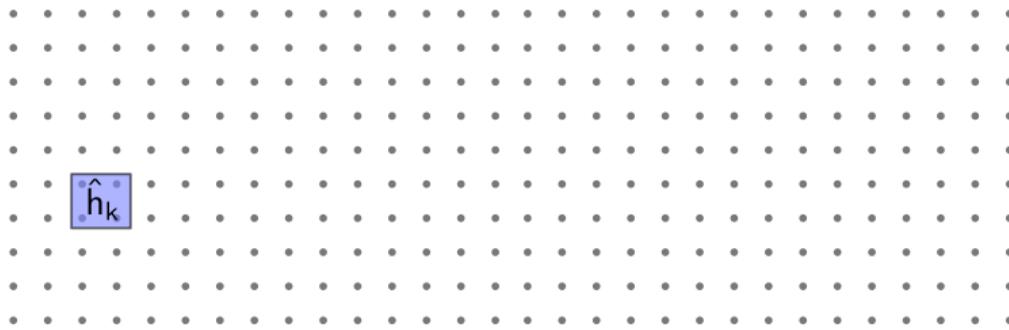


Continuous tensor network states

Antoine Tilloy

from Max Planck Institute of Quantum Optics, Garching, Germany
to Centre Automatique et systèmes, Mines ParisTech, Paris, France


European Tensor Network
ICCUB School 2021
October 1st, 2021

PSL

Quantum many-body problem on the lattice

Typical condensed matter problem: $|\Psi\rangle = \sum c_{i_1, i_2, \dots, i_N} |i_1, i_2, \dots, i_N\rangle$

Problem:

Finding the low energy states of

$$\hat{H} = \sum_{k=1}^N \hat{h}_k$$

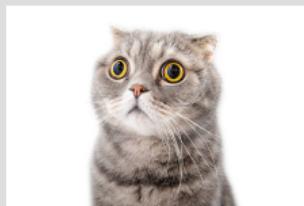
is **hard** because $\dim \mathcal{H} \propto 2^N$ for spins

Possible solutions

- ▶ Perturbation theory but weak coupling
- ▶ Monte Carlo but imprecise and sign problem
- ▶ **Compression** $2^N \rightarrow N^\alpha$ with controllable error

The direct compression approach

Variational method for ground state search


1. Guess a manifold $\mathcal{M} \subset \mathcal{H}$ with few parameters ν i.e. $\dim \mathcal{M} \ll \dim \mathcal{H}$
2. Tune ν to minimize energy $\nu = \operatorname{argmin}_{\nu \in \mathcal{M}} \frac{\langle \nu | H | \nu \rangle}{\langle \nu | \nu \rangle}$ and get
 $|\text{ground state}\rangle \simeq |\nu\rangle$

The direct compression approach

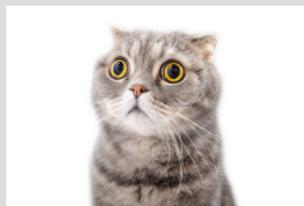
Variational method for ground state search

1. Guess a manifold $\mathcal{M} \subset \mathcal{H}$ with few parameters ν i.e. $\dim \mathcal{M} \ll \dim \mathcal{H}$
2. Tune ν to minimize energy $\nu = \operatorname{argmin}_{\nu \in \mathcal{M}} \frac{\langle \nu | H | \nu \rangle}{\langle \nu | \nu \rangle}$ and get
 $|\text{ground state}\rangle \simeq |\nu\rangle$

Reason for compression (classical)

cat image

“typical” image

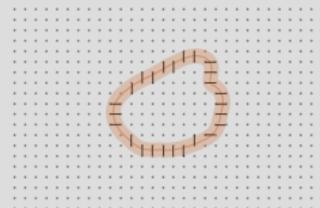

atypical \implies compressible

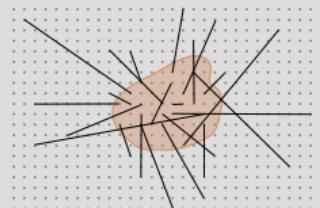
The direct compression approach

Variational method for ground state search

1. Guess a manifold $\mathcal{M} \subset \mathcal{H}$ with few parameters ν i.e. $\dim \mathcal{M} \ll \dim \mathcal{H}$
2. Tune ν to minimize energy $\nu = \operatorname{argmin}_{\nu \in \mathcal{M}} \frac{\langle \nu | H | \nu \rangle}{\langle \nu | \nu \rangle}$ and get
 $|\text{ground state}\rangle \simeq |\nu\rangle$

Reason for compression (classical)

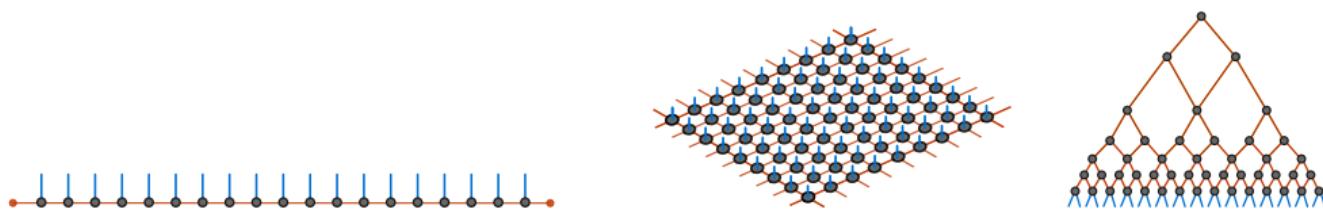

cat image


“typical” image

atypical \implies compressible

Reason for compression (quantum)

low energy state

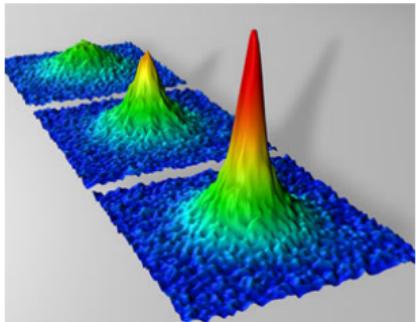


random state

area law = atypical \implies compressible

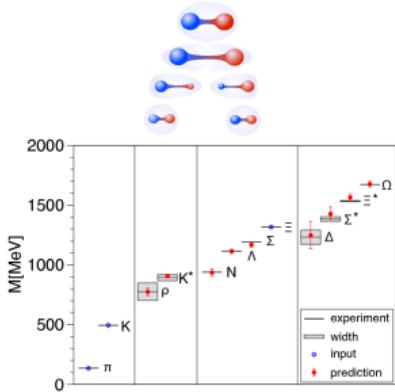
Tensor network states in a nutshell

.zip or .jpg for complex quantum states that appear in Nature

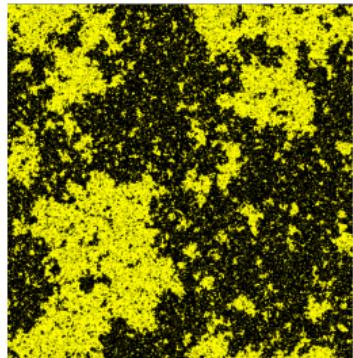


1. **Exponential reduction:** $2^N \rightarrow N \times D^{2d}$ parameters
[N number of spins, D amount of entanglement, d space dimension (1, 2, 3)]
2. **Efficient compression:** compression error $\leq e^{-D}$ or $1/\text{superpoly}(D)$
[For a large number of *a priori* non-trivial problems]

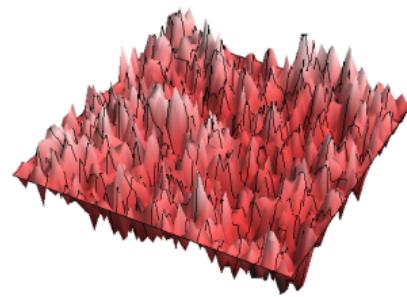
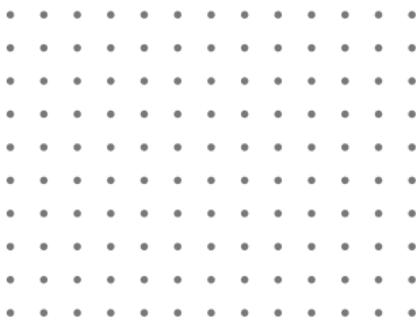
Many non-trivial problems are continuous


Non-relativistic QFT

including quantum gases and fractional quantum Hall phases


Relativistic QFT

including, ultimately, quantum chromodynamics



Critical systems

classical and quantum at 2nd order phase transitions

The quantum many-body problem in the continuum

From the lattice to the continuum and Quantum Field Theory (QFT)

$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_N} c_{i_1 i_2 \dots i_N} |i_1 i_2 \dots i_N\rangle \quad \longrightarrow \quad |\Psi\rangle = \int \mathcal{D}\phi \psi(\phi) |\phi\rangle$$

New problem: 2^N \mathbb{C} -parameters $\rightarrow \dim \mathcal{H} = \infty^\infty$ even at finite size!

