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Quantum many-body problem on the lattice
Typical condensed matter problem: ) = > ¢j, ..o inlity iy - - - in)
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Problem: Possible solutions

» Perturbation theory
but weak coupling

» Monte Carlo

H = Z hi but imprecise and sign problem
k=1

Finding the low energy states of
N

» Compression 2V — N*
is hard because dim 7 o 2V for spins with controllable error



The direct compression approach

Variational method for ground state search

1. Guess a manifold M C 7 with few parameters v i.e. dimM < dim.#
(v|H|v)

2. Tune v to minimize energy v = argmin, ¢y Iy

and get
lground state) ~ |v)
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The direct compression approach

Variational method for ground state search

1. Guess a manifold M C 7 with few parameters v i.e. dimM < dim.#

C e . . <‘v|H|‘v>
2. Tune v to minimize energy v = argminy ey “tyjvy and get
lground state) ~ |v)
Reason for compression (classical) Reason for compression (quantum)

cat image “typical” image low energy state random state

atypical = compressible area law = atypical = compressible



Tensor network states in a nutshell

.zip or .jpg for complex quantum states that appear in Nature

1. Exponential reduction: 2V — N x D?? parameters
[N number of spins, D amount of entanglement, d space dimension (1,2, 3)]

2. Efficient compression: compression error < e~? or 1/superpoly(D)
[For a large number of a priori non-trivial problems]



Many non-trivial problems are continuous

Non-relativistic QFT Relativistic QFT Critical systems
including quantum including, ultimately, classical and quantum
gases and fractional quantum chromodynamics at 2" order phase
quantum Hall phases = transitions
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The quantum many-body problem in the continuum

From the lattice to the continuum and Quantum Field Theory (QFT)

.............
-------------
.............
ooooooooooooo
.............
.............

W)= Y Gudiheci)  — 9= Do we)10)

New problem: 2V C-parameters — dim.J# = co™ even at finite size!

Question Can one compress co®™ down to a manageable number of parameters?
— Feynman argued it was impossible in a 1987 conference



Feynman'’s criticism

Difficulties in Applying the Variational

Principle to Quantum Field Theories!

so I tried to do something along these lines with quantum chromodynamics. So
I'm talking on the subject of the application of the variational principle to field
theoretic problems, but in particular to quantum chromodynamics.

I'm going to give away what I want to say, which is that I didn’t get anywhere!
I got very discouraged and I think I can see why the variational principle is not
very useful. So I want to take, for the sake of argument, a very strong view —
which is stronger than I really believe — and argue that it is no damn good at all!

Feynman'’s requirement in a nutshell

1. Extensive parameterization
Number of parameters o< L* at most for system size L

2. Computable expectation values
P known = (O(x)O(y))y, computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted



Numerical continuum limit

Change the model so you can apply known methods

1. Discretize

State: [¥) = | Do w()10)  — W)= Y i

ilin)"'yiN
Hamiltonian: H = de hix) — He=) h

i

2. Solve with tensor networks for fixed lattice spacing

3. Extrapolate to zero lattice spacing

. iN>



Numerical continuum limit

Critical coupling for ¢3 lattice field theory as a function of lattice spacing A
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Working directly in the continuum

Big challenge
Compress field wavefunctions () and use them to solve the

continuous-many-body problem directly

Status— since Feynman, breakthrough in 2010 and recent progress

non-relativistic relativistic critical

d =1 space

d > 2 space 2019

N N <o ceniton R



Outline

1. Continuous Matrix Product States
— on the board - first half

2. (Relativistic) Continuous Matrix Product States
3. Continuous tensor networks in d > 2



Relativistic continuous matrix product states

RCMPS: A variational ansatz to solve 1 + 1d relativitic QF T without
discretization or cutoff and to arbitrary precision



Relativistic continuous matrix product states

RCMPS: A variational ansatz to solve 1 + 1d relativitic QF T without
discretization or cutoff and to arbitrary precision

Two papers

» Variational method in relativisitic QF T without cutoff (short)
arXiv:2102.07733v2

» Relativistic continuous matrix product states for QFT without cutoff (long)
arXiv:2102.07741v2



Outline for relativistic QFT in 141

LAl o A

Scalar fields in 1 + 1 dimensions
Variational method in the continuum
Relativistic twist \p — a for CMPS
Numerics (and how to achieve D® — D?3)

Open questions



Basics of relativistic scalar field theory

from a condensed matter viewpoint



Intuitive definition: canonical quantization
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Hamiltonian

