〈

ψ̂(x)†ψ̂(x)
〉
= Tr

[
eTL(R ⊗ R)

]〈
ψ̂(x)†ψ̂(0)†ψ̂(0)ψ̂(x)

〉
= Tr

[
eT(L−x)(R ⊗ R)eTx(R ⊗ R)

]〈
ψ̂(x)†

[
−

d2

dx 2

]
ψ̂(x)

〉
= Tr

[
eTL([Q,R]⊗ [Q,R])

]
with T = Q ⊗ 1+ 1⊗ Q̄ + R ⊗ R̄

Example
Lieb-Liniger Hamiltonian

H =

∫+∞
−∞ dx

[
dψ̂†
dx

dψ̂
dx − µψ̂†ψ̂+ cψ̂†ψ̂†ψ̂ψ̂

]

Solve by minimizing: 〈Q,R | H |Q,R〉 = f (Q,R)



Computations
Some correlation functions〈

ψ̂(x)†ψ̂(x)
〉
= Tr

[
eTL(R ⊗ R)

]〈
ψ̂(x)†ψ̂(0)†ψ̂(0)ψ̂(x)

〉
= Tr

[
eT(L−x)(R ⊗ R)eTx(R ⊗ R)

]〈
ψ̂(x)†

[
−

d2

dx 2

]
ψ̂(x)

〉
= Tr

[
eTL([Q,R]⊗ [Q,R])

]
with T = Q ⊗ 1+ 1⊗ Q̄ + R ⊗ R̄
Example
Lieb-Liniger Hamiltonian

H =

∫+∞
−∞ dx

[
dψ̂†
dx

dψ̂
dx − µψ̂†ψ̂+ cψ̂†ψ̂†ψ̂ψ̂

]

Solve by minimizing: 〈Q,R | H |Q,R〉 = f (Q,R)



State of the art on CMPS

Contrary to common beliefs, CMPS are fairly efficient

1. Fully variational calculations at D = 256 by Ganahl-Rincon-Vidal 2016
2. Recently Tuybens-De Nardis-Haegeman-Verstraete arXiv:2006.01801

included open-boundaries efficiently



Standard CMPS and relativistic fields

Applying cMPS to e.g. the φ4 Hamiltonian

〈Q,R |ĥφ4 |Q,R〉 =∞
Oh no!

The short distance behavior of cMPS is the wrong one, even the free theory is
hard to approximate.

A possible fix by Haegeman-Cirac-Osborne-Verschelde-Verstraete 2010:

H → HΛ := H +
1
Λ2

∫
dx (∂xπ)

2

2



Going relativistic
Changing of operator basis



Towards relativistic CMPS
Local basis in position of the QFT: ψ†, φ, π, |0〉ψ
Diagonal basis of the free part: a†k , |0〉a

Bogoliubov transform
Go from ψ̂(x), ψ̂†(x) to a(p), a†(p) with

a(p) = 1√
2

(
√
ωp φ̂(p) + i π̂(p)√

ωp

)
with ωp =

√
p2 + m2

which yields
H0 =

∫
dpωp

1
2
(
a†pap + apa†p

)
Go from |0〉ψ to |0〉a
and
Go from ψ(x) to a(x) =

∫
dp a(p)eipx 6= ψ(x)



Relativistic CMPS

Definition

|R,Q〉 = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0〉a

Some properties
1. |0, 0〉 = |0〉a is the ground state of H0 hence exact CFT UV fixed point

(because interaction super-renormalizable)
2. 〈Q,R |hφ4 |Q,R〉 is finite for all Q,R (not trivial)

a(x) is not covariant but the state cannot be exactly Poincaré invariant anyway!
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Consequence on the Hamiltonian

Hamiltonian density in a(x) basis

H is local in ψ(x), not in a(x)...

H =

∫
dx1dx2D(x1 − x2)a†(x1)a(x2)

+

∫
dx1dx2dx3dx4K (x1, x2, x3, x4)a(x1)a(x2)a(x3)a(x4) + 4a†aaa + 3a†a†aa

+ h.c.

But fortunately exponentially decreasing: K decays ∝ e−m|x | for |x |� m.