Question Can one compress ∞^∞ down to a manageable number of parameters?
→ Feynman argued it was impossible in a 1987 conference

Feynman's criticism

Difficulties in Applying the Variational Principle to Quantum Field Theories¹

so I tried to do something along these lines with quantum chromodynamics. So I'm talking on the subject of the application of the variational principle to field theoretic problems, but in particular to quantum chromodynamics.

I'm going to give away what I want to say, which is that I didn't get anywhere! I got very discouraged and I think I can see why the variational principle is not very useful. So I want to take, for the sake of argument, a very strong view – which is stronger than I really believe – and argue that it is no damn good at all!

Feynman's requirement in a nutshell

1. Extensive parameterization

Number of parameters $\propto L^\alpha$ at most for system size L

2. Computable expectation values

ψ known $\implies \langle \mathcal{O}(x)\mathcal{O}(y) \rangle_\psi$ computable

3. Not oversensitive to the UV

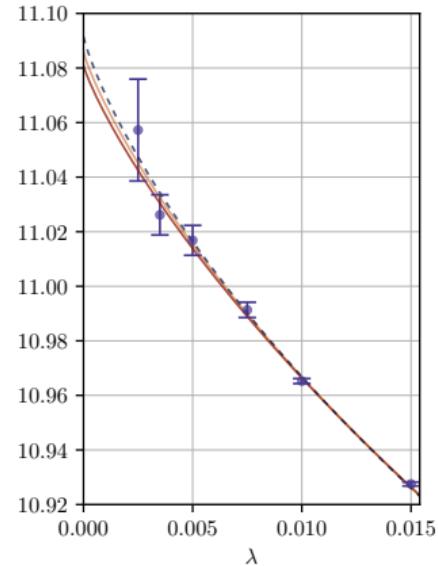
no runaway minimization where higher and higher momenta get fitted

Numerical continuum limit

Change the model so you can apply known methods

1. Discretize

State: $|\Psi\rangle = \int \mathcal{D}\phi \psi(\phi) |\phi\rangle \quad \rightarrow \quad |\Psi_\varepsilon\rangle = \sum_{i_1, i_2, \dots, i_N} c_{i_1 i_2 \dots i_N} |i_1 i_2 \dots i_N\rangle$

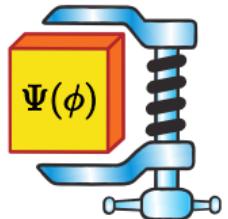

Hamiltonian: $H = \int dx h(x) \quad \rightarrow \quad H_\varepsilon = \sum_i h_i$

2. Solve with tensor networks for fixed lattice spacing

3. Extrapolate to zero lattice spacing

Numerical continuum limit

Critical coupling for ϕ_2^4 lattice field theory as a function of lattice spacing λ



Error grows as $\lambda \rightarrow 0$

Working directly in the continuum

Big challenge

Compress field wavefunctions $\Psi(\phi)$ and use them to solve the continuous-many-body problem directly

Status— since Feynman, breakthrough in 2010 and recent progress

	non-relativistic	relativistic	critical
$d = 1$ space	Verstraete-Cirac 2010	2021	
$d \geq 2$ space	2019		

no idea

heuristics

clear definition

algorithm

Outline

1. Continuous Matrix Product States
→ on the board - first half
2. (Relativistic) Continuous Matrix Product States
3. Continuous tensor networks in $d \geq 2$

Relativistic continuous matrix product states

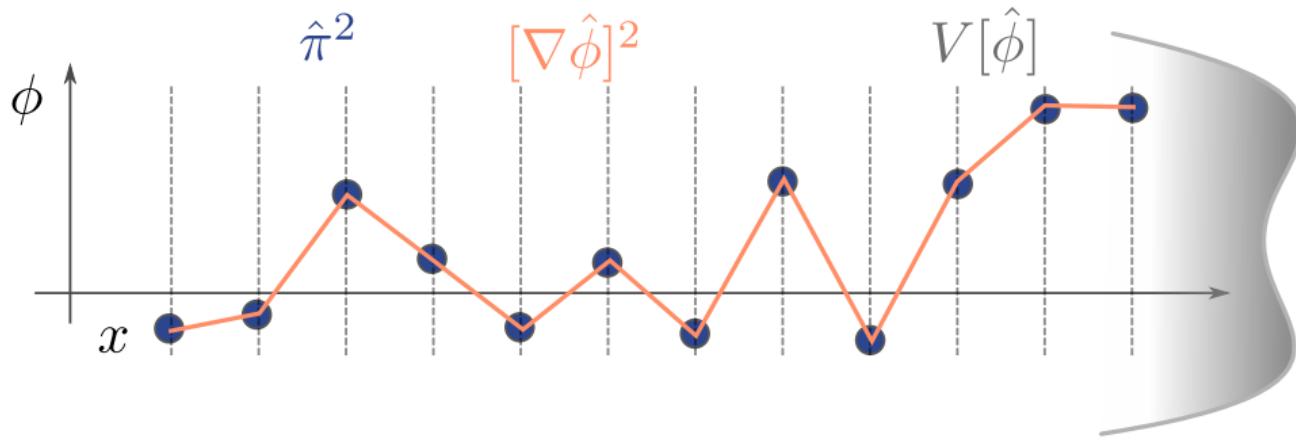
RCMPS: *A variational ansatz to solve $1+1d$ relativistic QFT without discretization or cutoff and to arbitrary precision*

Relativistic continuous matrix product states

RCMPS: *A variational ansatz to solve $1+1d$ relativistic QFT without discretization or cutoff and to arbitrary precision*

Two papers

- ▶ Variational method in relativistic QFT without cutoff (short)
arXiv:2102.07733v2
- ▶ Relativistic continuous matrix product states for QFT without cutoff (long)
arXiv:2102.07741v2

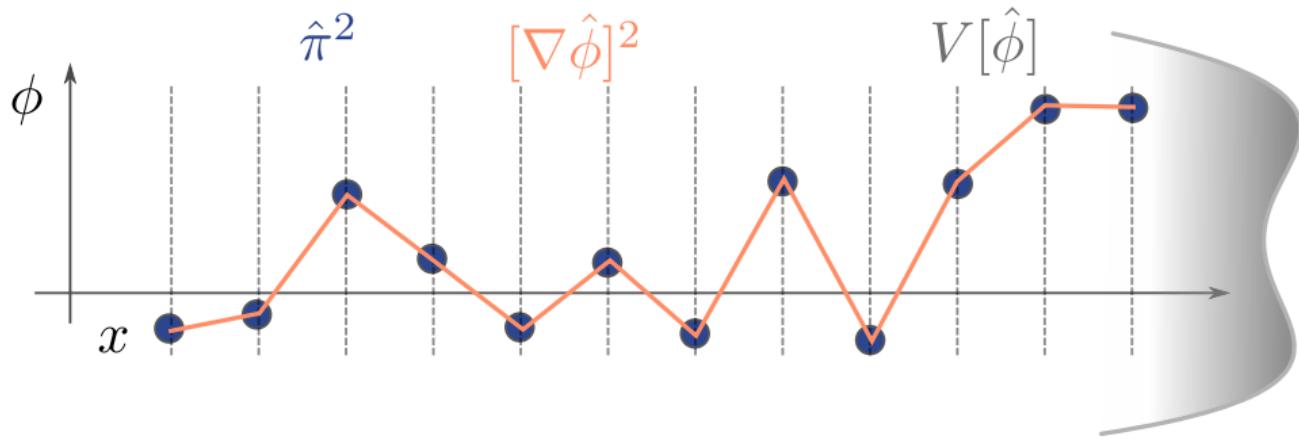

Outline for relativistic QFT in 1+1

1. Scalar fields in $1 + 1$ dimensions
2. Variational method in the continuum
3. Relativistic twist $\psi \rightarrow a$ for CMPS
4. Numerics (and how to achieve $D^6 \rightarrow D^3$)
5. Open questions

