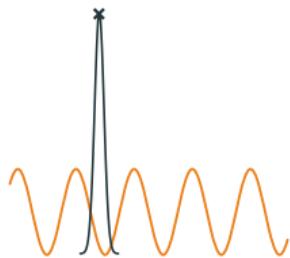


Non-Markovian wave-function collapse models are Bohmian-like theories in disguise

Antoine Tilloy, with Howard M. Wiseman
arXiv:2105.06115



Foundations 2020

Paris, France

October 28th, 2021

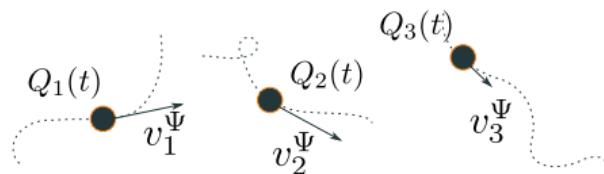
PSL

Introduction: two realist reconstructions of QM

Bohm



♠ “Particles move”



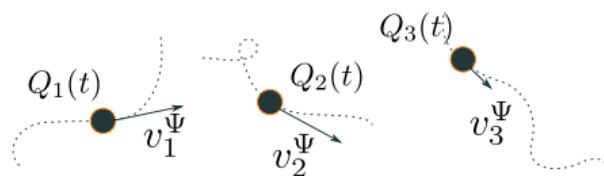
♠ The wavefunction evolves unitarily

$$\partial_t |\Psi\rangle = -iH|\Psi\rangle$$

Introduction: two realist reconstructions of QM

Bohm

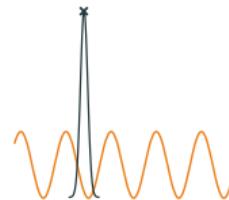
♠ “Particles move”



♠ The wavefunction evolves unitarily

$$\partial_t |\psi\rangle = -iH|\psi\rangle$$

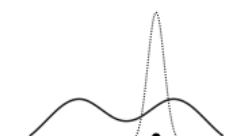
Collapse



♠ The wavefunction does **not** evolve unitarily

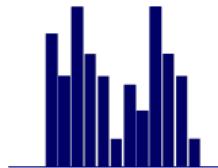
$$\partial_t |\psi\rangle = -iH|\psi\rangle + \varepsilon f(\psi, w) |\psi\rangle$$

♠ Beables are constructed from *w* or ψ



Introduction: differences

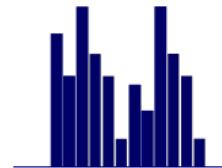
1. Empirically different



→ collapse model predictions deviate from those of the **Standard Model**

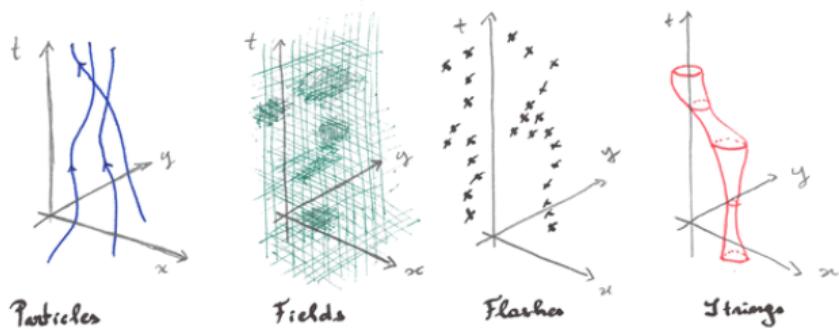
Introduction: differences

1. Empirically different



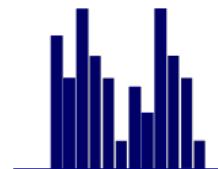
→ collapse model predictions deviate from those of the **Standard Model**

