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Modern Physics and the Many Body
Problem



Quantum Mechanics in a nutshell
Principles

1. System — vector [) in a Hilbert space ¢
2. Evolution — generated by H self-adjoint on 7

d i
E’¢t> - _f_LHN)t)

3. Measurement — Ideal measurement = self-adjoint O = >, AcPx
Result k with probability py = (V|Px[p) followed by collapse
Pilb)

S TS

Remark:

» Conceptual subtleties in 2 = 3, “measurement problem”



The standard model of particle physics

The standard model is an instantiation of quantum mechanics that is
potentially fundamental

1. Hilbert space ¢ (the fundamental particles and their statistics)
2. Hamiltonian H (all the forces/interactions between the particles)

Completed by the independent detection of the Higgs boson by the Atlas and CMS collaborations at the LHC



The standard model: theory and practice

Theory: The standard model cannot be exact even in principle
1. no gravity

2. mathematically breaks down at (insanely) short distances
(H does not exist as a self-adjoint operator on the J# we would like, even
non-rigorously with state of the art renormalization group theory)



The standard model: theory and practice

Theory: The standard model cannot be exact even in principle
1. no gravity

2. mathematically breaks down at (insanely) short distances
(H does not exist as a self-adjoint operator on the J# we would like, even
non-rigorously with state of the art renormalization group theory)

Practice: The standard model is exact for all practical purposes

» Electron - photon physics tested to 12 digits

g = 2.100115965218085(76)

» Ultra high energy subtleties irrelevant for realizable phenomena



Quantum many-body problem on the lattice

................... Typical many_body problem

"""""""""""" N spins on a lattice
I 1 D H = Qi A with A = C

................... ) =3 Cil,iz,---,in’il) Iy in)



Quantum many-body problem on the lattice

ooooooooooooooooooo Typical many_body problem

................... N spins on a lattice
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Problem:

Finding the low energy states of

N
H = Z hy
k=1

is hard because dim .7 = 2V for spins



Quantum many-body problem on the lattice

................... Typical many-body problem
o, N spins on a lattice

Ui A =@t 4=C
e (W) =2 Gty inl ity iy - i)

Problem:

Finding the low energy states of

N
H = Z hy
k=1

Fugaku — 2 EFLOPS - 150 PB
is hard because dim s# = 2V for spins cannot do 4 x 4 x 4 spins



Perturbation theory

Main idea: usuall H = Hy + AV where Hy is diagnalizable exactly
— Taylor expand in A
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3. Formal integration
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Perturbation theory

Main idea: usuall H = Hy + AV where Hy is diagnalizable exactly
— Taylor expand in A

Field theoretic perturbation theory

1. Interaction representation: [;); = e~ Hoth,) and V, = e~ "ot Veitht

2. Schrodinger equation
d —iA
a|1|)t>/ - ?Vt|ll)t>l

3. Formal integration
i [f
We)r = Texp {_EJ du Vu:| [Wo)

0
4. Dyson expansion

+00o . n
iA
|ll)t>l - Z <_E> Ju1>u2>u VUI VU2 o VUn |ll)0>t

n=0



Diagrammatic reorganization of the expansion

Perturbation theory = Feynman diagrams

Order 6 in A

Order 2 in A



Divergence of the expansion

First noted by Dyson in a 2 page letter

any physical quantity = f(A) = Z a,\" diverges V A




Divergence of the expansion

First noted by Dyson in a 2 page letter

any physical quantity = f(A) = Z a,\" diverges V A
illicit

For ¢§

—+o0 n
J d exp(—m2gp? —AgH) = 3 N
R

illicit n!
n=0
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Successes

Fundamental Physics

Quantum electrodynamics

Nature is kind: A >~ 1/137 <« 1
[electron-photon interaction is weak]

Condensed matter

Metals/insulators/superconductors

Nature is kind: taking A =0 is fine
[electron-electron interaction weak]