Basics of relativistic scalar field theory

from a condensed matter viewpoint

Intuitive definition: canonical quantization


Hamiltonian

A continuum of nearest neighbor coupled anharmonic oscillators

$$\hat{H} = \int_{\mathbb{R}^d} d^d x \left(\frac{\hat{\pi}(x)^2}{2} \right. \text{on-site inertia} \left. + \frac{[\nabla \hat{\phi}(x)]^2}{2} \right. \text{spatial stiffness} \left. + V(\hat{\phi}(x)) \right. \text{on-site potential}$$

with canonical commutation relations $[\hat{\phi}(x), \hat{\pi}(y)] = i\delta^d(x - y)\mathbb{1}$ (i.e. bosons)

Intuitive definition

Hilbert space

Fock space $\mathcal{H}_{\text{QFT}} = \mathcal{F}[L^2(\mathbb{R}^d)]$ – just like $x, p \rightarrow (a, a^\dagger)$ do $\hat{\pi}, \hat{\phi} \rightarrow \hat{\psi}, \hat{\psi}^\dagger$

$$|\Psi\rangle = \sum_{n=0}^{+\infty} \int dx_1 dx_2 \cdots dx_n \underbrace{\varphi_n(x_1, x_2, \dots, x_n)}_{\text{wave function}} \underbrace{\hat{\psi}^\dagger(x_1) \hat{\psi}^\dagger(x_2) \cdots \hat{\psi}^\dagger(x_n)}_{\text{local oscillator creation}} |\text{vac}\rangle$$

What are the problems compared to non-relativistic field theories

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite zero point energy *i.e.* terms $\propto \hat{\Psi}(x)\hat{\Psi}^\dagger(x)$

$$\langle \Psi_1 | \hat{H} | \Psi_2 \rangle = \pm\infty \text{ and even } \langle \text{vac} | \hat{H} | \text{vac} \rangle \propto \delta^d(0) = +\infty$$

What are the problems compared to non-relativistic field theories

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite zero point energy *i.e.* terms $\propto \hat{\Psi}(x)\hat{\Psi}^\dagger(x)$

$$\langle \Psi_1 | \hat{H} | \Psi_2 \rangle = \pm\infty \text{ and even } \langle \text{vac} | \hat{H} | \text{vac} \rangle \propto \delta^d(0) = +\infty$$

If the divergent vacuum terms are removed, the Hamiltonian is not bounded from below

$$\forall |\Psi\rangle \in \mathcal{H}, \langle \Psi | \hat{H}_{\text{finite}} | \Psi \rangle = \text{finite but } \exists \Psi_n \text{ s.t. } \lim_{n \rightarrow +\infty} \langle \Psi_n | H_{\text{finite}} | \Psi_n \rangle = -\infty$$

How are they solved in the free case - Hamiltonian

Bogoliubov transform

Go from $\hat{\Psi}(x), \hat{\Psi}^\dagger(x)$ to $a(p), a^\dagger(p)$ with

$$a(p) = \frac{1}{\sqrt{2}} \left(\sqrt{\omega_p} \hat{\phi}(p) + i \frac{\hat{\pi}(p)}{\sqrt{\omega_p}} \right) \quad \text{with} \quad \omega_p = \sqrt{p^2 + m^2}$$

which yields

$$H_0 = \int dp \omega_p \frac{1}{2} (a_p^\dagger a_p + a_p a_p^\dagger)$$

How are they solved in the free case - Hamiltonian

Bogoliubov transform

Go from $\hat{\psi}(x), \hat{\psi}^\dagger(x)$ to $a(p), a^\dagger(p)$ with

$$a(p) = \frac{1}{\sqrt{2}} \left(\sqrt{\omega_p} \hat{\phi}(p) + i \frac{\hat{\pi}(p)}{\sqrt{\omega_p}} \right) \quad \text{with} \quad \omega_p = \sqrt{p^2 + m^2}$$

which yields

$$H_0 = \int dp \omega_p \frac{1}{2} (a_p^\dagger a_p + a_p a_p^\dagger)$$

Solution

- Take $H_{\text{QFT}} \equiv :H:$
- $|\text{free ground state}\rangle = |\text{vacuum}\rangle_a$
- \mathcal{H} built from $a_{p_1}^\dagger \cdots a_{p_n}^\dagger |\text{vacuum}\rangle_a$

This solves the problematic free part exactly, and allows to define a finite interaction (in 1 + 1)

Example: rigorous operator definition of ϕ_2^4

Renormalized ϕ_2^4 theory

$$H = \int dx \frac{: \pi^2 :_a}{2} + \frac{: (\nabla \phi)^2 :_a}{2} + \frac{m^2}{2} : \phi^2 :_a + g : \phi^4 :_a$$

(note that $: \diamond :_a$ depends on m)

Example: rigorous operator definition of ϕ_2^4

Renormalized ϕ_2^4 theory

$$H = \int dx \frac{:\pi^2:_{\text{a}}}{2} + \frac{:(\nabla\phi)^2:_{\text{a}}}{2} + \frac{m^2}{2} :\phi^2:_{\text{a}} + g :\phi^4:_{\text{a}}$$

(note that $:\diamond:_{\text{a}}$ depends on m)

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless $g \ll m^2$ (perturbation theory)
4. Phase transition around $f_c = \frac{g}{4m^2} = 11$ i.e. $g \simeq 2.7$ in mass units

Hilbert spaces of RQFT in 1 + 1

Two operator basis

The $\psi^\dagger(x)$ basis

Local oscillator basis

- + Local in ϕ, π
- + Natural for discretization
- Divergent and ill-defined

The a_k^\dagger basis

“Relativistic” oscillator basis

- Non-local
- Less natural for discretization
- + Regular and well-defined

The variational method

in the continuum

The variational method

In the Hamiltonian formulation:

- ▶ Guess a **finite dimensional submanifold** \mathcal{M} of the QFT Hilbert space \mathcal{H}
- ▶ Find the ground state by minimizing $\langle H \rangle$:

$$|\text{ground}\rangle \simeq |\psi\rangle = \underset{\mathcal{M}}{\operatorname{argmin}} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

The variational method

In the Hamiltonian formulation:

- ▶ Guess a **finite dimensional submanifold** \mathcal{M} of the QFT Hilbert space \mathcal{H}
- ▶ Find the ground state by minimizing $\langle H \rangle$:

$$|\text{ground}\rangle \simeq |\psi\rangle = \underset{\mathcal{M}}{\operatorname{argmin}} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

Example: naive Hamiltonian truncation

With an IR cutoff, momenta are discrete. Take as submanifold \mathcal{M} the **vector space** spanned by:

$$a_{k_1}^\dagger a_{k_2}^\dagger \cdots a_{k_r}^\dagger |0\rangle_a$$

where $r \leq r_{\max}$ and $k \leq k_{\max}$ (one possible truncation)

Feynman's objection

Feynman's requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization

Number of parameters $\propto L^\alpha$ at most for system size L

Feynman's objection

Feynman's requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization

Number of parameters $\propto L^\alpha$ at most for system size L

2. Computable expectation values

ψ known $\implies \langle \mathcal{O}(x)\mathcal{O}(y) \rangle_\psi$ computable

Feynman's objection

Feynman's requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization

Number of parameters $\propto L^\alpha$ at most for system size L

2. Computable expectation values

ψ known $\implies \langle \mathcal{O}(x)\mathcal{O}(y) \rangle_\psi$ computable

3. Not oversensitive to the UV

no runaway minimization where higher and higher momenta get fitted

Feynman's objection

Feynman's requirement for variational wavefunctions in RQFT (1987)

1. Extensive parameterization

Number of parameters $\propto L^\alpha$ at most for system size L

2. Computable expectation values

ψ known $\implies \langle \mathcal{O}(x)\mathcal{O}(y) \rangle_\psi$ computable

3. Not oversensitive to the UV

no runaway minimization where higher and higher momenta get fitted

All methods so far break one at least:

- ▶ Hamiltonian truncation fails at 1 (but works fairly well through its renormalized refinements)
- ▶ Tensor networks succeed at 1 and 2 but fail (a priori) at 3

Continuous matrix product states

Continuous Matrix Product States

Introduced by Verstraete and Cirac in 2010

Definition

$$|Q, R\rangle = \text{tr} \left[\mathcal{P} \exp \left\{ \int_0^L dx \ Q \otimes \mathbb{1} + R \otimes \psi^\dagger(x) \right\} \right] |0\rangle_\Psi$$

