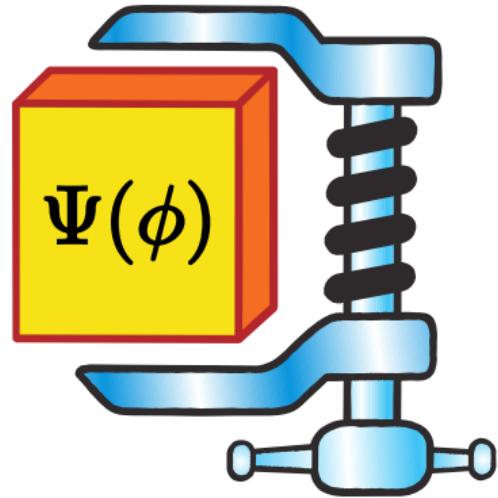


Tensor network states

to compress the (continuum)
many body problem



Antoine Tilloy

January 7th, 2022
Séminaire

Modern Physics and the Many Body Problem

Quantum Mechanics in a nutshell

Principles

1. **System** – vector $|\Psi\rangle$ in a Hilbert space \mathcal{H}
2. **Evolution** – generated by H self-adjoint on \mathcal{H}

$$\frac{d}{dt}|\Psi_t\rangle = -\frac{i}{\hbar}H|\Psi_t\rangle$$

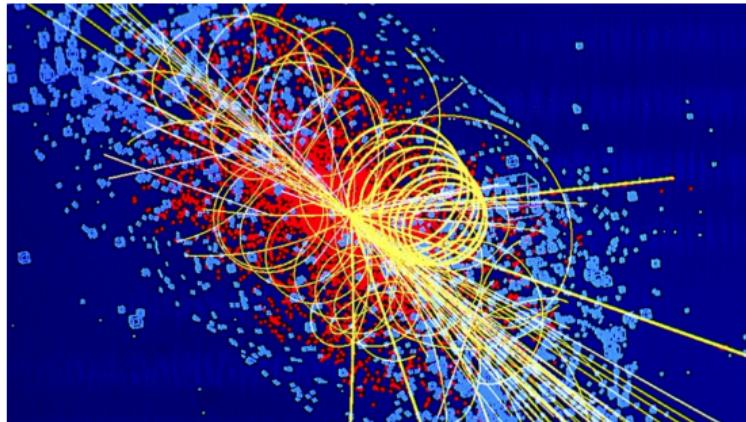
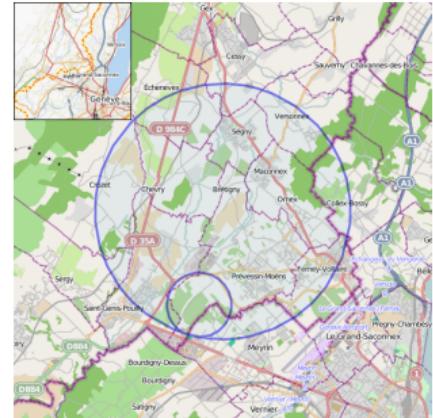
3. **Measurement** – Ideal measurement \equiv self-adjoint $\mathcal{O} = \sum_k \lambda_k P_k$
Result k with probability $p_k = \langle \Psi | P_k | \Psi \rangle$ followed by collapse

$$|\Psi\rangle \longrightarrow \frac{P_k |\Psi\rangle}{\|P_k |\Psi\rangle\|}$$

Remark:

- ▶ Conceptual subtleties in 2 \implies 3, “measurement problem”

The standard model of particle physics



The **standard model** is an instantiation of quantum mechanics that is potentially fundamental

1. Hilbert space \mathcal{H} (the fundamental particles and their statistics)
2. Hamiltonian H (all the forces/interactions between the particles)

Completed by the independent detection of the Higgs boson by the Atlas and CMS collaborations at the LHC

The standard model: theory and practice

Theory: The standard model cannot be exact even in principle

1. no gravity
2. mathematically breaks down at (insanely) short distances
(H does not exist as a self-adjoint operator on the \mathcal{H} we would like, even *non-rigorously* with state of the art renormalization group theory)

The standard model: theory and practice

Theory: The standard model cannot be exact even in principle

1. no gravity
2. mathematically breaks down at (insanely) short distances
(H does not exist as a self-adjoint operator on the \mathcal{H} we would like, even *non-rigorously* with state of the art renormalization group theory)

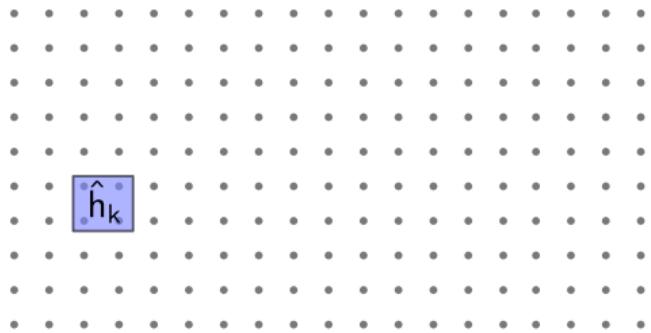
Practice: The standard model is exact for all practical purposes

- ▶ Electron - photon physics tested to 12 digits

$$g = 2.100115965218085(76)$$

- ▶ Ultra high energy subtleties irrelevant for realizable phenomena

Quantum many-body problem on the lattice



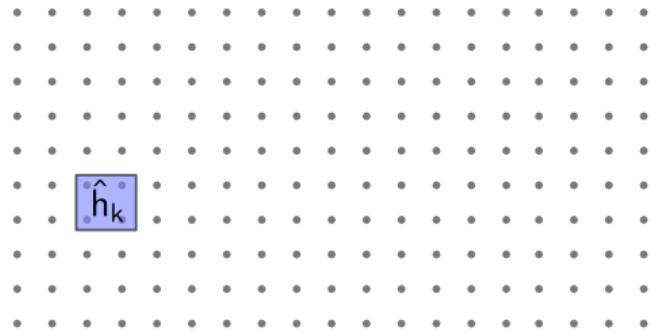
Typical many-body problem

N spins on a lattice

$\mathcal{H} = \bigotimes_{j=1}^n \mathcal{H}_j$ with $\mathcal{H}_j = \mathbb{C}^2$