The variational algorithm

Procedure:
Compute e0 = 〈Q,R |hφ4 |Q,R〉 and ∇Q,Re0
Minimize e0 with TDVP aka gradient descent with a metric

Computations of e0 and ∇e0in a nutshell:
1. Contains an algebraic part identical to standard cMPS
2. Involves quadruple integrals without analytic solutions

Initial v1 idea: compute the integrals with Quadpack → cost D6



Computing vertex operators
Main insight
〈:ebφ(x) :〉QR computable by solving an ODE with cost ∝ D3

Going from φ(x) to a(x) gives:

〈:ebφ(0) :〉QR =

〈
exp
[

b
∫

J(x)a†(x)
]

exp
[

b
∫

J(x)a(x)
]〉

Q,R

= ZbJ,bJ

(1)

with
J(x) =

∫
dk 1√

2ωk
e ikx (2)

and Zj1,j2 is just the generating functional

Zj1,j2 = tr
[
P exp

∫
T+ j1(x)R ⊗ 1++j2(x)1⊗ R̄ dx

]
(3)
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Algorithm v2 ∝ D3

1. Compute ZbJ,bJ by solving the ODE

∂xρ = Lρ+ bJ(x)(Rρ+ ρR†)

and taking the trace at x = +∞

2. Compute all other expectation values, e.g. 〈: φ4 :〉 by ∂
∂b

3. Compute the gradient with same cost by solving the adjoint ODE (aka
backprop.)

Bottom line
Solve with cost ∝ D3 all theories with V (φ) poly : φn : or exponential : ebφ :
(including Sine/Sinh-Gordon and thus Fermionic theories via bosonization)
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Scaling comparison with renormalized Hamiltonian
truncation

Ren. Hamiltonian truncation
IR cutoff L, energy truncation ET

I Uses a vector space
I Function to minimize is

quadratic, hence linear problem
I Number of parameters ∝ eL×ET

I Error ∝ 1/E 3
T

Relativistic CMPS
entanglement truncation D
I Uses a manifold
I Minimization is a priori

non-trivial but doable
I Number of parameters ∝ D2

I Error o(1/Dα), ∀ α (folklore)
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Results
Energy density
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Results
Error in energy density
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Results
Magnetization 〈φ〉
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Results
〈: φ2 :〉
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Open problems and perspectives



New entanglement entropy

Conjecture
For the notion of space locality is induced by a†(x), a(x) (instead of usual φ(x)),
gapped QFT ground states verify the area law with a finite prefactor.

I This entanglement entropy is weird from a relativistic point of view
I But captures the notion of approximability with tensor network states

Useful notion? Can the conjecture be proved?



More general short distance behavior

RCMPS have the short distance behavior of a free CFT (fairly generic in HEP)

Can one deal with relevant perturbations of other UV CFTs (e.g. Ising)?

Equivalent of a(x)? Coulomb gas construction?



Higher dimensions

RQFT difficulty
Normal ordering / tadpole cancellation no longer sufficient
Whightman QFT still have Hilbert space, but less explicit (not free Fock space)

(non-relativistic) Tensor network difficulty

Continuous tensor network states less developed in 2 + 1
1. Proposal with Ignacio Cirac: R,Q promoted to fields, needed to preserve

Euclidean invariance
2. Successfully tested on Gaussian problems with Teresa Karanikolaou (also

independently in Ghent by Bastiaan Aelbrecht)
3. Need to solve a boundary 1 + 1 RQFT to compute more general expectation

values

Non-relativistic 2 + 1 now seems feasible thanks to RCMPS...
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Summary of relativistic CMPS

1. Ansatz for 1 + 1 relativistic QFT
2. No cutoff, UV or IR
3. UV is captured exactly even at D = 0
4. Efficient (cost poly D, error at most superpoly 1/D) and now competitive
5. Rigorous (variational)



What about d > 2



Continuous Tensor Networks: blocking

Upon blocking:
♦ The physical Hilbert space

dimension increases
♦ The bond (auxiliary space)

dimension D increases too

Now from bottom to top, fine
graining will yield zero bond
dimension.



Result

auxiliary field

physical field

auxiliary degrees of fredom

physical degrees of fredom

AT, J. I. Cirac, 2019

Continuous tensor network state (heuristically)

State |V , α〉 of d + 1 QFT from an auxiliary d dimensional theory of random
fields φ:

|V , α〉 =
∫
Dφ exp

{
−

∫
ddx LV [φ(x)] − α[φ(x)] ψ̂†(x)

creation

}
|Ω〉



Choice of tensor around which to expand...
For MPS, not much choice:

= + ε · · ·
= 1⊗ |0〉+ εQ ⊗ |0〉+ εR ⊗ψ†(x)|0〉

For TNS in d > 2, many options:
1. Take a δ between all legs ∼ GHZ state T (0) =

=⇒ trivial geometry
2. Take two identities T (0) =

=⇒ breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions

T (0) = +
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2. Take two identities T (0) =

=⇒ breakdown of Euclidean invariance
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Ansatz
1 – Take a “Trivial” tensor:

T (0)
φ(1),φ(2),φ(3),φ(4) =

∼ exp
{
−1
2

D∑
k=1

[φk(1) − φk(2)]2 + [φk(2) − φk(3)]2

+ [φk(3) − φk(4)]2 + [φk(4) − φk(1)]2
}

The indices φ are in RD (and not 1, · · · ,D)

2 – And add a “correction”:

exp
{
−ε2V [φ(1), · · · , φ(4)] + ε2α [φ(1), · · · , φ(4)]ψ†(x)

}
3 – Realize tensor contraction = functional integral and trivial tensor gives free
field measure.
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Dφ exp
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∫
ddx LV [φ(x)] − α[φ(x)] ψ̂†(x)

creation

}
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Operator definition

|V , α〉 =

tr
[
T exp

(
−

∫T

0
dτ
∫

S
dx π̂k(x)π̂k(x)

2 +
∇φ̂k(x)∇φ̂k(x)

2 + V [φ̂(x)] − α[φ̂(x)]ψ†(τ, x)
)]

|0〉

where:
I φ̂k(x) and π̂k(x) are D independent canonically conjugated pairs of

(auxiliary) field operators: [φ̂k(x), φ̂l(y)] = 0, [π̂(x)k , π̂l(y)] = 0, and
[φ̂k(x), π̂l(y)] = iδk,l δ(x − y) acting on a space of d − 1 dimensions.



Wave-function definition
A generic state |Ψ〉 in Fock space can be written:

|Ψ〉 =
+∞∑
n=0

∫
Ωn

ϕn(x1, · · · , xn)

n! ψ†(x1) · · ·ψ†(xn) |0〉

where ϕn is a symmetric n-particle wave-function

Functional integral representation

ϕn(x1, · · · , xn) = 〈α[φ(x1)] · · ·α[φ(xn)] 〉aux

with:

〈·〉aux =

∫
Dφ · B(φ|∂Ω) exp

[
−

1
2

∫
Ω

ddx [∇φk(x)]2 + V [φ(x)]
]

I ∼ Ansatz wave-function for Quantum Hall, but CFT → QFT



Expressivity and stability

How big are cTNS?

Stability
The sum of two cTNS of bond field
dimension D1 and D2 is a cTNS
with bond field dimension
D 6 D1 + D2 + 1:

|V1, α1〉+ |V2, α2〉 = |W , β〉

Expressiveness
All states in the Fock space can be
approximated by cTNS:
I A field coherent state is a

cTNS with D = 1
I Stability allows to get all sums

of field coherent states



Computations
Define generating functional for normal ordered correlation functions

Zj ′,j =
1

〈V , α|V , α〉〈V , α| exp
(∫

dx j ′(x)ψ†(x)
)

exp
(∫

dx j(x)ψ(x)
)
|V , α〉

Operator representation

Zj ′j = tr
[

B ⊗ B∗T exp
{∫T/2

−T/2

(
Tj ′j −

∫
S

j · j ′
)}]

with transfer matrix:

Tj ′j =

∫
S

dx H(x)⊗ 1+ 1⊗H∗(x) +
(
α[φ̂(x)] + j ′(x)

)
⊗
(
α[φ̂(x)]∗ + j(x)

)
and H(x) =

∑D
k=1

[π̂k(x)]2+[∇φ̂k(x)]
2

2 + V [φ̂(x)]

=⇒ cMPS brought us from 1 to 0, cTNS bring us from d to d − 1.



Contraction

I In general, need boundary relativistic CMPS to contract
I If V (φ) = V (0)φiV (2)

ij φj

and α(φ) = α(0) + α
(1)
i φi

Gaussian → exactly contractible

Example:
H =

∫
∇ψ̂†∇ψ̂+ µψ†ψ̂− λ(ψ̂†ψ̂† + ψ̂ψ̂)



Gaussian example

Work done by Teresa Karanikolaou with help from Patrick Emonts (PRR 2021)

H =

∫
R2
∇ψ̂†∇ψ̂+ µψ†ψ̂− λ(ψ̂†ψ̂† + ψ̂ψ̂)

in d = 2 energy density 〈h〉 divergent, but CTNS also divergent!

〈h〉 = er
0 + log(Λ)e∞0 (4)

1. Analytically minimize the divergent part
2. Numerically minimize the remain finite (renormalized part)



Energy and correlation functions



Summary of CTNS

|V ,B, α〉 =
∫
Dφ exp

{
−

∫
Ω

ddx 1
2

D∑
k=1

[∇φk(x)]2 + V [φ(x)] − α[φ(x)]ψ†(x)
}

|0〉

Continuous tensor network states are natural continuum limits of tensor network
states and natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks
2. Can be made Euclidean invariant
3. Motto of tensor networks: trade a dimension for a variational

optimization
4. Still needs to be used to approximate non-trivial non-Gaussian ground states