2. Ontologically different



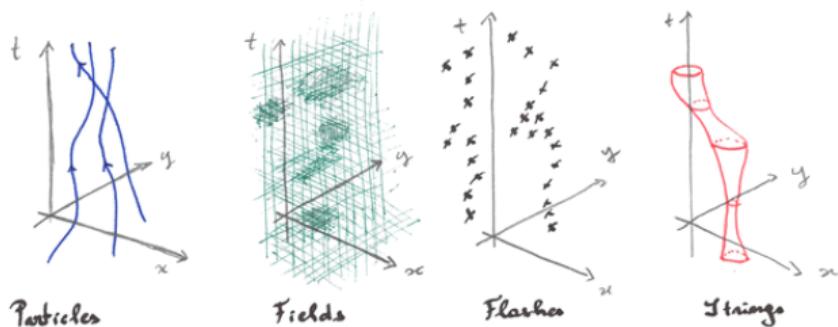
Introduction: differences

1. Empirically different



→ collapse model predictions deviate from those of the **Standard Model**

2. Ontologically different

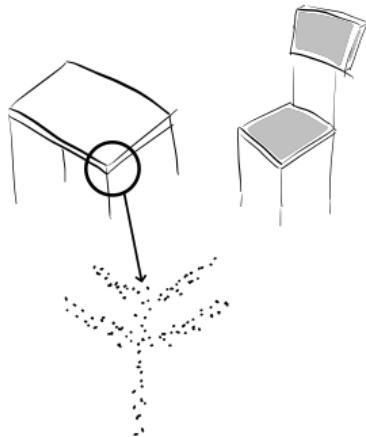


3. Different spirit

“Modify the Schrödinger equation” vs “Add hidden variables”

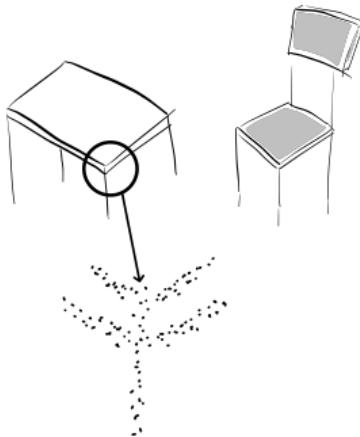
Introduction: similarities

1. Theories with a **primitive ontology** – [Allori et al. 2008, 2013]



Introduction: similarities

1. Theories with a **primitive ontology** – [Allori et al. 2008, 2013]



2. Dynamical reduction works in similar ways – [Toros et al. 2016]

$$\psi_C^{\text{Bohm}}(x_{\text{bath}}, \cdot) \sim \psi^{\text{GRW}}(\cdot)$$

Weak equivalence

Empirically: collapse = Bohm on system + bath

For a given collapse model on a system S , there exists a bath B such that Bohmian mechanics on $\{S + B\}$ has the same empirical content.

Weak equivalence

Empirically: collapse = Bohm on system + bath

For a given collapse model on a system S , there exists a bath B such that Bohmian mechanics on $\{S + B\}$ has the same empirical content.

1. Collapse model dynamics has to be linear at the master equation level

$$\rho_t = \mathbb{E} \left[|\psi_t\rangle\langle\psi_t| \right]$$

$$\rho_t = \Phi_t \cdot \rho_0$$

[Gisin 1989, 1991]

Weak equivalence

Empirically: collapse = Bohm on system + bath

For a given collapse model on a system S , there exists a bath B such that Bohmian mechanics on $\{S + B\}$ has the same empirical content.

1. Collapse model dynamics has to be linear at the master equation level

$$\rho_t = \mathbb{E} \left[|\psi_t\rangle\langle\psi_t| \right]$$

$$\rho_t = \Phi_t \cdot \rho_0$$

[Gisin 1989, 1991]

2. This master equation contains all the empirical content

Weak equivalence

Empirically: collapse = Bohm on system + bath

For a given collapse model on a system S , there exists a bath B such that Bohmian mechanics on $\{S + B\}$ has the same empirical content.

