
The variational method for relativistic fields

Antoine Tilloy
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Strategies to beat interacting quantum field theory
Two ways to attack real world quantum field theories non-perturbatively

1. Start simpler so that it becomes simpler [e.g. φ4
2]

2. Start more complex so that it becomes simpler [e.g. N = 4 SYM]

φ4
2 - pile of dirt QCD - Everest N = 4 SYM - Chrysler building

more on this on tilloy.wordpress.com

tilloy.wordpress.com


An example of well defined field theory

Renormalized φ4
2 theory

H =

∫
dx : π2 :a

2 +
: (∇φ)2 :a

2 +
m2

2 : φ2 :a +g : φ4 :a

(note that : ♦ :a depends on m)

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g � m2 (perturbation theory)
4. Phase transition around fc = g

4m2 = 11 i.e. g ' 2.7 in mass units



Two (main) games in town

Perturbation theory
+ resummation

state of the art is O(g8)

arXiv:1805.05882
Serone, Spada, Villadoro

Lattice Monte-Carlo

arXiv:1807.03381
Bronzin, De Palma, Guagnelli



The direct compression approach

Variational method for ground state search

1. Guess a manifold M ⊂H with few parameters ν i.e. dimM� dimH

2. Tune ν to minimize energy ν = argminν∈M
〈ν|H|ν〉
〈ν|ν〉 and get

|ground state〉 ' |ν〉

Reason for compression (classical)

cat image “typical” image

atypical =⇒ compressible

Reason for compression (quantum)

low energy state random state

area law = atypical =⇒ compressible



The direct compression approach

Variational method for ground state search

1. Guess a manifold M ⊂H with few parameters ν i.e. dimM� dimH

2. Tune ν to minimize energy ν = argminν∈M
〈ν|H|ν〉
〈ν|ν〉 and get

|ground state〉 ' |ν〉

Reason for compression (classical)

cat image “typical” image

atypical =⇒ compressible

Reason for compression (quantum)

low energy state random state

area law = atypical =⇒ compressible



The direct compression approach

Variational method for ground state search

1. Guess a manifold M ⊂H with few parameters ν i.e. dimM� dimH

2. Tune ν to minimize energy ν = argminν∈M
〈ν|H|ν〉
〈ν|ν〉 and get

|ground state〉 ' |ν〉

Reason for compression (classical)

cat image “typical” image

atypical =⇒ compressible

Reason for compression (quantum)

low energy state random state

area law = atypical =⇒ compressible



Feynman’s criticism

Feynman’s requirement in a nutshell

1. Extensive parameterization
Number of parameters ∝ Lα at most for system size L (not ∝ eL)

2. Computable expectation values
ψ known =⇒ 〈O(x)O(y)〉ψ computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted



Elegantly swallowing the bullet

Example: naive Hamiltonian truncation
With an IR cutoff L, momenta are discrete. Take as submanifold M the vector
space spanned by:

|k1, k2, · · · , kr〉 = a†k1
a†k2
· · · a†kr

|0〉a
such that 〈k1k2 · · · kr |H |k1k2 · · · kr〉 6 Etrunc → finite dimensional

Breaks extensiveness
I number of parameters ∝ eL×Etrunc

I error ∝ E−3
trunc (with renormalization refinements)

still good results, see Rychkov & Vitale arXiv:1412.3460



Relativistic continuous matrix product states
RCMPS: A variational ansatz to solve 1 + 1d relativitic QFT without

discretization or cutoff and to arbitrary precision

Definition
(Verstraete & Cirac 2010 for non-relativistic −→ AT 2021 for relativistic)
A RCMPS is a manifold of states parameterized by 2 (D × D) matrices Q,R

|Q,R〉 = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0〉a

with
I a(x) = 1

2π

∫
dk eikx ak where ak = 1√

2

(√
ωp φ̂(p) + i π̂(p)√

ωp

)
I trace taken over CD

I P path-ordering exponential



Basic properties of RCMPS

|Q,R〉 = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0〉a

Feynman’s checklist:

1. Extensive because of P exp
∫

2. Obervables computable at cost D3 (non trivial!)
requires [a(x), a†(y)] = δ(x − y) i.e. quantum noise techniques

3. No UV problems
|0, 0〉 = |0〉a is the ground state of H0 hence exact CFT UV fixed point
〈Q,R |hφ4 |Q,R〉 is finite for all Q,R (not trivial!)



The variational algorithm

Procedure:
Compute e0 = 〈Q,R |hφ4 |Q,R〉 and ∇Q,Re0
Minimize e0 with TDVP aka gradient descent with a metric

Computations of e0 and ∇e0 in a nutshell:
1. Vb = 〈:ebφ(x) :〉QR computable by solving an ODE with cost ∝ D3

2. 〈:φn :〉QR computable doing ∂n
bVb

∣∣∣
b=0

→ ∝ D3

3. e0 = 〈h〉QR computable by summing such terms at cost D3 → ∝ D3

4. ∇e0 computable by solving the adjoint ODE (backpropagation) → ∝ D3



Results
Energy density
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Results
Error in energy density

5 10 15 20 25

D

10−4

10−3

10−2

10−1

re
la

ti
v
e

er
ro

r
fo

r
〈h
〉

g = 1

g = 2

Approximately exact value extrapolated from D = 32 (boostrapped error
< 10−4). More precise than high precision RHT. Pushable to D > 40



Results
Magnetization 〈φ〉
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Results
〈: φ2 :〉
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Scaling comparison

Ren. Hamiltonian truncation
IR cutoff L, energy truncation ET

I Uses a vector space
I Function to minimize is

quadratic, hence linear problem
I Number of parameters ∝ eL×ET

I Error ∝ 1/E 3
T

Relativistic CMPS
entanglement truncation D
I Uses a manifold
I Minimization is a priori

non-trivial but doable
I Number of parameters ∝ D2

I Error o(1/Dα), ∀ α (folklore)
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Summary

|Q,R〉 = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0〉a

1. Ansatz for 1 + 1 relativistic QFT
2. No cutoff, UV or IR, extensive, computable
3. UV is captured exactly even at D = 0
4. Efficient (cost poly D, error 1/superpoly D ) and now competitive
5. Rigorous (variational)