$|\Psi\rangle = \sum c_{i_1, i_2, \dots, i_n} |i_1, i_2, \dots, i_N\rangle$

Quantum many-body problem on the lattice



Typical many-body problem

N spins on a lattice

$$\mathcal{H} = \bigotimes_{j=1}^n \mathcal{H}_j \text{ with } \mathcal{H}_j = \mathbb{C}^2$$

$$|\Psi\rangle = \sum c_{i_1, i_2, \dots, i_n} |i_1, i_2, \dots, i_N\rangle$$

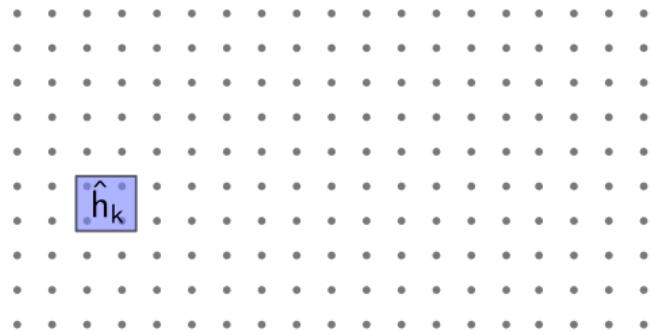
Problem:

Finding the low energy states of

$$H = \sum_{k=1}^N h_k$$

is **hard** because $\dim \mathcal{H} = 2^N$ for spins

Quantum many-body problem on the lattice



Typical many-body problem

N spins on a lattice

$$\mathcal{H} = \bigotimes_{j=1}^n \mathcal{H}_j \text{ with } \mathcal{H}_j = \mathbb{C}^2$$

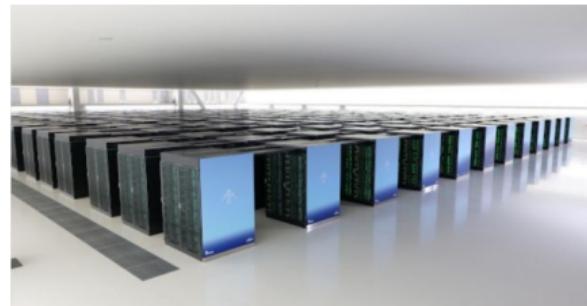
$$|\Psi\rangle = \sum c_{i_1, i_2, \dots, i_n} |i_1, i_2, \dots, i_N\rangle$$

Problem:

Finding the low energy states of

$$H = \sum_{k=1}^N h_k$$

is **hard** because $\dim \mathcal{H} = 2^N$ for spins



Fugaku – 2 EFLOPS – 150 PB
cannot do $4 \times 4 \times 4$ spins

Perturbation theory

Main idea: usual $H = H_0 + \lambda V$ where H_0 is diagonalizable exactly
→ Taylor expand in λ

Perturbation theory

Main idea: usual $H = H_0 + \lambda V$ where H_0 is diagonalizable exactly
→ Taylor expand in λ

Field theoretic perturbation theory

1. Interaction representation: $|\Psi_t\rangle_I = e^{-iH_0 t} |\Psi_t\rangle$ and $V_t = e^{-iH_0 t} V e^{iH_0 t}$

Perturbation theory

Main idea: usual $H = H_0 + \lambda V$ where H_0 is diagonalizable exactly
→ Taylor expand in λ

Field theoretic perturbation theory

1. Interaction representation: $|\psi_t\rangle_I = e^{-iH_0 t}|\psi_t\rangle$ and $V_t = e^{-iH_0 t}V e^{iH_0 t}$
2. Schrödinger equation

$$\frac{d}{dt}|\psi_t\rangle_I = \frac{-i\lambda}{\hbar} V_t |\psi_t\rangle_I$$

Perturbation theory

Main idea: usual $H = H_0 + \lambda V$ where H_0 is diagonalizable exactly
→ Taylor expand in λ

Field theoretic perturbation theory

1. Interaction representation: $|\psi_t\rangle_I = e^{-iH_0 t} |\psi_t\rangle$ and $V_t = e^{-iH_0 t} V e^{iH_0 t}$
2. Schrödinger equation

$$\frac{d}{dt} |\psi_t\rangle_I = \frac{-i\lambda}{\hbar} V_t |\psi_t\rangle_I$$

3. Formal integration

$$|\psi_t\rangle_I = T \exp \left[-\frac{i\lambda}{\hbar} \int_0^t du V_u \right] |\psi_0\rangle_I$$

Perturbation theory

Main idea: usual $H = H_0 + \lambda V$ where H_0 is diagonalizable exactly
→ Taylor expand in λ

Field theoretic perturbation theory

1. Interaction representation: $|\psi_t\rangle_I = e^{-iH_0 t}|\psi_t\rangle$ and $V_t = e^{-iH_0 t}V e^{iH_0 t}$
2. Schrödinger equation

$$\frac{d}{dt}|\psi_t\rangle_I = \frac{-i\lambda}{\hbar} V_t |\psi_t\rangle_I$$

3. Formal integration

$$|\psi_t\rangle_I = T \exp \left[-\frac{i\lambda}{\hbar} \int_0^t du V_u \right] |\psi_0\rangle_I$$

4. Dyson expansion

$$|\psi_t\rangle_I = \sum_{n=0}^{+\infty} \left(-\frac{i\lambda}{\hbar} \right)^n \int_{u_1 > u_2 > \dots > u_n} V_{u_1} V_{u_2} \cdots V_{u_n} |\psi_0\rangle_I$$