Open problems

Fundamental Physics

Chemistry

Strong force between
quarks and gluons

Nature semi-kind
A=— |Og[Ekin/Eo]
Eq ~ 200 MeV
Ein kinetic energy

Atoms interacting to
form molecules

Nature not kind A ~ 1
but common
approximations fairly
efficient for simple cases

Condensed matter

Cuprate perovskites
superconductors

Nature not kind A ~ 1
electrons interact
strongly and get
entangled



Consequences

Nuclear Physics

o

A 4
4
2Ky ‘ 7 * “Ba
o e

<)

nuclei properties
only measured in
test reactors

Catalysis High 7.
superconductors

N+ 3H

1129 kj/mol 14

Ammonia costly to No room temp. supra
produce No hovering skateboards
1% of CO2 prod. Costly electricity transport



Many options

Many popular approximations to go beyond standard perturbation theory
» Dynamical mean field theory (DMFT) for condensed matter
» Density functional theory (DFT) for chemistry
» Quantum Monte-Carlo
» Diagrammatic Monte-Carlo
» Resummation /resurgence



Many options

Many popular approximations to go beyond standard perturbation theory
» Dynamical mean field theory (DMFT) for condensed matter
» Density functional theory (DFT) for chemistry
» Quantum Monte-Carlo
» Diagrammatic Monte-Carlo
» Resummation /resurgence

2 bleeding edge promising approaches
1. Quantum computing

2. Classical compression (variational method)



The variational method and tensor
networks



The direct compression approach

Variational method for ground state search

1. Guess a manifold M C 4 with few parameters v i.e. dimM < dim.s7
(v|H|v)

2. Tune v to minimize energy v = argmin, ¢y Iy

and get
lground state) ~ |v)
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The direct compression approach

Variational method for ground state search

1. Guess a manifold M C Z with few parameters v i.e. dimM < dim.#

... o . (‘\/|H|‘v>
2. Tune v to minimize energy v = argminy et “ryvy and get
lground state) ~ |v)
Reason for compression (classical) Reason for compression (quantum)

cat image “typical” image low energy state random state

atypical = compressible area law = atypical = compressible



Many-body problem

Problem
Finding low energy states of
N
A=) h
k=1

is hard because dim 57 o 2N



Variational optimization

Generic (spin 1/2) state € 7"

W)= > Gy ity i)

iy =1

Exact variational
optimization

To find the ground state:

i (1A)
|0>_|¢>e9f (Whp)

» dim .7 = 2N



Variational optimization

Generic (spin 1/2) state € 7

W) = Z Cir, oy yin 11577+ 5 i)

iy =1

Approx. variational
optimization

To find the ground state:

_ min (WIARY)
|0>_|w>e/f (Whp)

» dim.Z o Poly(N) or fixed



Interesting states are weakly entangled

Low energy state

W) =10) or 1) ..

Reduced density
matrix

p = troe [} (]

Entanglement
entropy
S = —tr[plog p]

Area law

S x [0D|
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Typical states are strongly entangled

Random state
W) = Upaarltrivial)

Reduced density
matrix

p = troe [} (W]

Entanglement
entropy
S= —tr[p log p]

Volume law

S x |D|



Constructing weakly entangled states



Constructing weakly entangled states

1. Put auxiliary maximally
entangled states between
sites

@@= U) U>

j=1



Constructing weakly entangled states

1. Put auxiliary maximally
entangled states between
sites




Tensor network states: definition

Why “tensor” network?

/ . J2 i 3
ole X A) =
\\.// , .

ji Ja

. ~D* 2 i
ACT =C — A _ _ _
with tensor contractions on links



Tensor network states: definition

Why “tensor” network?

i i3

. J2
ey - i

I Ja

. ~D* 2 i
A:CT =C — A L

Optimization
Find best A for fixed Di (2 x D*x
coeff.)

_(ARIA)
Fo = min s

0E

0A!

for example go down
J152:J3J4

with tensor contractions on links




Matrix Product States (MPS) aka tensor trains

Definition
A MPS for a translation invariant chain of N spins/qubits (5% = C?) with
periodic boundary conditions is a state

|1])(A)> = Z tr [AilAi2"'AiN] |i1)i2)-")iN>

ilyi2>"-yiN

where A; are 2 matrices € Mp(C).

