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Modern Physics and the Many Body
Problem



Quantum Mechanics in a nutshell
Principles

1. System – vector |ψ⟩ in a Hilbert space H

2. Evolution – generated by H self-adjoint on H

d
dt |ψt⟩ = −

i
 h

H |ψt⟩

3. Measurement – Ideal measurement ≡ self-adjoint O =
∑

k λkPk

Result k with probability pk = ⟨ψ|Pk |ψ⟩ followed by collapse

|ψ⟩ −→ Pk |ψ⟩
∥Pk |ψ⟩∥

Remark:
▶ Conceptual subtleties in 2 =⇒ 3, “measurement problem”



The standard model of particle physics

The standard model is an instantiation of quantum mechanics that is
potentially fundamental

1. Hilbert space H (the fundamental particles and their statistics)
2. Hamiltonian H (all the forces/interactions between the particles)

Completed by the independent detection of the Higgs boson by the Atlas and CMS collaborations at the LHC



The standard model: theory and practice

Theory: The standard model cannot be exact even in principle
1. no gravity
2. mathematically breaks down at (insanely) short distances

(H does not exist as a self-adjoint operator on the H we would like, even
non-rigorously with state of the art renormalization group theory)

Practice: The standard model is exact for all practical purposes
▶ Electron - photon physics tested to 12 digits

g = 2.100115965218085(76)

▶ Ultra high energy subtleties irrelevant for realizable phenomena
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Quantum many-body problem on the lattice

Typical many-body problem

N spins on a lattice
H =

⊗n
j=1 Hj with Hj = C2

|ψ⟩ =
∑

ci1,i2,··· ,in |i1, i2, · · · iN⟩

Problem:

Finding the low energy states of

H =

N∑
k=1

hk

is hard because dim H = 2N for spins
Fugaku – 2 EFLOPS – 150 PB
cannot do 4 × 4 × 4 spins
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Perturbation theory
Main idea: usuall H = H0 + λV where H0 is diagnalizable exactly
→ Taylor expand in λ

Field theoretic perturbation theory

1. Interaction representation: |ψt⟩I = e−iH0t |ψt⟩ and Vt = e−iH0tVe iH0t

2. Schrödinger equation
d
dt |ψt⟩I =

−iλ
 h

Vt |ψt⟩I

3. Formal integration

|ψt⟩I = T exp
[
−

iλ
 h

∫ t

0
du Vu

]
|ψ0⟩I

4. Dyson expansion

|ψt⟩I =

+∞∑
n=0

(
−

iλ
 h

)n ∫
u1>u2>un

Vu1Vu2 · · ·Vun |ψ0⟩t
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Diagrammatic reorganization of the expansion
Perturbation theory = Feynman diagrams

Order 2 in λ

Order 6 in λ



Divergence of the expansion
First noted by Dyson in a 2 page letter

any physical quantity = f (λ) =
illicit

∑
n

anλ
n diverges ∀ λ

For ϕ4
0∫
R

dϕ exp(−m2ϕ2 − λϕ4) =
illicit

+∞∑
n=0

(−λ)n

n!

∫
R

dϕϕ4n exp(−m2ϕ2)

=

+∞∑
n=0

(−λ)n

n!m2n+1/2

∫+∞
0

du u2n+1/2 exp(−u)

=

+∞∑
n=0

(−λ)n

m2n+1/2
Γ(2n + 3/2)
Γ(n + 1)
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Successes

Fundamental Physics

Quantum electrodynamics

Nature is kind: λ ≃ 1/137 ≪ 1
[electron-photon interaction is weak]

Condensed matter

Metals/insulators/superconductors

Nature is kind: taking λ = 0 is fine
[electron-electron interaction weak]



Open problems

Fundamental Physics

Strong force between
quarks and gluons

Nature semi-kind
λ = − log[Ekin/E0]
E0 ≃ 200 MeV
Ekin kinetic energy

Chemistry

Atoms interacting to
form molecules

Nature not kind λ ∼ 1
but common
approximations fairly
efficient for simple cases

Condensed matter

Cuprate perovskites
superconductors

Nature not kind λ ∼ 1
electrons interact
strongly and get
entangled



Consequences

Nuclear Physics

nuclei properties
only measured in
test reactors

Catalysis

Ammonia costly to
produce
1% of CO2 prod.