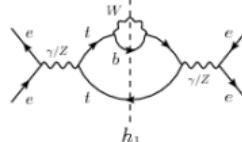
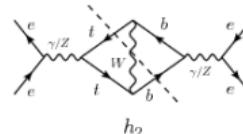
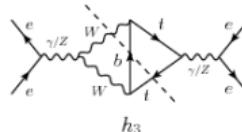
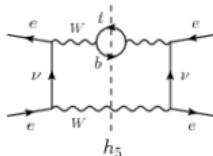
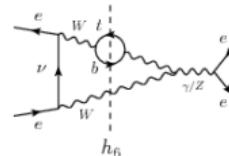
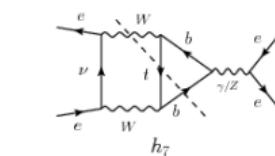
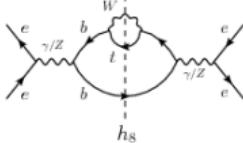
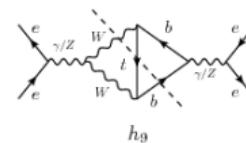
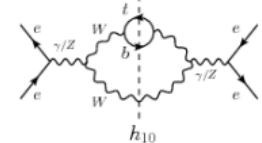
Diagrammatic reorganization of the expansion

Perturbation theory = Feynman diagrams

Order 2 in λ



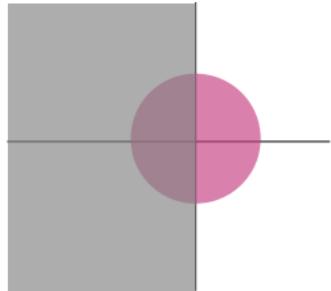
Order 6 in λ



Divergence of the expansion

First noted by Dyson in a 2 page letter

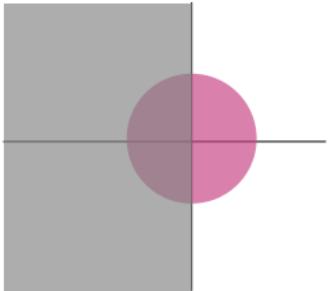
any physical quantity $= f(\lambda) = \sum_n a_n \lambda^n$ illicits diverges $\forall \lambda$



Divergence of the expansion

First noted by Dyson in a 2 page letter

any physical quantity $= f(\lambda) = \sum_n a_n \lambda^n$ diverges $\forall \lambda$

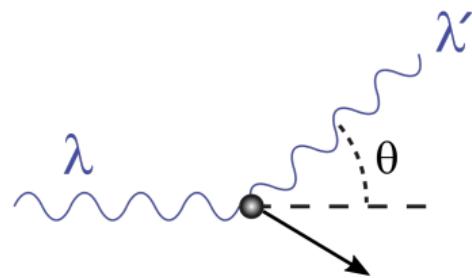


For ϕ_0^4

$$\begin{aligned} \int_{\mathbb{R}} d\phi \exp(-m^2\phi^2 - \lambda\phi^4) &= \sum_{n=0}^{+\infty} \frac{(-\lambda)^n}{n!} \int_{\mathbb{R}} d\phi \phi^{4n} \exp(-m^2\phi^2) \\ &= \sum_{n=0}^{+\infty} \frac{(-\lambda)^n}{n! m^{2n+1/2}} \int_0^{+\infty} du u^{2n+1/2} \exp(-u) \\ &= \sum_{n=0}^{+\infty} \frac{(-\lambda)^n}{m^{2n+1/2}} \frac{\Gamma(2n+3/2)}{\Gamma(n+1)} \end{aligned}$$

Successes

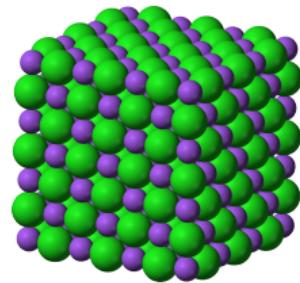
Fundamental Physics



Quantum electrodynamics

Nature is kind: $\lambda \simeq 1/137 \ll 1$
[electron-photon interaction is weak]

Condensed matter

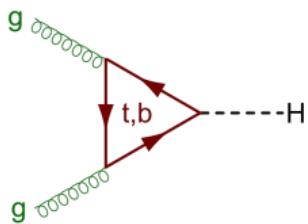


Metals/insulators/superconductors

Nature is kind: taking $\lambda = 0$ is fine
[electron-electron interaction weak]

Open problems

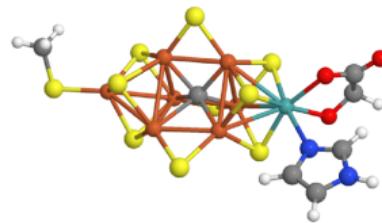
Fundamental Physics



Strong force between quarks and gluons

Nature semi-kind
 $\lambda = -\log[E_{\text{kin}}/E_0]$
 $E_0 \simeq 200$ MeV
 E_{kin} kinetic energy

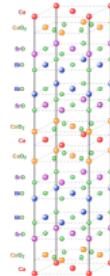
Chemistry



Atoms interacting to form molecules

Nature not kind $\lambda \sim 1$ but common approximations fairly efficient for simple cases