1. Collapse model dynamics has to be linear at the master equation level

$$\rho_t = \mathbb{E} \left[|\Psi_t\rangle\langle\Psi_t| \right]$$

$$\rho_t = \Phi_t \cdot \rho_0$$

[Gisin 1989, 1991]

2. This master equation contains all the empirical content
3. The master equation can be dilated into a unitary evolution

$$\exists \ H \text{ and } |\Psi_0\rangle = |\Psi_0\rangle \otimes |\text{aux}\rangle \text{ s.t. } \partial_t |\Psi_t\rangle = -iH|\Psi_t\rangle \text{ and } \text{tr}_B \left[|\Psi_t\rangle\langle\Psi_t| \right] = \rho_t$$

Weak equivalence

Empirically: collapse = Bohm on system + bath

For a given collapse model on a system S , there exists a bath B such that Bohmian mechanics on $\{S + B\}$ has the same empirical content.

1. Collapse model dynamics has to be linear at the master equation level

$$\rho_t = \mathbb{E} \left[|\Psi_t\rangle\langle\Psi_t| \right]$$

$$\rho_t = \Phi_t \cdot \rho_0$$

[Gisin 1989, 1991]

2. This master equation contains all the empirical content
3. The master equation can be dilated into a unitary evolution

$$\exists \ H \text{ and } |\Psi_0\rangle = |\Psi_0\rangle \otimes |\text{aux}\rangle \text{ s.t. } \partial_t |\Psi_t\rangle = -iH|\Psi_t\rangle \text{ and } \text{tr}_B \left[|\Psi_t\rangle\langle\Psi_t| \right] = \rho_t$$

4. This dilated unitary dynamics can be Bohmianized

Strong equivalence

Metaphysically: collapse = Bohm on system + bath

For a given collapse model on a system S , there exists a bath B such that Bohmian mechanics on $\{S + B\}$ contains the exact same objects

- ▶ The Bohmian wave-function on $S + B$ conditioned on bath hidden variables is the collapse model stochastic wave function:

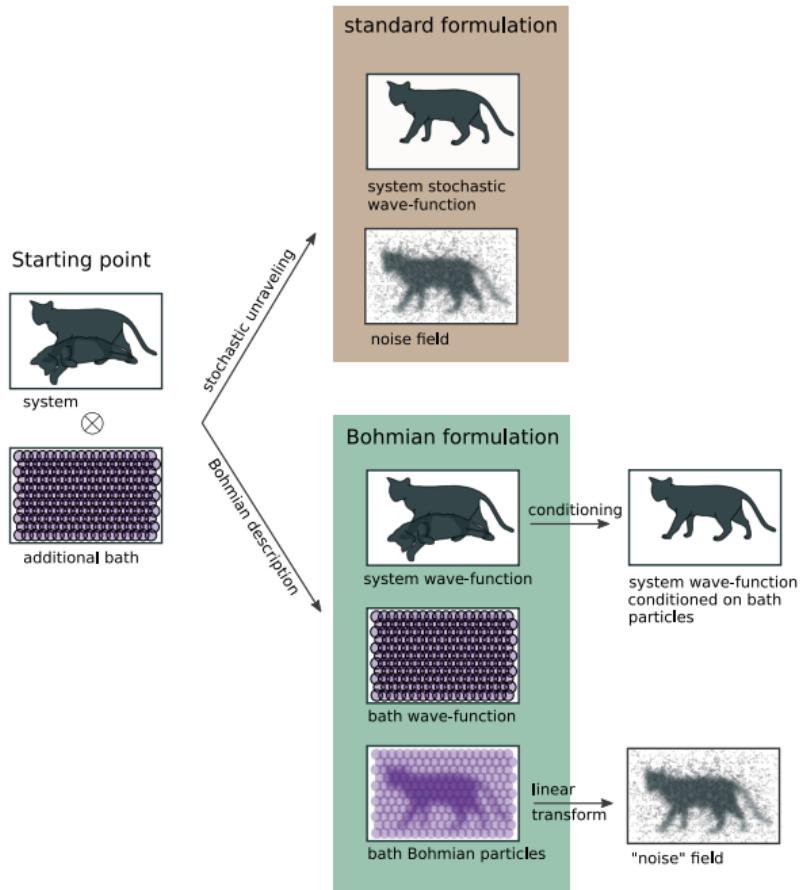
$$|\psi^{\text{collapse}}\rangle = |\psi_C^{\text{Bohm}}(x_{\text{bath}})\rangle$$