A continuum of nearest neighbor coupled anharmonic oscillators

+ V(dKx))

on-site potential

H =

J R C [V (x))2
Rd 2

on-site inertia spatial stiffness

with canonical commutation relations [(?)(x),ﬁ(y)] = i89(x — y)1 (i.e. bosons)



Intuitive definition

" V3]
. o e

z e 9

/4
L
D)
'
[ < —
A

Hilbert space
Fock space et = Z[L?(RY)] - just like x, p — (a,a") do A, $ — xT),lT)T

“+o0o

|\P> = ZJdX]_dXQ 000 an fpn(Xsz, to axnll/l\)T(Xl){l\)T(X ) o '{l\)T(Xn) |vac)

n=0
wave function local oscillator creation




What are the problems compared to non-relativistic
field theories

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms oc P(x)P(x)

(W;|H[W,) = +00 and even (vac|H|vac) x 57(0) = 400



What are the problems compared to non-relativistic
field theories

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms oc P(x)P(x)

(W;|H[W,) = +00 and even (vac|H|vac) x 57(0) = 400

If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

VW) €, (W Hgniel¥) = finite but 3 W, s.t. lim (Yol Heniee| W) = —00

n—-+o0o



How are they are solved in the free case - Hamiltonian

Bogoliubov transform
Go from l/lB(X),l/l\)T(X) to a(p), af(p) with

p

A 7t
a(p) = % (\/w_,,(b(p) + I\/((Ui)> with w, = +/p? + m?

which yields
1
Ho = Jdp Wp 5 (afa, + apal)



How are they are solved in the free case - Hamiltonian

Bogoliubov transform
Go from l/lB(X),l/l\)T(X) to a(p), af(p) with

A 7t
a(p) = % (\/w_,,(b(p) + I\/((Ui)> with w, = +/p? + m?

P
which yields
1
Ho = Jdp Wp 5 (afa, + apal)
Solution
> Take Hoee — < H - This solves the problematic free
ake Morr = - M- part exactly, and allows to define
> |free ground state) = [vacuum), a finite interaction (in 1+ 1)

i ... gt
» 2 built from al, ---al [vacuum),



Example: rigorous operator definition of ¢3

Renormalized ¢} theory

. . 2. 2
H:de'nz'aJr'(vg)) 'a+m7:d)2:a+g:(b4:a

(note that : <> :, depends on m)



Example: rigorous operator definition of ¢3

Renormalized ¢3 theory

. . 2. 2
H:de'n2'3+'(vg)) 'a+m7:cb2:a+g:(b4:a

(note that : <> :, depends on m)

1. Rigorously defined relativistic QF T without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g < m? (perturbation theory)

4. Phase transition around f, = ;£; = 11 i.e. g ~ 2.7 in mass units



Hilbert spaces of RQFT in 1+1

Two operator basis

The Vf(x) basis The a] basis
Local oscillator basis “Relativistic” oscillator basis
+ Local in ¢, 7 — Non-local
+ Natural for discretization — Less natural for discretization

— Divergent and ill-defined + Regular and well-defined



The variational method

in the continuum



The variational method

In the Hamiltonian formulation:
» Guess a finite dimensional submanifold .7 of the QFT Hilbert space 77
» Find the ground state by minimizing (H):

(WIHW)
(Whp)

lground) ~ [\b) = argmin
o



The variational method

In the Hamiltonian formulation:
» Guess a finite dimensional submanifold .7 of the QFT Hilbert space 77

» Find the ground state by minimizing (H):

fground) = 1) = argmin %

Example: naive Hamiltonian truncation

With an IR cutoff, momenta are discrete. Take as submanifold .#Z the vector

space spanned by:
a};l 812 o ali,|0>3

where r < fnax and k < kmax (one possible truncation)



Feynman'’s objection

Feynman’s requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization
Number of parameters o< L* at most for system size L
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Feynman'’s objection

Feynman’s requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization
Number of parameters o< L* at most for system size L

2. Computable expectation values
P known = (O(x)O(y)), computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted

All methods so far break one at least:

» Hamiltonian truncation fails at 1 (but works fairly well through its
renormalized refinements)