Condensed matter

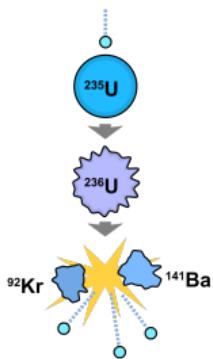


Cuprate perovskites superconductors

Nature not kind $\lambda \sim 1$ electrons interact strongly and get entangled

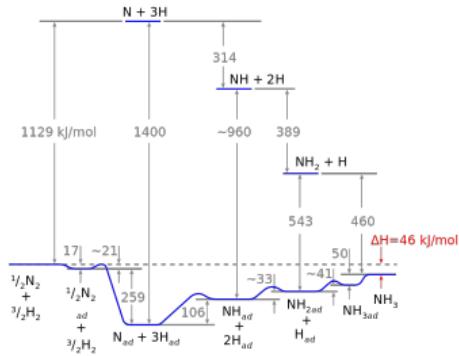
Consequences

Nuclear Physics



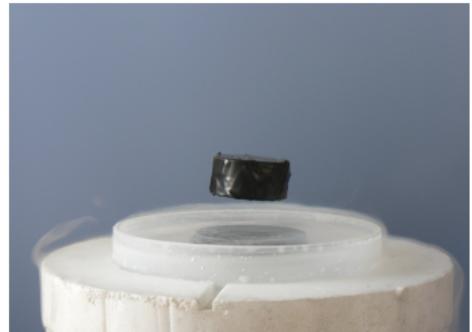
nuclei properties
only measured in
test reactors

Catalysis



Ammonia costly to
produce
1% of CO₂ prod.

High T_c superconductors



No room temp. supra
No hovering skateboards
Costly electricity transport

Many options

Many popular approximations to go beyond standard perturbation theory

- ▶ Dynamical mean field theory (DMFT) for condensed matter
- ▶ Density functional theory (DFT) for chemistry
- ▶ Quantum Monte-Carlo
- ▶ Diagrammatic Monte-Carlo
- ▶ Resummation/resurgence

Many options

Many popular approximations to go beyond standard perturbation theory

- ▶ Dynamical mean field theory (DMFT) for condensed matter
- ▶ Density functional theory (DFT) for chemistry
- ▶ Quantum Monte-Carlo
- ▶ Diagrammatic Monte-Carlo
- ▶ Resummation/resurgence

2 bleeding edge promising approaches

1. Quantum computing
2. Classical compression (variational method)

The variational method and tensor networks

The direct compression approach

Variational method for ground state search

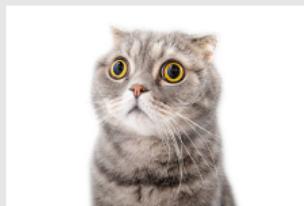
1. Guess a manifold $\mathcal{M} \subset \mathcal{H}$ with few parameters ν i.e. $\dim \mathcal{M} \ll \dim \mathcal{H}$
2. Tune ν to minimize energy $\nu = \operatorname{argmin}_{\nu \in \mathcal{M}} \frac{\langle \nu | H | \nu \rangle}{\langle \nu | \nu \rangle}$ and get
 $|\text{ground state}\rangle \simeq |\nu\rangle$

The direct compression approach

Variational method for ground state search

1. Guess a manifold $\mathcal{M} \subset \mathcal{H}$ with few parameters ν i.e. $\dim \mathcal{M} \ll \dim \mathcal{H}$
2. Tune ν to minimize energy $\nu = \operatorname{argmin}_{\nu \in \mathcal{M}} \frac{\langle \nu | H | \nu \rangle}{\langle \nu | \nu \rangle}$ and get
 $|\text{ground state}\rangle \simeq |\nu\rangle$

Reason for compression (classical)



cat image

“typical” image

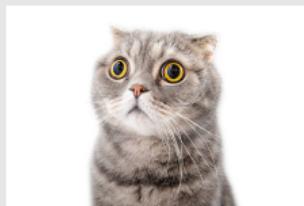
atypical \implies compressible

The direct compression approach

Variational method for ground state search

1. Guess a manifold $\mathcal{M} \subset \mathcal{H}$ with few parameters ν i.e. $\dim \mathcal{M} \ll \dim \mathcal{H}$
2. Tune ν to minimize energy $\nu = \operatorname{argmin}_{\nu \in \mathcal{M}} \frac{\langle \nu | H | \nu \rangle}{\langle \nu | \nu \rangle}$ and get
 $|\text{ground state}\rangle \simeq |\nu\rangle$

Reason for compression (classical)

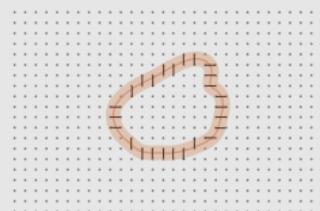


cat image

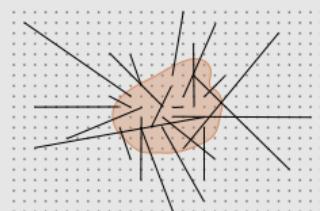
“typical” image

atypical \implies compressible

Reason for compression (quantum)



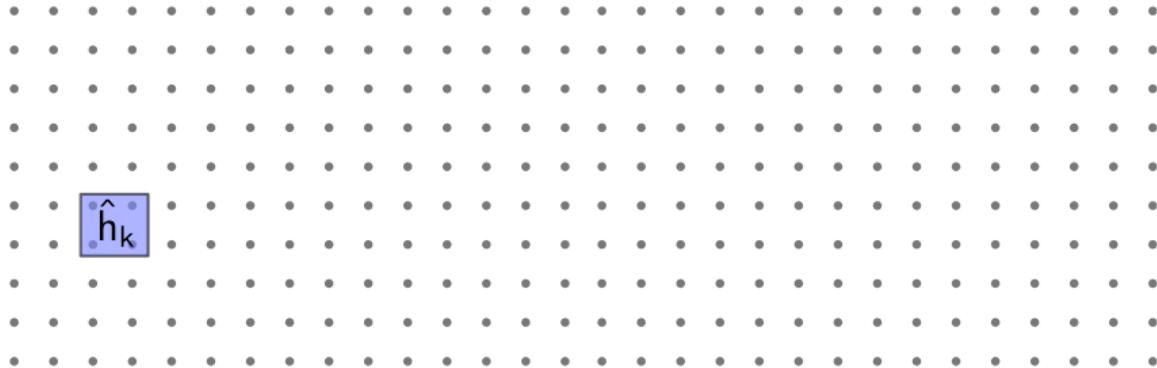
low energy state



random state

area law = atypical \implies compressible

Many-body problem



Problem

Finding low energy states of

$$\hat{H} = \sum_{k=1}^N \hat{h}_k$$

is **hard** because $\dim \mathcal{H} \propto 2^N$

Variational optimization



Generic (spin 1/2) state $\in \mathcal{H}$:

$$|\Psi\rangle = \sum_{i_1, \dots, i_n = \pm 1} c_{i_1, i_2, \dots, i_N} |i_1, \dots, i_N\rangle$$