- ▶ Q, R are $D \times D$ matrices,
- ▶ The trace is taken over this matrix space
- ▶ $[\psi(x), \psi^\dagger(y)] = \delta(x - y)$
- ▶ $\psi^\dagger(x)$ is non-relativistic creation operator (i.e. $\phi(x) = \frac{1}{\sqrt{2v}}[\psi(x) + \psi^\dagger(x)]$)
- ▶ $|0\rangle_\Psi$ is the associated Fock vacuum

Idea:

- ▶ From MPS: a continuum limit
- ▶ From QFT: a sort of generalized “non-commutative” coherent state

Computations

Some correlation functions

$$\langle \hat{\psi}(x)^\dagger \hat{\psi}(x) \rangle = \text{Tr} [e^{TL}(R \otimes \bar{R})]$$

$$\langle \hat{\psi}(x)^\dagger \hat{\psi}(0)^\dagger \hat{\psi}(0) \hat{\psi}(x) \rangle = \text{Tr} [e^{T(L-x)}(R \otimes \bar{R}) e^{Tx}(R \otimes \bar{R})]$$

$$\left\langle \hat{\psi}(x)^\dagger \left[-\frac{d^2}{dx^2} \right] \hat{\psi}(x) \right\rangle = \text{Tr} [e^{TL}([Q, R] \otimes [\bar{Q}, \bar{R}])]$$

with $T = Q \otimes \mathbb{1} + \mathbb{1} \otimes \bar{Q} + R \otimes \bar{R}$

Computations

Some correlation functions

$$\langle \hat{\psi}(x)^\dagger \hat{\psi}(x) \rangle = \text{Tr} [e^{TL}(R \otimes \bar{R})]$$

$$\langle \hat{\psi}(x)^\dagger \hat{\psi}(0)^\dagger \hat{\psi}(0) \hat{\psi}(x) \rangle = \text{Tr} [e^{T(L-x)}(R \otimes \bar{R}) e^{Tx}(R \otimes \bar{R})]$$

$$\left\langle \hat{\psi}(x)^\dagger \left[-\frac{d^2}{dx^2} \right] \hat{\psi}(x) \right\rangle = \text{Tr} [e^{TL}([Q, R] \otimes [\bar{Q}, \bar{R}])]$$

with $T = Q \otimes \mathbb{1} + \mathbb{1} \otimes \bar{Q} + R \otimes \bar{R}$

Example

Lieb-Liniger Hamiltonian

$$\mathcal{H} = \int_{-\infty}^{+\infty} dx \left[\frac{d\hat{\psi}^\dagger}{dx} \frac{d\hat{\psi}}{dx} - \mu \hat{\psi}^\dagger \hat{\psi} + c \hat{\psi}^\dagger \hat{\psi}^\dagger \hat{\psi} \hat{\psi} \right]$$

Solve by **minimizing**: $\langle Q, R | \mathcal{H} | Q, R \rangle = f(Q, R)$

State of the art on CMPS

Contrary to common beliefs, CMPS are fairly efficient

1. Fully variational calculations at $D = 256$ by Ganahl-Rincon-Vidal 2016
2. Recently Tuybens-De Nardis-Haegeman-Verstraete arXiv:2006.01801 included open-boundaries efficiently

Standard CMPS and relativistic fields

Applying cMPS to e.g. the ϕ^4 Hamiltonian

$$\langle Q, R | \hat{h}_{\phi^4} | Q, R \rangle = \infty$$

Oh no!

The short distance behavior of cMPS is the wrong one, even the free theory is hard to approximate.

A possible fix by Haegeman-Cirac-Osborne-Verschelde-Verstraete 2010:

$$H \rightarrow H_\Lambda := H + \frac{1}{\Lambda^2} \int dx \frac{(\partial_x \pi)^2}{2}$$

Going relativistic

Changing of operator basis

Towards relativistic CMPS

Local basis in position of the QFT: $\psi^\dagger, \phi, \pi, |0\rangle_\psi$

Diagonal basis of the free part: $a_k^\dagger, |0\rangle_a$

Bogoliubov transform

Go from $\hat{\psi}(x), \hat{\psi}^\dagger(x)$ to $a(p), a^\dagger(p)$ with

$$a(p) = \frac{1}{\sqrt{2}} \left(\sqrt{\omega_p} \hat{\phi}(p) + i \frac{\hat{\pi}(p)}{\sqrt{\omega_p}} \right) \quad \text{with} \quad \omega_p = \sqrt{p^2 + m^2}$$

which yields

$$H_0 = \int dp \omega_p \frac{1}{2} (a_p^\dagger a_p + a_p a_p^\dagger)$$

Go from $|0\rangle_\psi$ to $|0\rangle_a$

and

Go from $\psi(x)$ to $a(x) = \int dp a(p) e^{ipx} \neq \psi(x)$

Relativistic CMPS

Definition

$$|R, Q\rangle = \text{tr} \left\{ \mathcal{P} \exp \left[\int dx Q \otimes \mathbb{1} + R \otimes a^\dagger(x) \right] \right\} |0\rangle_a$$

Some properties

1. $|0, 0\rangle = |0\rangle_a$ is the ground state of H_0 hence exact CFT UV fixed point (because interaction super-renormalizable)
2. $\langle Q, R | h_{\phi^4} | Q, R \rangle$ is finite for all Q, R (not trivial)

Relativistic CMPS

Definition

$$|R, Q\rangle = \text{tr} \left\{ \mathcal{P} \exp \left[\int dx Q \otimes \mathbb{1} + R \otimes a^\dagger(x) \right] \right\} |0\rangle_a$$

Some properties

1. $|0, 0\rangle = |0\rangle_a$ is the ground state of H_0 hence exact CFT UV fixed point (because interaction super-renormalizable)
2. $\langle Q, R | h_{\phi^4} | Q, R \rangle$ is finite for all Q, R (not trivial)

$a(x)$ is not covariant but the state cannot be exactly Poincaré invariant anyway!

Consequence on the Hamiltonian

Hamiltonian density in $a(x)$ basis

H is local in $\psi(x)$, not in $a(x)$...

$$\begin{aligned} H = & \int dx_1 dx_2 D(x_1 - x_2) a^\dagger(x_1) a(x_2) \\ & + \int dx_1 dx_2 dx_3 dx_4 K(x_1, x_2, x_3, x_4) a(x_1) a(x_2) a(x_3) a(x_4) + 4a^\dagger a a a + 3a^\dagger a^\dagger a a \\ & + \text{h.c.} \end{aligned}$$

But fortunately exponentially decreasing: K decays $\propto e^{-m|x|}$ for $|x| \gg m$.

The variational algorithm

Procedure:

Compute $e_0 = \langle Q, R | h_{\phi^4} | Q, R \rangle$ and $\nabla_{Q, R} e_0$

Minimize e_0 with **TDVP** aka gradient descent with a metric

Computations of e_0 and ∇e_0 in a nutshell:

1. Contains an algebraic part identical to standard cMPS
2. Involves quadruple integrals without analytic solutions

Initial v1 idea: compute the integrals with Quadpack \rightarrow cost D^6

Computing vertex operators

Main insight

$\langle :e^{b\phi(x)}:\rangle_{QR}$ computable by solving an ODE with cost $\propto D^3$

Computing vertex operators

Main insight

$\langle :e^{b\phi(x)}: \rangle_{QR}$ computable by solving an ODE with cost $\propto D^3$

Going from $\phi(x)$ to $a(x)$ gives:

$$\begin{aligned}\langle :e^{b\phi(0)}: \rangle_{QR} &= \left\langle \exp \left[b \int J(x) a^\dagger(x) \right] \exp \left[b \int J(x) a(x) \right] \right\rangle_{Q,R} \\ &= Z_{bJ, bJ}\end{aligned}\quad (1)$$

with

$$J(x) = \int dk \frac{1}{\sqrt{2\omega_k}} e^{ikx} \quad (2)$$

and Z_{j_1, j_2} is just the generating functional

$$Z_{j_1, j_2} = \text{tr} \left[\mathcal{P} \exp \int \mathbb{T} + j_1(x) R \otimes \mathbb{1} + j_2(x) \mathbb{1} \otimes \bar{R} dx \right] \quad (3)$$

Algorithm v2 $\propto D^3$

1. Compute $Z_{bJ, bJ}$ by solving the ODE

$$\partial_x \rho = \mathcal{L} \rho + bJ(x)(R\rho + \rho R^\dagger)$$

and taking the trace at $x = +\infty$

Algorithm v2 $\propto D^3$

1. Compute $Z_{bJ, bJ}$ by solving the ODE

$$\partial_x \rho = \mathcal{L} \rho + bJ(x)(R\rho + \rho R^\dagger)$$

and taking the trace at $x = +\infty$

2. Compute all other expectation values, e.g. $\langle : \phi^4 : \rangle$ by $\frac{\partial}{\partial_b}$

Algorithm v2 $\propto D^3$

1. Compute $Z_{bJ, bJ}$ by solving the ODE

$$\partial_x \rho = \mathcal{L} \rho + bJ(x)(R\rho + \rho R^\dagger)$$

and taking the trace at $x = +\infty$

2. Compute all other expectation values, e.g. $\langle : \phi^4 : \rangle$ by $\frac{\partial}{\partial_b}$
3. Compute the gradient with same cost by solving the adjoint ODE (aka backprop.)