- ▶ The Bohmian hidden variables of the bath are in one to one correspondence with the collapse noise

$$x_{\text{bath}}^{\text{Bohm}} \quad \longleftrightarrow \quad \text{collapse noise } w$$

linear transform

Non-Markovian collapse model



Precise formulation

Collapse model

For states $|\psi\rangle$ in a Hilbert space \mathcal{H}_s , we are given a collapse model “collapsing” a set of operators A_i , $i = 1 \cdots d$, with a colored noise field $w_i(t)$:

Precise formulation

Collapse model

For states $|\psi\rangle$ in a Hilbert space \mathcal{H}_s , we are given a collapse model “collapsing” a set of operators A_i , $i = 1 \cdots d$, with a colored noise field $w_i(t)$:

Bohmian theory on extended space

One can find a bath Hilbert space \mathcal{H}_b made of interacting harmonic oscillators $\{x_{i,\omega}\}$ indexed by $i = 1 \cdots d$ and a frequency $\omega \in \mathbb{R}$, and a (reasonable) interaction Hamiltonian H_{int} such that:

1. $|\Psi(0)\rangle = |\psi(0)\rangle \otimes |0\rangle \in \mathcal{H}_{\text{total}} = \mathcal{H}_s \otimes \mathcal{H}_b$
2. $|\psi^c(t)\rangle = \langle\{x_{i,\omega}(t)\}|\Psi_t\rangle \in \mathcal{H}_s$
3. For $x_{i,\omega}(0)$ drawn with the **Born rule**, $|\psi^c\rangle$ has the same law as $|\psi_\omega\rangle$

Comments

1. Technically, the proof uses an “old” result
→ [Gambetta & Wiseman 2003]
2. The result is **valid** for continuous collapse models with **non-white noise**
3. The result is still valid for continuous collapse models with white noise, but unimpressive – Bohmian description far more complicated
4. The result is obtained in a bruteforce way, with an explicit non-trivial computation

General continuous collapse models

One starts with a **non-linear** stochastic Schrödinger equation:

$$\partial_t |\psi\rangle = -iH|\psi\rangle + \varepsilon f(\psi, w) |\psi\rangle \quad (1)$$

non-linear

Constraints on f are obtained by:

- ▶ Requiring that equation (1) reduces superpositions of certain operators (position related).
- ▶ Imposing a **linear** master equation for $\rho_t = \mathbb{E}\left[|\psi_t\rangle\langle\psi_t|\right]$:

$$\rho_t = \Phi_t \cdot \rho_0 \quad CPTP$$

Required for the probabilistic interpretation (Born rule, no faster-than-light signalling).

Collapse models with colored noise: linear evolution

Linear differential equation

$$\frac{d}{dt}|\phi_w(t)\rangle = \left[-iH + \sqrt{\gamma} w_i(t) A_i - 2\sqrt{\gamma} A_i \int_0^t ds D_{ij}(t,s) \frac{\delta}{\delta w_j(s)} \right] |\phi_w(t)\rangle,$$

noise drive weird necessary memory term

with **colored** noise field: $\mathbb{E}[w_i(t)w_j(s)] = D_{ij}(t, s)$

Collapse models with colored noise: linear evolution

Linear differential equation

$$\frac{d}{dt}|\Phi_w(t)\rangle = \left[-iH + \sqrt{\gamma} w_i(t) A_i - 2\sqrt{\gamma} A_i \int_0^t ds D_{ij}(t,s) \frac{\delta}{\delta w_j(s)} \right] |\Phi_w(t)\rangle,$$

noise drive weird necessary memory term

with **colored** noise field: $\mathbb{E}[w_i(t)w_j(s)] = D_{ij}(t, s)$

- ▶ **Master equation:** For $\rho_t = \mathbb{E} \left[|\phi_w(t)\rangle\langle\phi_w(t)| \right]$, one has $\rho_t = \Phi_t \cdot \rho_0$ with Φ_t Completely Positive Trace Preserving (CPTP)
- ▶ **Dilation:** the master equation admits a well known unitary dilation with a **non-Markovian** bosonic bath