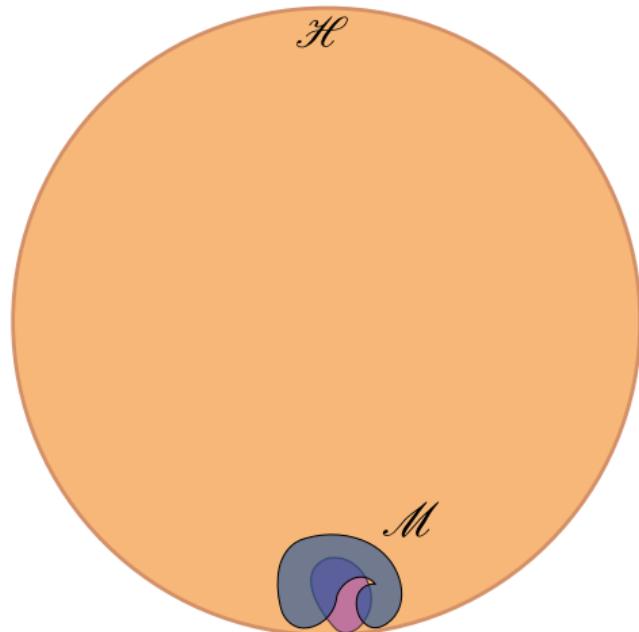
Exact variational optimization

To find the ground state:

$$|0\rangle = \min_{|\Psi\rangle \in \mathcal{H}} \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

► $\dim \mathcal{H} = 2^N$

Variational optimization



Generic (spin 1/2) state $\in \mathcal{H}$:

$$|\psi\rangle = \sum_{i_1, \dots, i_n = \pm 1} c_{i_1, i_2, \dots, i_N} |i_1, \dots, i_N\rangle$$

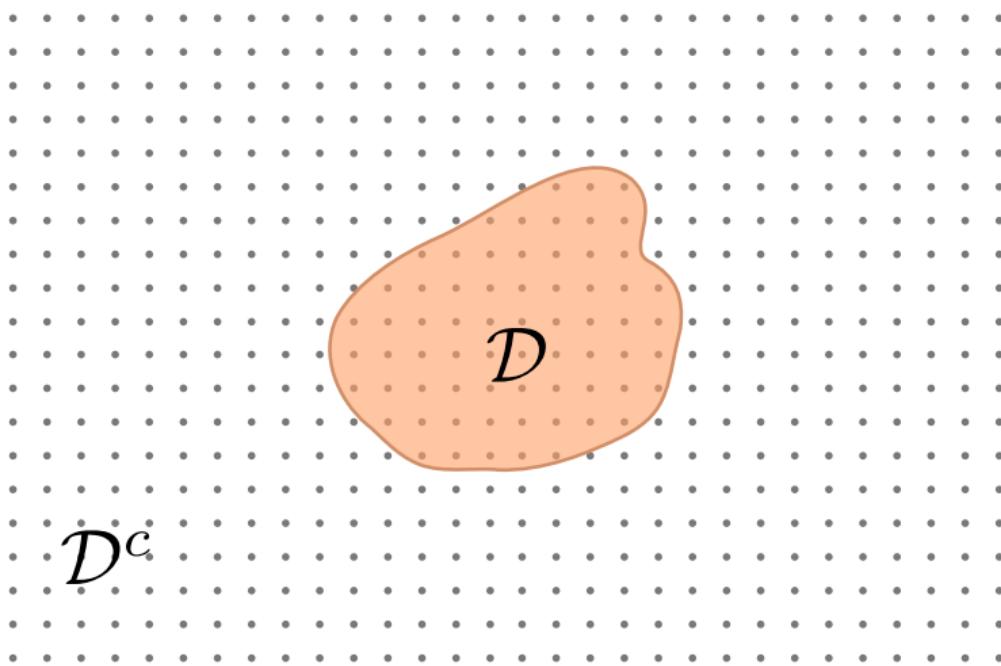
Approx. variational optimization

To find the ground state:

$$|0\rangle = \min_{|\psi\rangle \in \mathcal{M}} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

► $\dim \mathcal{M} \propto \text{Poly}(N)$ or fixed

Interesting states are weakly entangled



Low energy state

$$|\psi\rangle = |0\rangle \text{ or } |1\rangle \dots$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\psi\rangle\langle\psi|]$$