Algorithm v2 $\propto D^3$

1. Compute $Z_{bJ, bJ}$ by solving the ODE

$$\partial_x \rho = \mathcal{L} \rho + bJ(x)(R\rho + \rho R^\dagger)$$

and taking the trace at $x = +\infty$

2. Compute all other expectation values, e.g. $\langle : \phi^4 : \rangle$ by $\frac{\partial}{\partial_b}$
3. Compute the gradient with same cost by solving the adjoint ODE (aka backprop.)

Bottom line

Solve with cost $\propto D^3$ all theories with $V(\phi)$ poly : ϕ^n : or exponential : $e^{b\phi}$: (including Sine/Sinh-Gordon and thus Fermionic theories via bosonization)

Scaling comparison with renormalized Hamiltonian truncation

Ren. Hamiltonian truncation

IR cutoff L , energy truncation E_T

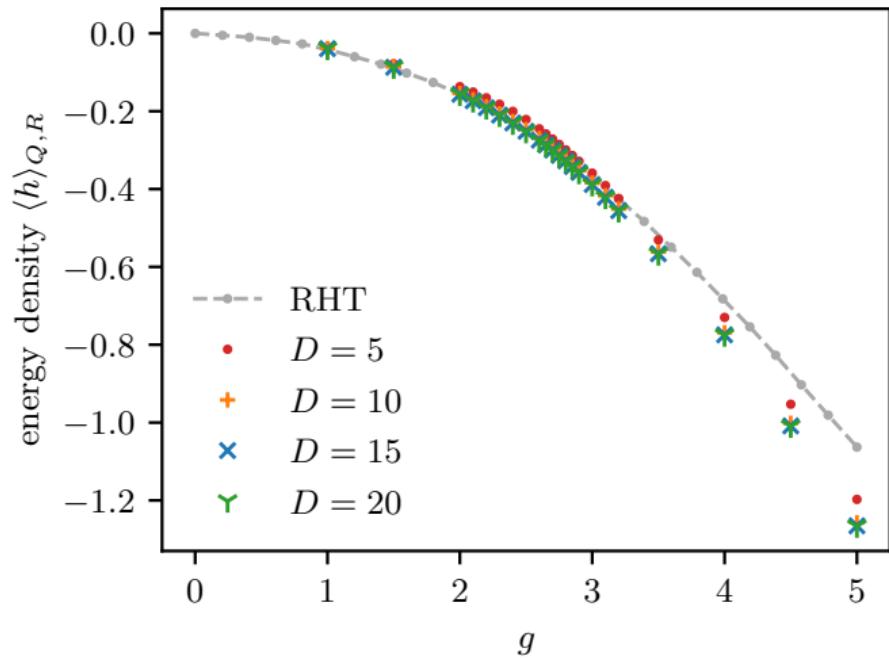
- ▶ Uses a vector space
- ▶ Function to minimize is quadratic, hence linear problem
- ▶ Number of parameters $\propto e^{L \times E_T}$
- ▶ Error $\propto 1/E_T^3$

Scaling comparison with renormalized Hamiltonian truncation

Ren. Hamiltonian truncation

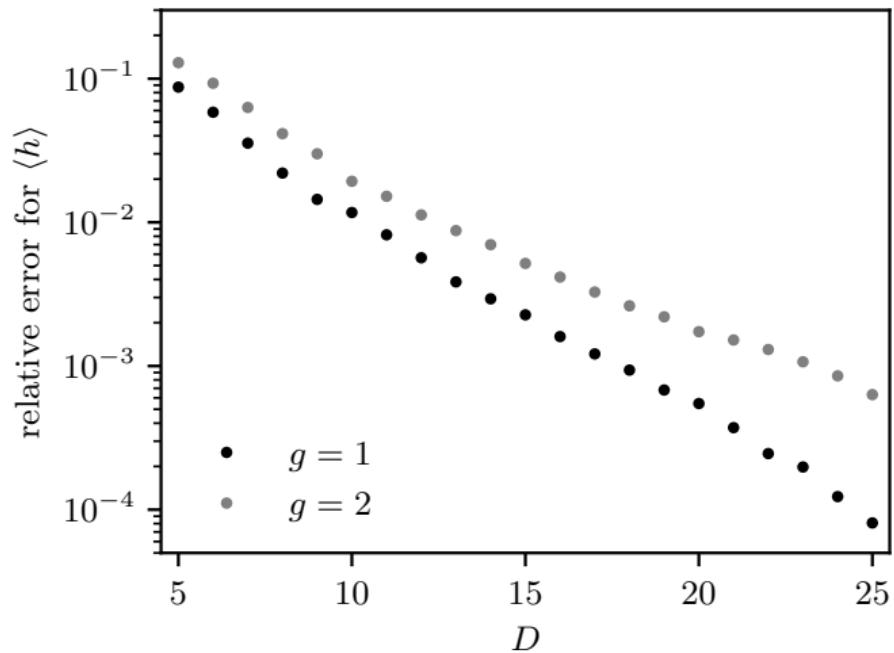
IR cutoff L , energy truncation E_T

- ▶ Uses a vector space
- ▶ Function to minimize is quadratic, hence linear problem
- ▶ Number of parameters $\propto e^{L \times E_T}$
- ▶ Error $\propto 1/E_T^3$


Relativistic CMPS

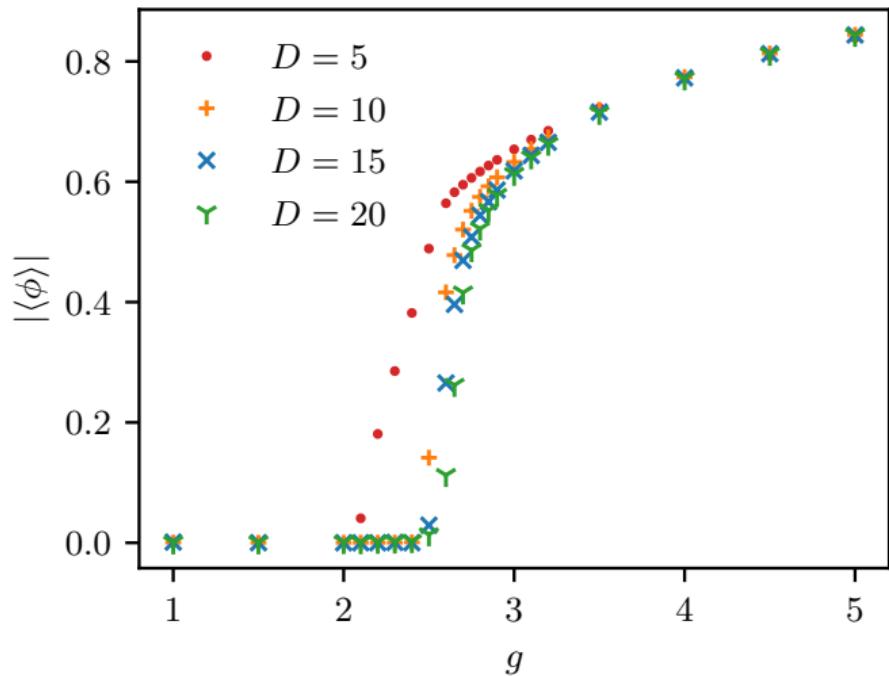
entanglement truncation D

- ▶ Uses a manifold
- ▶ Minimization is a priori non-trivial but doable
- ▶ Number of parameters $\propto D^2$
- ▶ Error $\mathcal{O}(1/D^\alpha)$, $\forall \alpha$ (folklore)