High Tc
superconductors

No room temp. supra
No hovering skateboards
Costly electricity transport



Many options

Many popular approximations to go beyond standard perturbation theory
▶ Dynamical mean field theory (DMFT) for condensed matter
▶ Density functional theory (DFT) for chemistry
▶ Quantum Monte-Carlo
▶ Diagrammatic Monte-Carlo
▶ Resummation/resurgence

2 bleeding edge promising approaches
1. Quantum computing
2. Classical compression (variational method)
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The variational method and tensor
networks



The direct compression approach

Variational method for ground state search

1. Guess a manifold M ⊂ H with few parameters ν i.e. dimM ≪ dimH

2. Tune ν to minimize energy ν = argminν∈M
⟨ν|H|ν⟩
⟨ν|ν⟩ and get

|ground state⟩ ≃ |ν⟩

Reason for compression (classical)

cat image “typical” image

atypical =⇒ compressible

Reason for compression (quantum)

low energy state random state

area law = atypical =⇒ compressible
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Many-body problem

Problem

Finding low energy states of

Ĥ =

N∑
k=1

ĥk

is hard because dim H ∝ 2N



Variational optimization
Generic (spin 1/2) state ∈ H :

|ψ⟩ =
∑

i1,··· ,in=±1
ci1,i2,··· ,iN |i1, · · · , iN⟩

Exact variational
optimization
To find the ground state:

|0⟩ = min
|ψ⟩∈H

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

▶ dim H = 2N



Variational optimization
Generic (spin 1/2) state ∈ H :

|ψ⟩ =
∑

i1,··· ,in=±1
ci1,i2,··· ,iN |i1, · · · , iN⟩

Approx. variational
optimization
To find the ground state:

|0⟩ = min
|ψ⟩∈M

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

▶ dim M ∝ Poly(N) or fixed



Interesting states are weakly entangled
Low energy state
|ψ⟩ = |0⟩ or |1⟩ ...

Reduced density
matrix
ρ = trDc

[
|ψ⟩⟨ψ|

]
Entanglement
entropy
S = −tr

[
ρ log ρ

]
Area law

S ∝ |∂D|
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Typical states are strongly entangled
Random state
|ψ⟩ = UHaar|trivial⟩

Reduced density
matrix
ρ = trDc

[
|ψ⟩⟨ψ|

]
Entanglement
entropy
S = −tr

[
ρ log ρ

]
Volume law

S ∝ |D|



Constructing weakly entangled states

1. Put auxiliary maximally
entangled states between
sites

=

D∑
j=1

|j⟩|j⟩

2. Map to initial Hilbert space
on each site

= A : CD4 → C2
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Tensor network states: definition
Why “tensor” network?

A : CD4 → C2 −→ Ai
j1,j2,j3,j4

|A⟩ =

with tensor contractions on links

Optimization
Find best A for fixed Di (2 × D4×
coeff.)

E0 ≃ min
A

⟨A|Ĥ |A⟩
⟨A|A⟩

for example go down ∂E
∂Ai

j1,j2,j3,j4
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Matrix Product States (MPS) aka tensor trains

Definition
A MPS for a translation invariant chain of N spins/qubits (Hk = Cd) with
periodic boundary conditions is a state

|ψ(A)⟩ :=
∑

i1,i2,...,iN

tr [Ai1Ai2 · · ·AiN ] |i1, i2, . . . , iN⟩

where Ai are 2 matrices ∈ MD(C).