Collapse models with colored noise: non-linear

Normalization

$$|\psi_w(t)\rangle = \frac{1}{\sqrt{\langle\phi_w(t)|\phi_w(t)\rangle}}|\phi_w(t)\rangle$$

but now $|\psi_w(t)\rangle$ does not yield a linear master equation.

Collapse models with colored noise: non-linear

Normalization

$$|\psi_w(t)\rangle = \frac{1}{\sqrt{\langle\phi_w(t)|\phi_w(t)\rangle}}|\phi_w(t)\rangle$$

but now $|\psi_w(t)\rangle$ does not yield a linear master equation.

Noise tilt

Restore the linear master equation by biasing the noise field

$$w_j^{[t]}(s) = w_j(s) + 2\sqrt{\gamma} \int_0^t d\tau D_{ij}(\tau, s) \langle A_i \rangle_\tau,$$

Full collapse model = linear equation + normalization + noise drift

Intuition for the proof of the equivalence

Linear collapse equation = conditioning on **fixed** Bohmian hidden variables

$$\frac{d}{dt} |\phi_w(t)\rangle \underset{\text{collapse}}{:=} \left[-iH + \sqrt{\gamma} w_i(t) A_i - 2\sqrt{\gamma} A_i \int_0^t ds D_{ij}(t,s) \frac{\delta}{\delta w_j(s)} \right] |\phi_w(t)\rangle$$
$$|\phi_w(t)\rangle \underset{\text{Bohm}}{:=} \langle w | \Psi \rangle_{S+B} \quad \xleftarrow[\text{conditioning}]{\quad} \quad |\Psi\rangle_{S+B} \quad \text{complete wavefunction}$$

Intuition for the proof of the equivalence

Linear collapse equation = conditioning on **fixed** Bohmian hidden variables

$$\frac{d}{dt} |\phi_w(t)\rangle \underset{\text{collapse}}{:=} \left[-iH + \sqrt{\gamma} w_i(t) A_i - 2\sqrt{\gamma} A_i \int_0^t ds D_{ij}(t,s) \frac{\delta}{\delta w_j(s)} \right] |\phi_w(t)\rangle$$
$$|\phi_w(t)\rangle \underset{\text{Bohm}}{:=} \langle w | \Psi \rangle_{S+B} \quad \xleftarrow[\text{conditioning}]{\longleftarrow} \quad |\Psi\rangle_{S+B} \quad \text{complete wavefunction}$$

Non-trivial continuous noise drift = Bohmian guiding law

$$w_j^{[t]}(s) \underset{\text{collapse}}{:=} w_j(s) + 2\sqrt{\gamma} \int_0^t d\tau D_{ij}(\tau,s) \langle A_i \rangle_\tau$$
$$\frac{d}{dt} w_j^{[t]}(s) \underset{\text{Bohm}}{:=} \mathcal{V}(\psi, w)$$

Lessons & questions

1. We should be careful of distinguishing **quantum theory** from its instantiation in the **Standard Model**
2. The two leading approaches to *down to earth* foundations of quantum theory are formally the same: **not** a duality, **not** even just empirically equivalent, ontologies in one to one
3. The distinction between a **deterministic** and a **stochastic** theory is inevitably blurry
 - ▶ In collapse models randomness is progressively revealed
 - ▶ In Bohmian mechanics it is in the initial condition
4. Is there another way to construct realist interpretations without **guiding laws**?