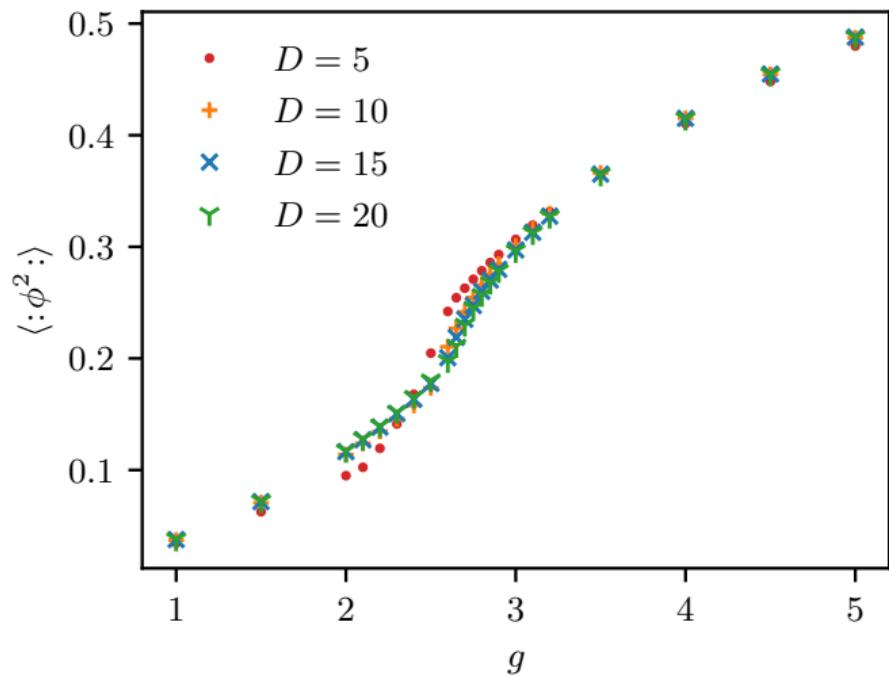

Results

Energy density

Results


Error in energy density

Approximately exact value extrapolated from $D = 32$ (bootstrapped error $< 10^{-4}$). More precise than high precision RHT. Pushable to $D > 40$


Results

Magnetization $\langle \phi \rangle$

Results

$$\langle :\phi^2:\rangle$$

Open problems and perspectives

New entanglement entropy

Conjecture

For the notion of space locality is induced by $a^\dagger(x), a(x)$ (instead of usual $\phi(x)$), gapped QFT ground states verify the area law with a **finite** prefactor.

- ▶ This entanglement entropy is weird from a relativistic point of view
- ▶ But captures the notion of approximability with tensor network states

Useful notion? Can the conjecture be proved?

More general short distance behavior

RCMPS have the short distance behavior of a free CFT (fairly generic in HEP)

Can one deal with relevant perturbations of other UV CFTs (e.g. Ising)?

Equivalent of $a(x)$? Coulomb gas construction?

Higher dimensions

RQFT difficulty

Normal ordering / tadpole cancellation no longer sufficient

Wightman QFT still have Hilbert space, but less explicit (not free Fock space)

Higher dimensions

RQFT difficulty

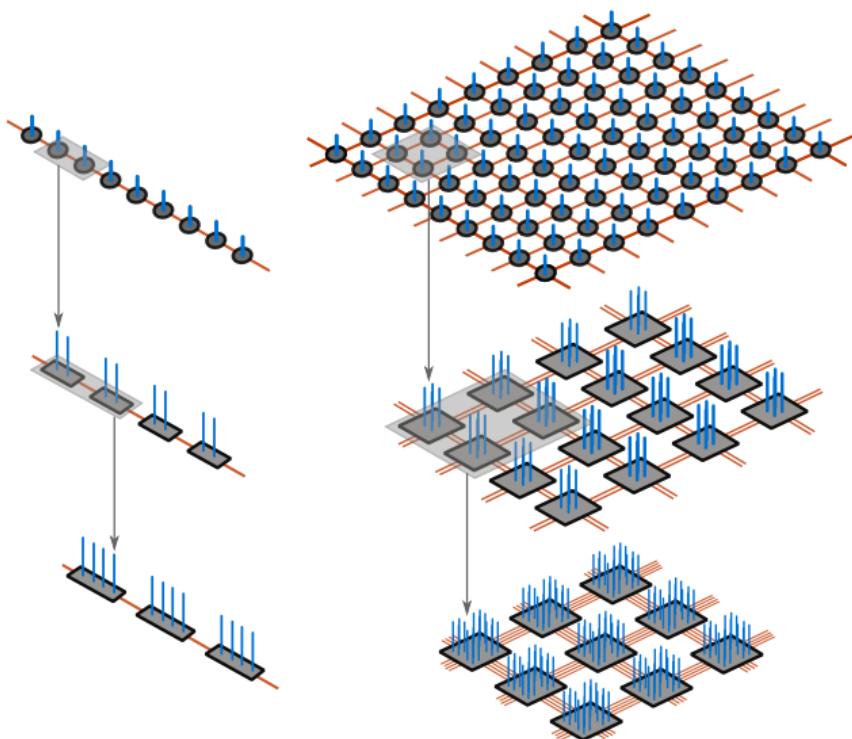
Normal ordering / tadpole cancellation no longer sufficient

Wightman QFT still have Hilbert space, but less explicit (not free Fock space)

(non-relativistic) Tensor network difficulty

Continuous tensor network states less developed in $2+1$

1. Proposal with Ignacio Cirac: R, Q promoted to fields, needed to preserve Euclidean invariance
2. Successfully tested on Gaussian problems with Teresa Karanikolaou (also independently in Ghent by Bastiaan Aelbrecht)
3. Need to solve a boundary $1+1$ RQFT to compute more general expectation values

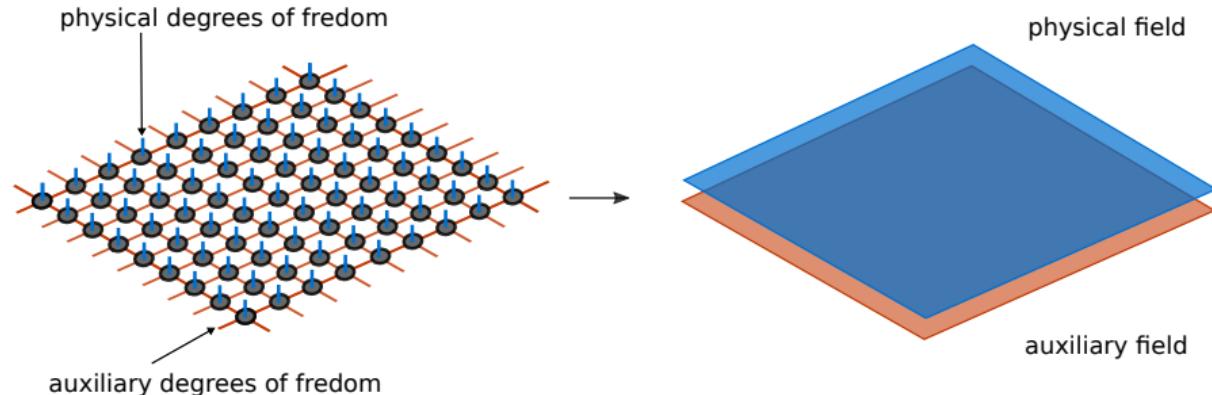

Non-relativistic $2+1$ now seems feasible thanks to RCMPS...

Summary of relativistic CMPS

1. Ansatz for $1+1$ relativistic QFT
2. No cutoff, UV or IR
3. UV is captured exactly even at $D = 0$
4. Efficient (cost poly D , error at most superpoly $1/D$) and now competitive
5. Rigorous (variational)

What about $d \geq 2$

Continuous Tensor Networks: blocking



Upon blocking:

- ◊ The **physical** Hilbert space dimension increases
- ◊ The **bond** (auxiliary space) dimension D increases too

Now from bottom to top, fine graining will yield zero bond dimension.

