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Quantum many-body problem on the lattice

Typical many-body problem

N spins on a lattice
H =

⊗n
j=1 Hj with Hj = C2

|ψ⟩ =
∑

ci1,i2,··· ,in |i1, i2, · · · iN⟩

Problem:

Finding the low energy states of

H =

N∑
k=1

hk

is hard because dim H = 2N for spins
Fugaku – 2 EFLOPS – 150 PB
cannot do 4 × 4 × 4 spins
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Open problems in theoretical physics

Fundamental Physics

Strong force between
quarks and gluons

Chemistry

Atoms interacting to
form molecules

Condensed matter

Cuprate perovskites
superconductors



Consequences

Nuclear Physics

nuclei properties
only measured in
test reactors

Catalysis

Ammonia costly to
produce
1% of CO2 prod.

High Tc
superconductors

No room temp. supra
No flying cars
Costly electricity transport



Many options

Many popular approximations to go beyond standard perturbation theory
▶ Dynamical mean field theory (DMFT) for condensed matter
▶ Density functional theory (DFT) for chemistry
▶ Quantum Monte-Carlo
▶ Diagrammatic Monte-Carlo
▶ Resummation/resurgence

2 bleeding edge promising approaches
1. Quantum computing
2. Classical compression (variational method)
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Quantum Computing

If quantum mechanics is difficult to simulate, make the simulator quantum
mechanical

Trapped ions
(ionQ, Maryland,Honeywell)

Superconducting circuits
(IBM, Google, QUANTIC, Alice&Bob)

▶ highly non trivial: not just analog simulation, ultimately digital quantum
computation with error correction



The direct compression approach

Variational method for ground state search

1. Guess a manifold M ⊂ H with few parameters ν i.e. dimM ≪ dimH

2. Tune ν to minimize energy ν = argminν∈M
⟨ν|H|ν⟩
⟨ν|ν⟩ and get

|ground state⟩ ≃ |ν⟩

Reason for compression (classical)

cat image “typical” image

atypical =⇒ compressible

Reason for compression (quantum)

low energy state random state

area law = atypical =⇒ compressible
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Matrix Product States (MPS) aka tensor trains

Definition
A MPS for a translation invariant chain of N spins/qubits (Hk = C2) with
periodic boundary conditions is a state

|ψ(A)⟩ :=
∑

i1,i2,...,iN={0,1}

tr [Ai1Ai2 · · ·AiN ] |i1, i2, . . . , iN⟩

where A0 and A1 are 2 matrices ∈ MD(C).

▶ The matrices Ai for i = ±1 are the free parameters
▶ The size D of the matrices is the bond dimension (quantifies freedom)
▶ Correlation functions (and ⟨H⟩) efficiently computable
▶ Optimizing over A provably gives good results for gapped H



Tensor network states in a nutshell

.zip or .jpg for complex quantum states that appear in Nature

1. Exponential reduction: 2N −→ N × D2d parameters
[N number of spins, D amount of entanglement, d space dimension (1, 2, 3)]

2. Efficient compression: compression error ⩽ e−D or 1/superpoly(D)
[For a large number of a priori non-trivial problems]

[History: 1992 for d = 1, 2004 for d ⩾ 2, 2016 for 2d-Hubbard at T = 0]



Tensor network states in QUANTIC

2 potential uses for the many-body problem
1. direct – Use tensor networks to solve many instances of the many body

problem directly
2. indirect – Use tensor networks to simulate small clusters of physical qubits,

to find the best error tolerant blocks, to then make a full fledged quantum
computer, to then solve all instances of the many body problem