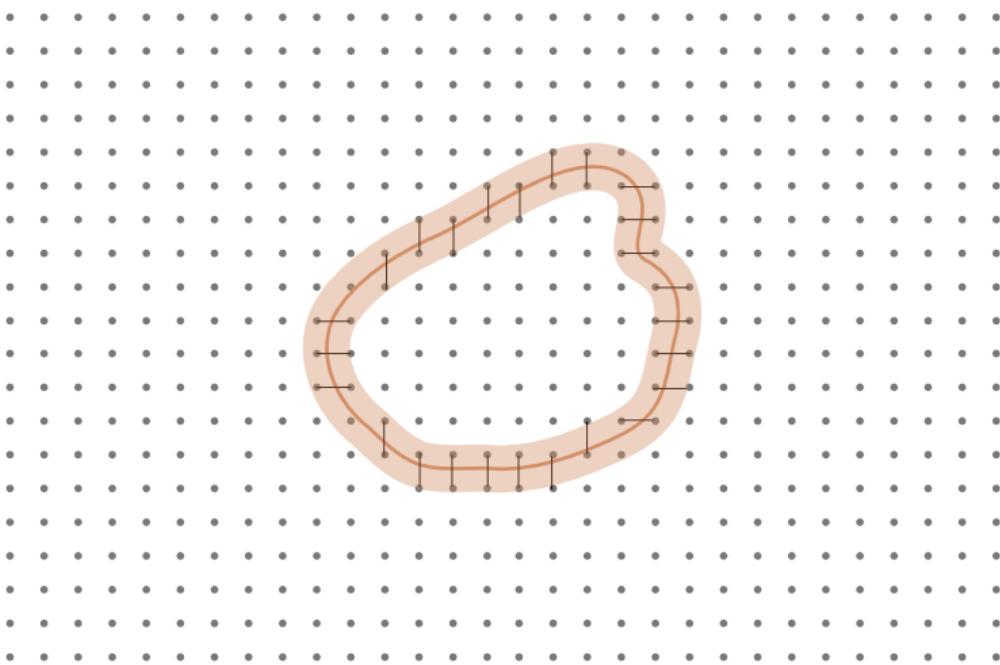
Entanglement entropy

$$S = -\text{tr}[\rho \log \rho]$$

Area law

$$S \propto |\partial\mathcal{D}|$$

Interesting states are weakly entangled



Low energy state

$$|\psi\rangle = |0\rangle \text{ or } |1\rangle \dots$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\psi\rangle\langle\psi|]$$