▶ The matrices Ai for i = ±1 are the free parameters
▶ The size D of the matrices is the bond dimension (quantifies freedom)
▶ Correlation functions (and ⟨H⟩) efficiently computable
▶ Optimizing over A provably gives good results for gapped H



Tensor network states in a nutshell

.zip or .jpg for complex quantum states that appear in Nature

1. Exponential reduction: 2N −→ N × D2d parameters
[N number of spins, D amount of entanglement, d space dimension (1, 2, 3)]

2. Efficient compression: compression error ⩽ e−D or 1/superpoly(D)
[For a large number of a priori non-trivial problems]

[History: 1992 for d = 1, 2004 for d ⩾ 2, 2016 for 2d-Hubbard at T = 0]



Some facts
d = 1 spatial dimension

Theorems (colloquially)

1. For gapped H , TNS |A⟩
approximate well |0⟩ with D fixed

2. All |A⟩ are ground states of
gapped H

d ⩾ 2 spatial dimension

Folklore

1. For gapped H , TNS |A⟩
approximate well |0⟩ with D fixed

2. Most |A⟩ are ground states of
gapped H



Optimization
To find lowest energy state, with generic TNS, still need to optimize the poly(D)
parameters

▶ Naive gradient descent inefficient (works
only for D ⩽ 10)

▶ Riemanian gradient descent highly efficient
(= TDVP)

Metric on tensor network state manifold

1. |ψ(A)⟩ ∈ M a state in the tensor network manifold
2. |ψ(A),W ⟩ = W · ∇A|ψ(A)⟩ the tangent vector in A along direction W
3. gA(V ,W ) := Re ⟨ψ(A),V |ψ(A),W ⟩ induced Hilbert metric

Note: best is to do Riemanian quasi-Newton, like Riemanian conjugate gradient
or Riemanian LBFGS → OptimKit.jl by Haegeman et al.



State of the art

Dense: all states approximable (trivial)
Efficient: cost Poly(D) error 1/superPoly(D) for local gapped
(cost assuming free optimization – theoretical guarantees on optim very bad)

It’s all a matter of prefactors and exponents
▶ 1 space dimension → D ⩾ 1000 → machine precision

(MPS results “numerically exact”)
▶ 2 space dimensions → D ∼ 10 → efficient

(PEPS efficient to 10−2 − 10−6 depending on problems)
▶ 3 space dimensions → D ∼ 3 → theoretically efficient but too expensive



Going forward
♣ Extend to hard problems without theoretical guarantees no area law

1. Quantum chemistry
2. Real-time evolution

Hardness motivates Google supremacy experiment [Nature, 2020]

Still possible compression (Zhou, Stoudenmire, Waintal)
♣ Extend to problems that should not be so hard but unadapted

1. Continuum field theories



Tensor network states for continuum
theories



The quantum many-body problem in the continuum

From the lattice to the continuum and Quantum Field Theory (QFT)

|Ψ⟩ =
∑

i1,i2,··· ,iN

ci1i2···iN |i1i2 · · · iN⟩ −→ |Ψ⟩ =
∫
Dϕ ψ(ϕ) |ϕ⟩

New problem: 2N C-parameters → dimH = ∞∞ even at finite size!

Question Can one compress ∞∞ down to a manageable number of parameters?



Objective

Continuous tensor networks
Compress field wavefunctions ψ(ϕ) and use them to solve the
continuous-many-body problem directly leveraging a
continuous generalization of tensor networks

First insights in 2010 and recent progress

non-relativistic relativistic critical
d = 1 space Verstraete-Cirac

2010
Tilloy
2021

d ⩾ 2 space Tilloy-Cirac
2019

no idea heuristics clear definition fast algorithm



Relativistic CMPS

Definition

|R,Q⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩a

a†(x) Fourier transform of mode creation operator,
|0⟩a Fock vacuum annihilated by a(x),
P path ordering operator

Some properties
1. Expectation values can be evaluated to machine precision at cost D3

2. R,Q can be optimized with geometric methods



Numerics
For φ4 theory:

H =

∫
dx : π2 :

2 +
: (∇ϕ)2 :

2 +
m2

2 : ϕ2 : +g : ϕ4 :
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g
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