» The matrices A; for i = %1 are the free parameters

» The size D of the matrices is the bond dimension (quantifies freedom)
» Correlation functions (and (H)) efficiently computable

» Optimizing over A provably gives good results for gapped H



Tensor network states in a nutshell

.zip or .jpg for complex quantum states that appear in Nature

1. Exponential reduction: 2V —s N x D?? parameters
[N number of spins, D amount of entanglement, d space dimension (1,2, 3)]

2. Efficient compression: compression error < e~ or 1/superpoly(D)
[For a large number of a priori non-trivial problems]

[History: 1992 for d =1, 2004 for d > 2, 2016 for 2d-Hubbard at T = Q]



Some facts

d =1 spatial dimension d > 2 spatial dimension

Theorems (colloquially) Folklore
1. For gapped H, TNS |A) 1. For gapped H, TNS |A) _
approximate well |0) with D fixed approximate well [0) with D fixed
2. All |A) are ground states of 2. Most |A) are ground states of
gapped H gapped H



Optimization

To find lowest energy state, with generic TNS, still need to optimize the poly(D)
parameters

» Naive gradient descent inefficient (works
only for D < 10)

» Riemanian gradient descent highly efficient
(= TDVP)

Metric on tensor network state manifold

1. W(A)) € A a state in the tensor network manifold
2. W(A), W) =W -V ab(A)) the tangent vector in A along direction W
3. ga(V, W) :=Re (W(A), Vip(A), W) induced Hilbert metric

Note: best is to do Riemanian quasi-Newton, like Riemanian conjugate gradient
or Riemanian LBFGS — OptimKit.jl by Haegeman et al.



State of the art

Dense: all states approximable (trivial)
Efficient: cost Poly(D) error 1/superPoly (D) for local gapped
(cost assuming free optimization — theoretical guarantees on optim very bad)

It's all a matter of prefactors and exponents

» 1 space dimension — D > 1000 — machine precision
(MPS results “numerically exact”)

» 2 space dimensions — D ~ 10 — efficient
(PEPS efficient to 1072 — 10~° depending on problems)

» 3 space dimensions — D ~ 3 — theoretically efficient but too expensive



Going forward

& Extend to hard problems without theoretical guarantees no area law
1. Quantum chemistry

2. Real-time evolution
Hardness motivates Google supremacy experiment [Nature, 2020]

R T A o
P,
e o

e T S S

------------ -
Column
* Row : A B c D c D A B
Time —
m

Cycle 1 2 3 4 5 6 7 8

Still possible compression (Zhou, Stoudenmire, Waintal)
& Extend to problems that should not be so hard but unadapted

1. Continuum field theories



Tensor network states for continuum

theories




The quantum many-body problem in the continuum

From the lattice to the continuum and Quantum Field Theory (QFT)

.............
.............
.............
.............
-------------
.............
.............

W)= Y Gudiheci)  — )= Do we]0)

i1>i2)"’ )iN

New problem: 2V C-parameters — dimJ# = co™ even at finite size!

Question Can one compress co® down to a manageable number of parameters?



Objective

Continuous tensor networks

Compress field wavefunctions () and use them to solve the
continuous-many-body problem directly leveraging a
continuous generalization of tensor networks

First insights in 2010 and recent progress

d =1 space

d > 2 space

non-relativistic relativistic

Tilloy-Cirac
2019

G NS - dcfinition

critical



Relativistic CMPS

Definition
IR, Q) = tr {fPexp de Q1+ R® aT(X)] } 0).,

a'(x) Fourier transform of mode creation operator,
|0), Fock vacuum annihilated by a(x),
P path ordering operator

Some properties
1. Expectation values can be evaluated to machine precision at cost D3

2. R, @ can be optimized with geometric methods



Numerics
For @* theory:

energy density (h)g,r

relative error

cp? g dt:
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