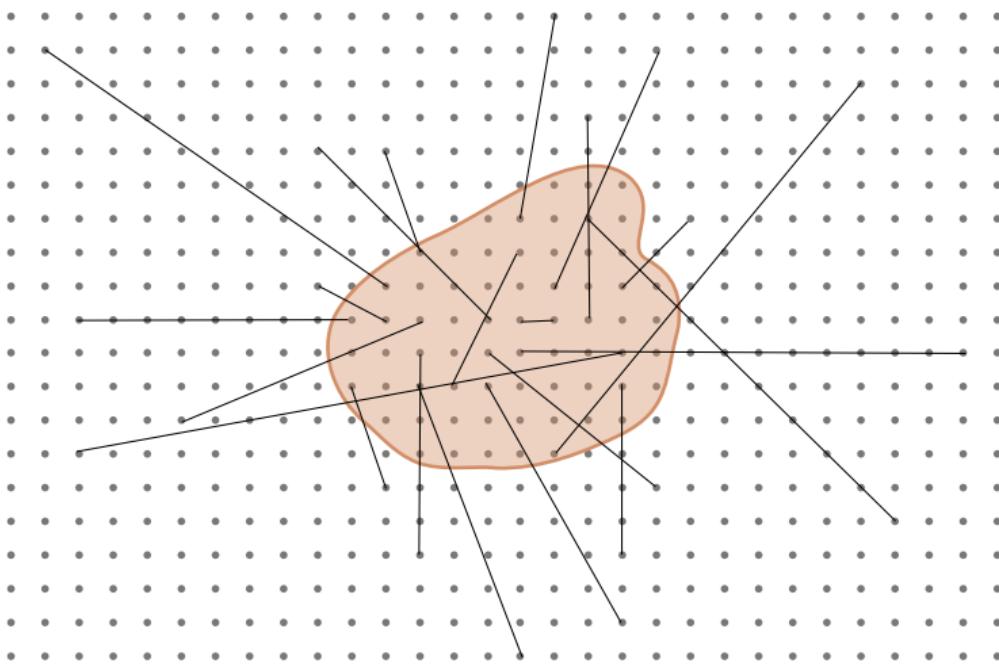
Entanglement entropy

$$S = -\text{tr}[\rho \log \rho]$$

Area law

$$S \propto |\partial \mathcal{D}|$$

Typical states are strongly entangled



Random state

$$|\psi\rangle = U_{\text{Haar}}|\text{trivial}\rangle$$

Reduced density matrix

$$\rho = \text{tr}_{\mathcal{D}^c} [|\psi\rangle\langle\psi|]$$

Entanglement entropy

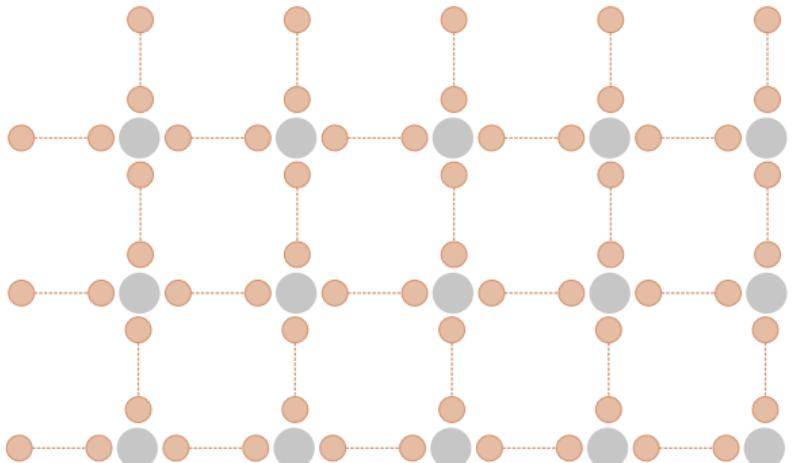
$$S = -\text{tr}[\rho \log \rho]$$

Volume law

$$S \propto |\mathcal{D}|$$

Constructing weakly entangled states

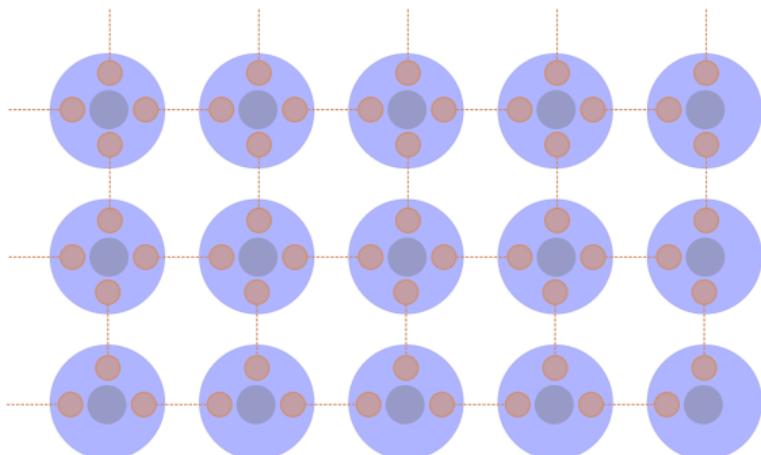
Constructing weakly entangled states



1. Put auxiliary **maximally entangled** states between sites

$$\text{---} = \sum_{j=1}^D |j\rangle\langle j|$$

Constructing weakly entangled states



1. Put auxiliary **maximally entangled** states between sites

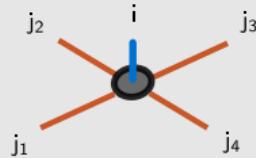
$$\bullet \cdots \bullet = \sum_{j=1}^D |j\rangle|j\rangle$$

2. Map to initial Hilbert space on each site

$$= A : \mathbb{C}^{D^4} \rightarrow \mathbb{C}^2$$

Tensor network states: definition

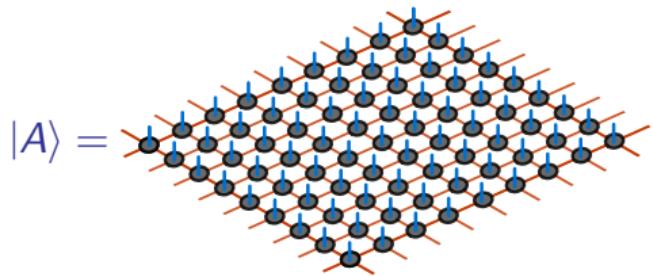
Why “tensor” network?



$$A : \mathbb{C}^{D^4} \rightarrow \mathbb{C}^2$$

→

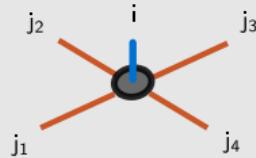
$$A_{j_1, j_2, j_3, j_4}^i$$



with tensor contractions on links

Tensor network states: definition

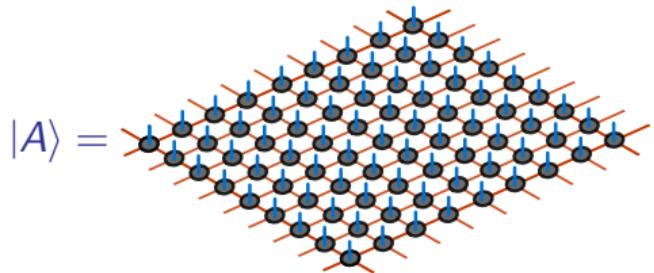
Why “tensor” network?



$$A : \mathbb{C}^{D^4} \rightarrow \mathbb{C}^2$$

→

$$A^i_{j_1, j_2, j_3, j_4}$$



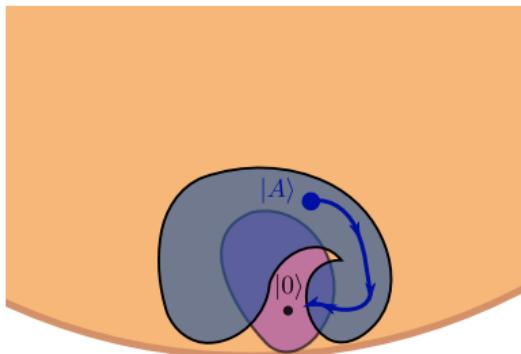
with tensor contractions on links

Optimization

Find best A for fixed D_i ($2 \times D^4 \times$ coeff.)

$$E_0 \simeq \min_A \frac{\langle A | \hat{H} | A \rangle}{\langle A | A \rangle}$$

for example go down $\frac{\partial E}{\partial A^i_{j_1, j_2, j_3, j_4}}$



Matrix Product States (MPS) aka tensor trains

Definition

A MPS for a translation invariant chain of N spins/qubits ($\mathcal{H}_k = \mathbb{C}^d$) with periodic boundary conditions is a state

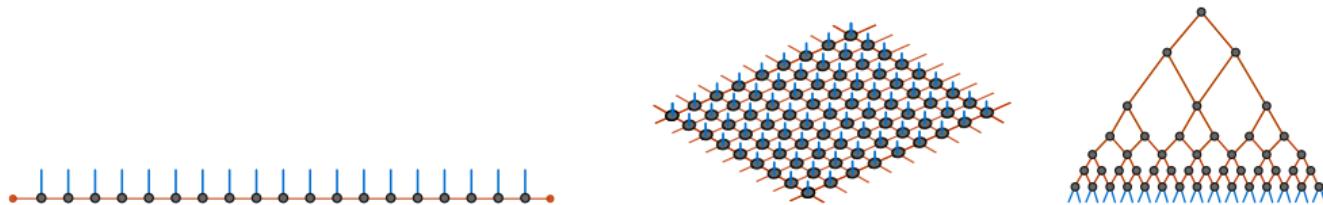
$$|\psi(A)\rangle := \sum_{i_1, i_2, \dots, i_N} \text{tr} [A_{i_1} A_{i_2} \cdots A_{i_N}] |i_1, i_2, \dots, i_N\rangle$$

where A_i are 2 matrices $\in \mathcal{M}_D(\mathbb{C})$.