» Tensor networks succeed at 1 and 2 but fail (a priori) at 3



Continuous matrix product states



Continuous Matrix Product States
Introduced by Verstraete and Cirac in 2010

Definition

L
|Q,R) =tr [iPexp {J dx Q1+ R ®1|)T(X)}} 10}y
0
» Q, R are D x D matrices,

» The trace is taken over this matrix space

> [ (x), b (y)] = 8(x —y)

» T(x) is non-relativistic creation operator (i.e. d(x) = —=[b(x) + T (x)])

» |0)y, is the associated Fock vacuum

Idea:
» From MPS: a continuum limit

» From QFT: a sort of generalized “non-commutative” coherent state



Computations
Some correlation functions

With T=Q®1+19Q+R®R



Computations

Some correlation functions

With T=Q®1+12Q+R®

Example

Lieb-Liniger Hamiltonian

I R L L N T P SN
%—de [Kd—— i e

Solve by minimizing: (Q, R|H|Q,R) = f(Q, R)



State of the art on CMPS

Contrary to common beliefs, CMPS are fairly efficient

1. Fully variational calculations at D = 256 by Ganahl-Rincon-Vidal 2016

2. Recently Tuybens-De Nardis-Haegeman-Verstraete arXiv:2006.01801
included open-boundaries efficiently



Standard CMPS and relativistic fields

Applying cMPS to e.g. the ¢* Hamiltonian

(Q, RIhgs|Q, R) = 00
Oh no!

The short distance behavior of cMPS is the wrong one, even the free theory is
hard to approximate.

A possible fix by Haegeman-Cirac-Osborne-Verschelde-Verstraete 2010:
1 2
[or 210

H—s Hy = H+ —
— FA T 2



Going relativistic

Changing of operator basis



Towards relativistic CMPS

Local basis in position of the QFT: T, &, 7, 0)y,
Diagonal basis of the free part: al , 10),

Bogoliubov transform
Go from ﬂ)(x),l/l\ﬂ(x) to a(p), af(p) with

a(p) = % (\/w_p(/f)(p) + Ij(wi)) with w, = +/p? + m?

p

which yields
1
Ho = Jdp Wp 5 (afa, + apal)

Go from [0)y, to |0),
and
Go from P(x) to a(x) = [dp a(p)e # P(x)



Relativistic CMPS

Definition
IR, Q) =tr {ﬂ)exp de Q1+ R® aT(X)] } 0),

Some properties

1. |0,0) = |0), is the ground state of Hy hence exact CFT UV fixed point
(because interaction super-renormalizable)

2. (Q, Rlhgs1Q, R) is finite for all Q, R (not trivial)



Relativistic CMPS

Definition
IR, Q) =tr {Texp de Q1+ R® aT(X)] } 0),

Some properties

1. |0,0) = |0), is the ground state of Hy hence exact CFT UV fixed point
(because interaction super-renormalizable)

2. (Q, Rlhgs1Q, R) is finite for all Q, R (not trivial)

a(x) is not covariant but the state cannot be exactly Poincaré invariant anyway!



Consequence on the Hamiltonian

Hamiltonian density in a(x) basis

H is local in {P(x), not in a(x)...

H = J dxidx; D(x; — Xz)aT(Xl)a(Xz)

+ J dx1dxodxzdxs K (x1, X0, X3, Xa)a(x1)a(xz)a(x3)a(xs) + 4a' aaa + 3a'a' aa

+ h.c.

But fortunately exponentially decreasing: K decays o< e~ ™! for [x| > m.



The variational algorithm

Procedure:
Compute ey = (Q, Rlhy+|Q, R) and V¢ rep
Minimize ey with TDVP aka gradient descent with a metric

Computations of ¢y and Vegin a nutshell:
1. Contains an algebraic part identical to standard cMPS

2. Involves quadruple integrals without analytic solutions
Initial vl idea: compute the integrals with Quadpack — cost D°



Computing vertex operators
Main insight
(:eP®X) ) or computable by solving an ODE with cost oc D3



Computing vertex operators
Main insight
(:eP®X) ) or computable by solving an ODE with cost oc D3

Going from ¢(x) to a(x) gives:

(e0):) g = <exp {bJJ(x)a*(x)} exp HJ(X)a(X)D 0
Q,R

)

= ZbJbJ
with )
J(x) = | dk——=e™" 2
() = | dk e @
and Zj j, is just the generating functional

Zjl,jzztr [?eXpJT+j1(X)R®]l++j2(X)ﬂ®RdX (3)



Algorithm v2 o D?

1. Compute Z; s by solving the ODE
0xp = Lp + bJ(x)(Rp + pRT)

and taking the trace at x = 400
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Algorithm v2 o D?