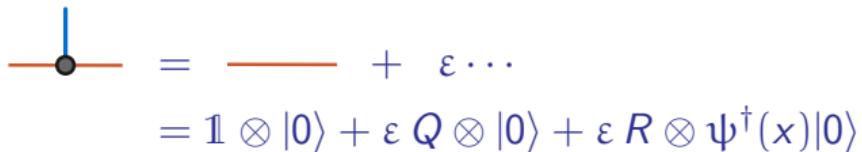
Result

AT, J. I. Cirac, 2019

Continuous tensor network state (heuristically)

State $|V, \alpha\rangle$ of $d + 1$ QFT from an auxiliary d dimensional theory of random fields ϕ :

$$|V, \alpha\rangle = \int \mathcal{D}\phi \exp \left\{ - \int d^d x \mathcal{L}_V[\phi(x)] - \alpha[\phi(x)] \hat{\psi}^\dagger(x)_{\text{creation}} \right\} |\Omega\rangle$$


Choice of tensor around which to expand...

For **MPS**, not much choice:

$$\begin{aligned} &= \text{---} + \varepsilon \dots \\ &= \mathbb{1} \otimes |0\rangle + \varepsilon Q \otimes |0\rangle + \varepsilon R \otimes \psi^\dagger(x)|0\rangle \end{aligned}$$

Choice of tensor around which to expand...

For **MPS**, not much choice:

$$\begin{aligned} \text{---} \bullet \text{---} &= \text{---} + \varepsilon \dots \\ &= \mathbb{1} \otimes |0\rangle + \varepsilon Q \otimes |0\rangle + \varepsilon R \otimes \psi^\dagger(x) |0\rangle \end{aligned}$$

For **TNS** in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \cancel{\text{---}}$
 \implies trivial geometry

Choice of tensor around which to expand...

For **MPS**, not much choice:

$$\begin{array}{c} \text{---} \bullet \text{---} \\ | \qquad | \end{array} = \text{---} + \varepsilon \dots$$
$$= \mathbb{1} \otimes |0\rangle + \varepsilon Q \otimes |0\rangle + \varepsilon R \otimes \psi^\dagger(x)|0\rangle$$

For **TNS** in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \cancel{\text{---}}$
 \implies trivial geometry
2. Take two identities $T^{(0)} = \cancel{\text{---}}$
 \implies breakdown of Euclidean invariance

Choice of tensor around which to expand...

For **MPS**, not much choice:

$$\begin{array}{c} \text{---} \text{---} \text{---} \\ | \quad | \quad | \\ \text{---} \text{---} \text{---} \end{array} = \text{---} + \varepsilon \dots$$
$$= \mathbb{1} \otimes |0\rangle + \varepsilon Q \otimes |0\rangle + \varepsilon R \otimes \psi^\dagger(x)|0\rangle$$

For **TNS** in $d \geq 2$, many options:

1. Take a δ between all legs \sim GHZ state $T^{(0)} = \cancel{\text{---}}$
 \implies trivial geometry
2. Take two identities $T^{(0)} = \text{---} \times \text{---}$
 \implies breakdown of Euclidean invariance
3. Take the sum of pairs of identities in both directions
 $T^{(0)} = \text{---} \times \text{---} + \text{---} \times \text{---}$

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagup \quad \diagdown \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ \frac{-1}{2} \sum_{k=1}^D [\phi_k(1) - \phi_k(2)]^2 + [\phi_k(2) - \phi_k(3)]^2 \right. \\ \left. + [\phi_k(3) - \phi_k(4)]^2 + [\phi_k(4) - \phi_k(1)]^2 \right\}$$

The indices ϕ are in \mathbb{R}^D (and **not** $1, \dots, D$)

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagup \quad \diagdown \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ \frac{-1}{2} \sum_{k=1}^D [\phi_k(1) - \phi_k(2)]^2 + [\phi_k(2) - \phi_k(3)]^2 \right. \\ \left. + [\phi_k(3) - \phi_k(4)]^2 + [\phi_k(4) - \phi_k(1)]^2 \right\}$$

The indices ϕ are in \mathbb{R}^D (and **not** $1, \dots, D$)

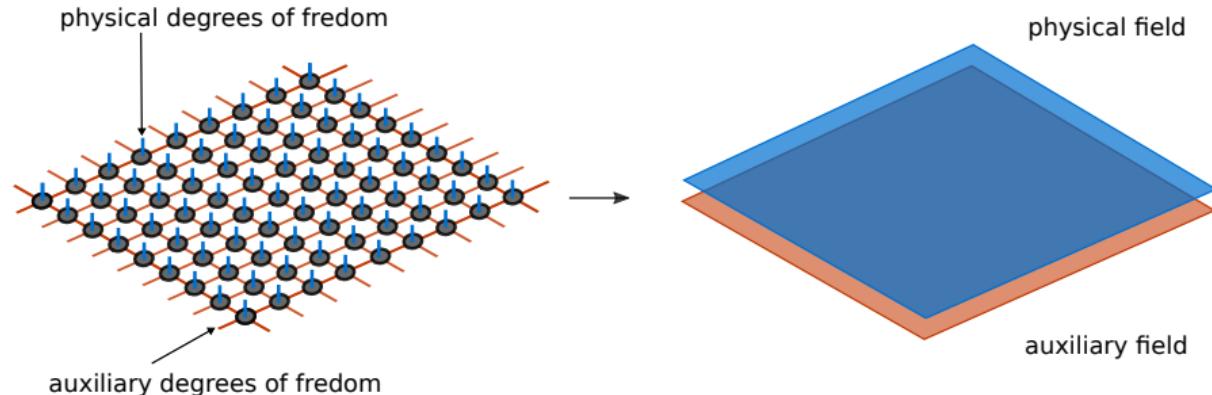
2 – And add a “correction”:

$$\exp \left\{ -\varepsilon^2 V [\phi(1), \dots, \phi(4)] + \varepsilon^2 \alpha [\phi(1), \dots, \phi(4)] \psi^\dagger(x) \right\}$$

Ansatz

1 – Take a “Trivial” tensor:

$$T_{\phi(1), \phi(2), \phi(3), \phi(4)}^{(0)} = \begin{array}{c} \phi(2) \quad \phi(3) \\ \diagup \quad \diagdown \\ \phi(1) \quad \phi(4) \end{array}$$
$$\sim \exp \left\{ \frac{-1}{2} \sum_{k=1}^D [\phi_k(1) - \phi_k(2)]^2 + [\phi_k(2) - \phi_k(3)]^2 \right. \\ \left. + [\phi_k(3) - \phi_k(4)]^2 + [\phi_k(4) - \phi_k(1)]^2 \right\}$$

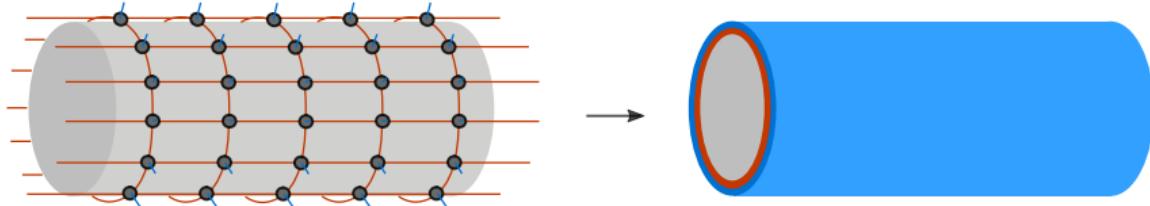

The indices ϕ are in \mathbb{R}^D (and **not** $1, \dots, D$)

2 – And add a “correction”:

$$\exp \left\{ -\varepsilon^2 V [\phi(1), \dots, \phi(4)] + \varepsilon^2 \alpha [\phi(1), \dots, \phi(4)] \psi^\dagger(x) \right\}$$

3 – Realize tensor contraction = functional integral and trivial tensor gives free field measure.

Result


AT, J. I. Cirac, 2019

Continuous tensor network state (heuristically)

State $|V, \alpha\rangle$ of $d+1$ QFT from an auxiliary d dimensional theory of random fields ϕ :

$$|V, \alpha\rangle = \int \mathcal{D}\phi \exp \left\{ - \int d^d x \mathcal{L}_V[\phi(x)] - \alpha[\phi(x)] \hat{\psi}^\dagger(x)_{\text{creation}} \right\} |\Omega\rangle$$

Operator definition

$|V, \alpha\rangle =$

$$\text{tr} \left[\mathcal{T} \exp \left(- \int_0^T d\tau \int_S dx \frac{\hat{\pi}_k(x) \hat{\pi}_k(x)}{2} + \frac{\nabla \hat{\phi}_k(x) \nabla \hat{\phi}_k(x)}{2} + V[\hat{\phi}(x)] - \alpha[\hat{\phi}(x)] \psi^\dagger(\tau, x) \right) \right]$$

where:

- $\hat{\phi}_k(x)$ and $\hat{\pi}_k(x)$ are D independent canonically conjugated pairs of (auxiliary) field operators: $[\hat{\phi}_k(x), \hat{\phi}_l(y)] = 0$, $[\hat{\pi}_k(x), \hat{\pi}_l(y)] = 0$, and $[\hat{\phi}_k(x), \hat{\pi}_l(y)] = i\delta_{k,l} \delta(x - y)$ acting on a space of $d - 1$ dimensions.

