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Strategies to beat interacting quantum field theory

Two ways to attack real world quantum field theories non-perturbatively

1. Start simpler so that it becomes simpler [e.g. d3]

2. Start more complex so that it becomes simpler [e.g. N =4 SYM]
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more on this on tilloy.wordpress.com


tilloy.wordpress.com

An example of well defined field theory

Renormalized ¢3 theory
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(note that : <> :, depends on m)

1. Rigorously defined relativistic QF T without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g < m? (perturbation theory)

4. Phase transition around f, = ;£; = 11 i.e. g ~ 2.7 in mass units



Two (main) games in town

Perturbation theory
+ resummation
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Lattice Monte-Carlo
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The direct compression approach

Variational method for ground state search

1. Guess a manifold M C 7 with few parameters v i.e. dimM < dim.#
(v|H|v)

2. Tune v to minimize energy v = argmin, ¢y Iy

and get
lground state) ~ |v)
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Reason for compression (classical)

cat image “typical” image

atypical = compressible



The direct compression approach

Variational method for ground state search

1. Guess a manifold M C 7 with few parameters v i.e. dimM < dim.#

C e . . <‘v|H|‘v>
2. Tune v to minimize energy v = argminy ey “tyjvy and get
lground state) ~ |v)
Reason for compression (classical) Reason for compression (quantum)

cat image “typical” image low energy state random state

atypical = compressible area law = atypical = compressible



Feynman'’s criticism

Difficulties in Applying the Variational

Principle to Quantum Field Theories!

so I tried to do something along these lines with quantum chromodynamics. So
I'm talking on the subject of the application of the variational principle to field
theoretic problems, but in particular to quantum chromodynamics.

I'm going to give away what I want to say, which is that I didn’t get anywhere!
I got very discouraged and I think I can see why the variational principle is not
very useful. So I want to take, for the sake of argument, a very strong view —
which is stronger than I really believe — and argue that it is no damn good at all!

Feynman'’s requirement in a nutshell

1. Extensive parameterization
Number of parameters oc L% at most for system size L (not o< el)

2. Computable expectation values
P known = (O(x)O(y))y, computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted



Elegantly swallowing the bullet

Example: naive Hamiltonian truncation

With an IR cutoff L, momenta are discrete. Take as submanifold .# the vector
space spanned by:
lkuy oy -y k) = af af, -+ al ]0),

such that (kiko - - k,|H|kiko - - - k) < Equne —  finite dimensional

Breaks extensiveness

» number of parameters oc el Eune

» error o< E;2 . (with renormalization refinements)

still good results, see Rychkov & Vitale arXiv:1412.3460



Relativistic continuous matrix product states

RCMPS: A variational ansatz to solve 1 + 1d relativitic QF T without
discretization or cutoff and to arbitrary precision

Definition
(Verstraete & Cirac 2010 for non-relativistic —> AT 2021 for relativistic)
A RCMPS is a manifold of states parameterized by 2 (D x D) matrices @, R

|Q,R) =tr {’Pexp de Q®1+R® aT(x)] } 0),

with
> a(x) = i [ dk e™ay where a, = \% (,/wp (T)(p) + i?—%)
» trace taken over CP
» P path-ordering exponential



Basic properties of RCMPS

|Q,R) =tr {?exp de RR1T+R® aT(x)] } 10),

Feynman's checklist:

1. Extensive because of Pexp [

2. Obervables computable at cost D? (non trivial!)
requires [a(x), af(y)] = 8(x — y) i.e. quantum noise techniques

3. No UV problems
|0,0) = |0), is the ground state of Hy hence exact CFT UV fixed point
(Q, Rlhgs1Q, R) is finite for all Q, R (not triviall)



The variational algorithm

Procedure:
Compute gy = (Q, R|he4|Q, R) and Vg reg
Minimize ey with TDVP aka gradient descent with a metric

Computations of ¢y and V¢ in a nutshell:
1. V, = (:e?®™):) or computable by solving an ODE with cost oc D3

2. (:¢":)gr computable doing 37V, — o« D3

3. ey = (h)qr computable by summing such terms at cost D® — oc D3
4. Ve, computable by solving the adjoint ODE (backpropagation) — oc D3



Results

Energy density

energy density (h)o,r
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Results
Error in energy density
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Approximately exact value extrapolated from D = 32 (boostrapped error
< 10™*). More precise than high precision RHT. Pushable to D > 40



Results
Magnetization ()
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Scaling comparison

Ren. Hamiltonian truncation
IR cutoff L, energy truncation Et
» Uses a vector space

» Function to minimize is
quadratic, hence linear problem

» Number of parameters oc et *E7

» Error < 1/E3



Scaling comparison

Ren. Hamiltonian truncation
IR cutoff L, energy truncation Et
» Uses a vector space

» Function to minimize is
quadratic, hence linear problem

» Number of parameters oc et *E7

» Error oc 1/E3

Relativistic CMPS
entanglement truncation D
» Uses a manifold
» Minimization is a priori
non-trivial but doable
» Number of parameters o< D?
» Error o(1/D%), V « (folklore)



Summary

|Q,R>=tr{ﬂ>exp deQ®ﬂ+R®a*(X)]}IO>a

Ansatz for 1 4+ 1 relativistic QF T

No cutoff, UV or IR, extensive, computable

UV is captured exactly even at D =0

Efficient (cost poly D, error 1/superpoly D ) and now competitive
Rigorous (variational)
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