1. Compute Z; s by solving the ODE
0xp = Lp + bJ(x)(Rp + pRT)

and taking the trace at x = 400
2. Compute all other expectation values, e.g. {: ¢*:) by a%
3. Compute the gradient with same cost by solving the adjoint ODE (aka
backprop.)
Bottom line

Solve with cost oc D? all theories with V/(¢) poly : ¢" : or exponential : e?¢ :
(including Sine/Sinh-Gordon and thus Fermionic theories via bosonization)



Scaling comparison with renormalized Hamiltonian
truncation

Ren. Hamiltonian truncation
IR cutoff L, energy truncation Et
» Uses a vector space

» Function to minimize is

quadratic, hence linear problem

» Number of parameters oc el <7

» Error oc 1/E3



Scaling comparison with renormalized Hamiltonian

truncation

Ren. Hamiltonian truncation
IR cutoff L, energy truncation Et
» Uses a vector space

» Function to minimize is

quadratic, hence linear problem

» Number of parameters oc el <7

» Error oc 1/E3

Relativistic CMPS
entanglement truncation D
» Uses a manifold
» Minimization is a priori
non-trivial but doable
» Number of parameters oc D?
» Error o(1/D%), V « (folklore)



Results

Energy density

energy density (h)o,r
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Results
Error in energy density
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Approximately exact value extrapolated from D = 32 (boostrapped error
< 10™*). More precise than high precision RHT. Pushable to D > 40



Results
Magnetization ()
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Open problems and perspectives



New entanglement entropy

Conjecture

For the notion of space locality is induced by a'(x), a(x) (instead of usual ¢(x)),
gapped QFT ground states verify the area law with a finite prefactor.

» This entanglement entropy is weird from a relativistic point of view

» But captures the notion of approximability with tensor network states

Useful notion? Can the conjecture be proved?



More general short distance behavior

RCMPS have the short distance behavior of a free CFT (fairly generic in HEP)
Can one deal with relevant perturbations of other UV CFTs (e.g. Ising)?

Equivalent of a(x)? Coulomb gas construction?



Higher dimensions

RQFT difficulty

Normal ordering / tadpole cancellation no longer sufficient
Whightman QFT still have Hilbert space, but less explicit (not free Fock space)



Higher dimensions

RQFT difficulty

Normal ordering / tadpole cancellation no longer sufficient
Whightman QFT still have Hilbert space, but less explicit (not free Fock space)

(non-relativistic) Tensor network difficulty

Continuous tensor network states less developed in 2 4 1

1. Proposal with Ignacio Cirac: R, Q promoted to fields, needed to preserve
Euclidean invariance

2. Successfully tested on Gaussian problems with Teresa Karanikolaou (also
independently in Ghent by Bastiaan Aelbrecht)

3. Need to solve a boundary 1+ 1 RQFT to compute more general expectation
values

Non-relativistic 2 + 1 now seems feasible thanks to RCMPS...



Summary of relativistic CMPS

Ansatz for 1 + 1 relativistic QF T
No cutoff, UV or IR
UV is captured exactly even at D =0

Efficient (cost poly D, error at most superpoly 1/D) and now competitive

LAl o A .

Rigorous (variational)



What about d > 2



Continuous Tensor Networks: blocking

Upon blocking:
¢ The physical Hilbert space
dimension increases

¢ The bond (auxiliary space)
dimension D increases too

Now from bottom to top, fine
graining will yield zero bond
dimension.




Result

physical degrees of fredom physical field

auxiliary field

auxiliary degrees of fredom

AT, J. I. Cirac, 2019

Continuous tensor network state (heuristically)

State |V, ) of d + 1 QFT from an auxiliary d dimensional theory of random
fields o:

V@) = [ e { — [ £olo0o - alo ) $*(x)} Q)

creation



Choice of tensor around which to expand...
For MPS, not much choice:

I
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Choice of tensor around which to expand...
For MPS, not much choice:

o

=1®[0) +eQ@®10) + &R @' (x)[0)

For TNS in d > 2, many options:

1. Take a & between all legs ~ GHZ state T(©) = ><
—> trivial geometry

2. Take two identities T(© = >
— breakdown of Euclidean invariance

3. Take the sum of pairs of identities in both directions

T(O):>,< + =

/’—\



Ansatz
1 — Take a “Trivial” tensor:

The indices ¢ are in RP (and not 1,-- -,



Ansatz
1 — Take a “Trivial” tensor:

o o2 90)
Td)(l) G (2),b(3),d(4) — /;
’ o) o)
-1 D
Nexp{ 5 é[d)k( ) — bi(2)]

The indices ¢ are in RP (and not 1,---, D)

2 — And add a “correction”:

exp {—*V [d(1),--- , d(4)] + 2o [b(1), - --

P4 (x) }



Ansatz
1 — Take a “Trivial” tensor:

The indices ¢ are in RP (and not 1,---, D)

2 — And add a “correction”:

exp { =€V [b(1),--- , d(4)] + 2 [Pp(1), -, b(A T (x) }

3 — Realize tensor contraction = functional integral and trivial tensor gives free
field measure.



Result

physical degrees of fredom physical field

auxiliary field

auxiliary degrees of fredom

AT, J. I. Cirac, 2019

Continuous tensor network state (heuristically)

State |V, ) of d + 1 QFT from an auxiliary d dimensional theory of random
fields o:

V@) = [ e { — [ £olo0o - alo ) $*(x)} Q)

creation



Operator definition

&

Vo) =

- R N N _
tr {‘J‘exp (—J dTJ dx Ttk(x)fk(x) + Vd)k(x)2Vd)k(x) + v[$(x)] — Oé[a\)(x)] wT(T,X))
o Js .

where:

> $k(x) and 7, (x) are D indg\pendenAt canonically conjugated pairs of
(iuxiliary) field operators: [by(x), d;(y)] =0, [R(x)x, 7A/(y)] =0, and
[bi(x), 7ti(y)] = idk, &(x — y) acting on a space of d — 1 dimensions.



Wave-function definition
A generic state [W) in Fock space can be written:

+00

’W> _ ZJ (Pn(X1,-.. ,Xn) II)T(Xl)"‘ﬂ)T(XnHm

n!
n=0 "

where @, is a symmetric n-particle wave-function

Functional integral representation

(Pn(Xl, e )Xn) — <OC[CI)(X1)] e (X[d)(Xn)] >aux
with:

= [ D0 - Blbboa) exp |5 [ d*x (To(x) + Vil
Q

» ~ Ansatz wave-function for Quantum Hall, but CFT — QFT



Expressivity and stability

How big are cTNS?

Stability

The sum of two cTNS of bond field
dimension D; and D, is a cTNS
with bond field dimension

D < D1 = D2 = 1:

Vi, 1) + [ Vo, o) = |W, B)

Expressiveness
All states in the Fock space can be
approximated by cTNS:

» A field coherent state is a
cTNS with D=1

» Stability allows to get all sums
of field coherent states



Computations
Define generating functional for normal ordered correlation functions

<\/oj\/oc)<v) o exp (dej/(x)llﬂ(xo exp (JdXJ(XN)(X)) Vs %)

Operator representation

T/2
B®B*‘J’exp{J (Tj/j—J j-j’) }]
~T/2 s

Ty = L dx H(x) @1+ 1 Q H*(x) + (oc[(T)(x)] +j’(x)> ® (oc[c?)(X)]* +j(X))

Zjrj =

Z’j’j = tr

with transfer matrix:

and H(x) = 0, BIHVOCT i)

= cMPS brought us from 1 to 0, cTNS bring us from d to d — 1.



Contraction

» In general, need boundary relativistic CMPS to contract
> IF V() = VO VP

and () = @ + &M ¢,
Gaussian — exactly contractible

Example:

H— j VOV + wpth — ADTH +



Gaussian example

Work done by Teresa Karanikolaou with help from Patrick Emonts (PRR 2021)
H=| v+ b - MG+ )
R
in d = 2 energy density (h) divergent, but CTNS also divergent!

(h) = eq + log(A)eg’ (4)

1. Analytically minimize the divergent part

2. Numerically minimize the remain finite (renormalized part)



Energy and correlation

Correlation Cy o

functions

— D=1
- D=3

== Exact solution
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Summary of CTNS

1 D
IV, B, «) = JD¢ exp H d'x 5 > IVOu(x)* + Vb (x)] — al(x)] uﬁ(x)} 0)
Q —

1

Continuous tensor network states are natural continuum limits of tensor network
states and natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks

2. Can be made Euclidean invariant

3. Motto of tensor networks: trade a dimension for a variational
optimization

4. Still needs to be used to approximate non-trivial non-Gaussian ground states