Wave-function definition

A generic state $|\Psi\rangle$ in Fock space can be written:

$$|\Psi\rangle = \sum_{n=0}^{+\infty} \int_{\Omega^n} \frac{\varphi_n(x_1, \dots, x_n)}{n!} \psi^\dagger(x_1) \dots \psi^\dagger(x_n) |0\rangle$$

where φ_n is a symmetric n -particle wave-function

Functional integral representation

$$\varphi_n(x_1, \dots, x_n) = \langle \alpha[\phi(x_1)] \dots \alpha[\phi(x_n)] \rangle_{\text{aux}}$$

with:

$$\langle \cdot \rangle_{\text{aux}} = \int \mathcal{D}\phi \cdot B(\phi|_{\partial\Omega}) \exp \left[-\frac{1}{2} \int_{\Omega} d^d x [\nabla \phi_k(x)]^2 + V[\phi(x)] \right]$$

- \sim Ansatz wave-function for Quantum Hall, but CFT \rightarrow QFT

Expressivity and stability

How big are cTNS?

Stability

The sum of two cTNS of bond field dimension D_1 and D_2 is a cTNS with bond field dimension $D \leq D_1 + D_2 + 1$:

$$|V_1, \alpha_1\rangle + |V_2, \alpha_2\rangle = |W, \beta\rangle$$

Expressiveness

All states in the Fock space can be approximated by cTNS:

- ▶ A field coherent state is a cTNS with $D = 1$
- ▶ Stability allows to get all sums of field coherent states

Computations

Define generating functional for normal ordered correlation functions

$$\mathcal{Z}_{j',j} = \frac{1}{\langle V, \alpha | V, \alpha \rangle} \langle V, \alpha | \exp \left(\int dx j'(x) \psi^\dagger(x) \right) \exp \left(\int dx j(x) \psi(x) \right) | V, \alpha \rangle$$

Operator representation

$$\mathcal{Z}_{j',j} = \text{tr} \left[B \otimes B^* \mathcal{T} \exp \left\{ \int_{-T/2}^{T/2} \left(T_{j',j} - \int_S j \cdot j' \right) \right\} \right]$$

with **transfer matrix**:

$$T_{j',j} = \int_S dx \mathcal{H}(x) \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}^*(x) + \left(\alpha[\hat{\phi}(x)] + j'(x) \right) \otimes \left(\alpha[\hat{\phi}(x)]^* + j(x) \right)$$

$$\text{and } \mathcal{H}(x) = \sum_{k=1}^D \frac{[\hat{\pi}_k(x)]^2 + [\nabla \hat{\phi}_k(x)]^2}{2} + V[\hat{\phi}(x)]$$

⇒ cMPS brought us from 1 to 0, cTNS bring us from d to $d-1$.

Contraction

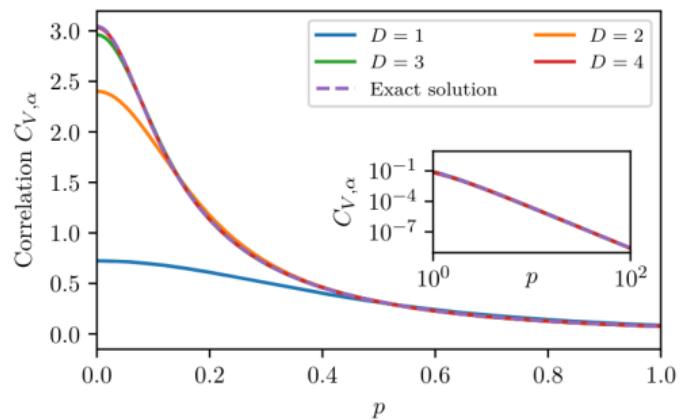
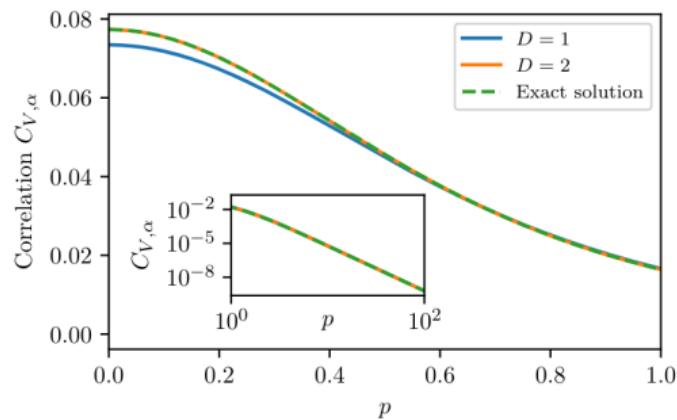
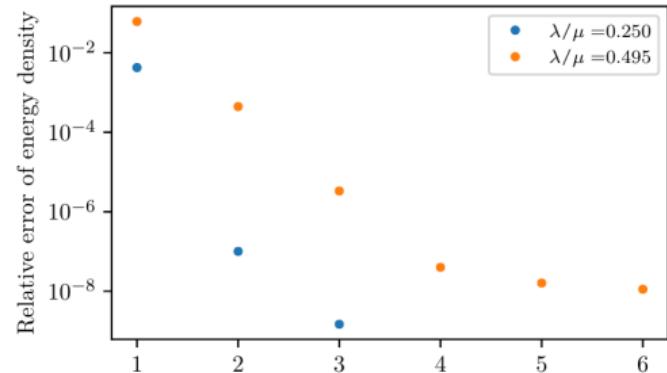
- ▶ In general, need boundary relativistic CMPS to contract
- ▶ If $V(\phi) = V^{(0)}\phi_i V_{ij}^{(2)}\phi_j$
and $\alpha(\phi) = \alpha^{(0)} + \alpha_i^{(1)}\phi_i$
Gaussian \rightarrow exactly contractible

Example:

$$H = \int \nabla \hat{\psi}^\dagger \nabla \hat{\psi} + \mu \psi^\dagger \hat{\psi} - \lambda (\hat{\psi}^\dagger \hat{\psi}^\dagger + \hat{\psi} \hat{\psi})$$

Gaussian example

Work done by Teresa Karanikolaou with help from Patrick Emonts (PRR 2021)

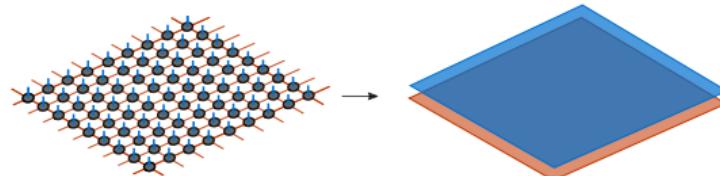



$$H = \int_{\mathbb{R}^2} \nabla \hat{\psi}^\dagger \nabla \hat{\psi} + \mu \psi^\dagger \hat{\psi} - \lambda (\hat{\psi}^\dagger \hat{\psi}^\dagger + \hat{\psi} \hat{\psi})$$

in $d = 2$ energy density $\langle h \rangle$ divergent, but CTNS also divergent!

$$\langle h \rangle = e_0^r + \log(\Lambda) e_0^\infty \quad (4)$$

1. Analytically minimize the divergent part
2. Numerically minimize the remain finite (renormalized part)

Energy and correlation functions



Summary of CTNS

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi \exp \left\{ - \int_{\Omega} d^d x \frac{1}{2} \sum_{k=1}^D [\nabla \phi_k(x)]^2 + V[\phi(x)] - \alpha[\phi(x)] \psi^\dagger(x) \right\} |0\rangle$$

Continuous tensor network states are natural continuum limits of tensor network states and natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks
2. Can be made Euclidean invariant
3. **Motto of tensor networks:** trade a dimension for a variational optimization
4. Still needs to be used to approximate non-trivial non-Gaussian ground states