- ▶ The matrices A_i for $i = \pm 1$ are the free parameters
- ▶ The size D of the matrices is the **bond dimension** (quantifies freedom)
- ▶ Correlation functions (and $\langle H \rangle$) efficiently computable
- ▶ Optimizing over A provably gives good results for gapped H

Tensor network states in a nutshell

.zip or .jpg for complex quantum states that appear in Nature

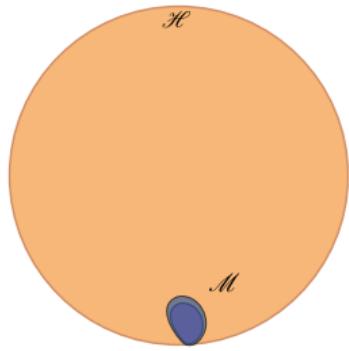


1. **Exponential reduction:** $2^N \rightarrow N \times D^{2d}$ parameters
[N number of spins, D amount of entanglement, d space dimension (1, 2, 3)]
2. **Efficient compression:** compression error $\leq e^{-D}$ or $1/\text{superpoly}(D)$
[For a large number of *a priori* non-trivial problems]

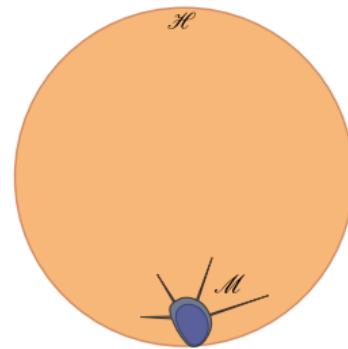
[History: 1992 for $d = 1$, 2004 for $d \geq 2$, 2016 for 2d-Hubbard at $T = 0$]

Some facts

$d = 1$ spatial dimension



$d \geq 2$ spatial dimension



Theorems (colloquially)

1. For gapped H , TNS $|A\rangle$ approximate well $|0\rangle$ with D fixed
2. **All** $|A\rangle$ are ground states of gapped H

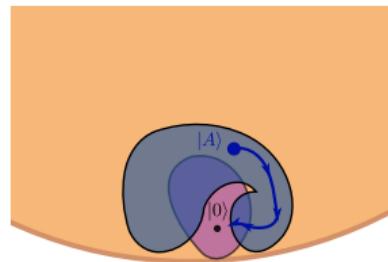
Folklore

1. For gapped H , TNS $|A\rangle$ approximate well $|0\rangle$ with D fixed
2. **Most** $|A\rangle$ are ground states of gapped H

Optimization

To find lowest energy state, with generic TNS, still need to optimize the $\text{poly}(D)$ parameters

- ▶ Naive gradient descent inefficient (works only for $D \leq 10$)
- ▶ Riemannian gradient descent highly efficient (= TDVP)



Metric on tensor network state manifold

1. $|\psi(A)\rangle \in \mathcal{M}$ a state in the tensor network manifold
2. $|\psi(A), W\rangle = W \cdot \nabla_A |\psi(A)\rangle$ the tangent vector in A along direction W
3. $g_A(V, W) := \text{Re} \langle \psi(A), V | \psi(A), W \rangle$ induced Hilbert metric

Note: best is to do Riemannian quasi-Newton, like Riemannian conjugate gradient or Riemannian LBFGS → OptimKit.jl by Haegeman et al.

State of the art

Dense: all states approximable (trivial)

Efficient: cost $\text{Poly}(D)$ error $1/\text{superPoly}(D)$ for local gapped
(cost assuming free optimization – theoretical guarantees on optim very bad)

It's all a matter of prefactors and exponents

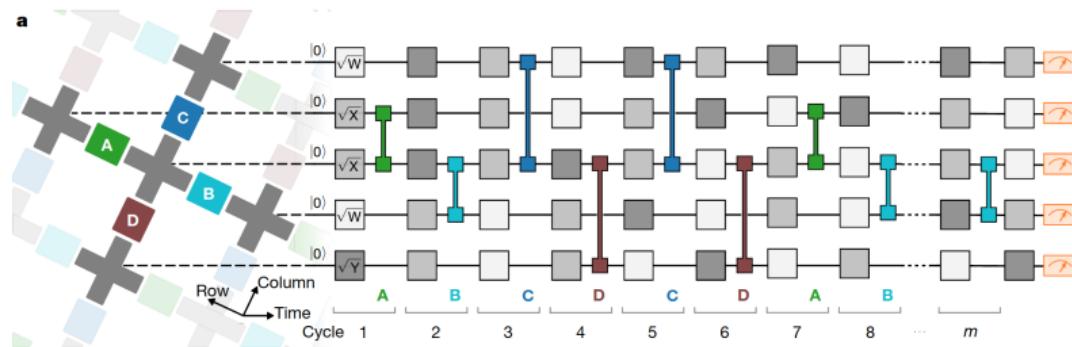
- ▶ 1 space dimension $\rightarrow D \geq 1000 \rightarrow$ machine precision
(MPS results “numerically exact”)
- ▶ 2 space dimensions $\rightarrow D \sim 10 \rightarrow$ efficient
(PEPS efficient to $10^{-2} - 10^{-6}$ depending on problems)
- ▶ 3 space dimensions $\rightarrow D \sim 3 \rightarrow$ theoretically efficient but too expensive

Going forward

♣ Extend to hard problems without theoretical guarantees no area law

1. Quantum chemistry
2. Real-time evolution

Hardness motivates Google supremacy experiment [Nature, 2020]

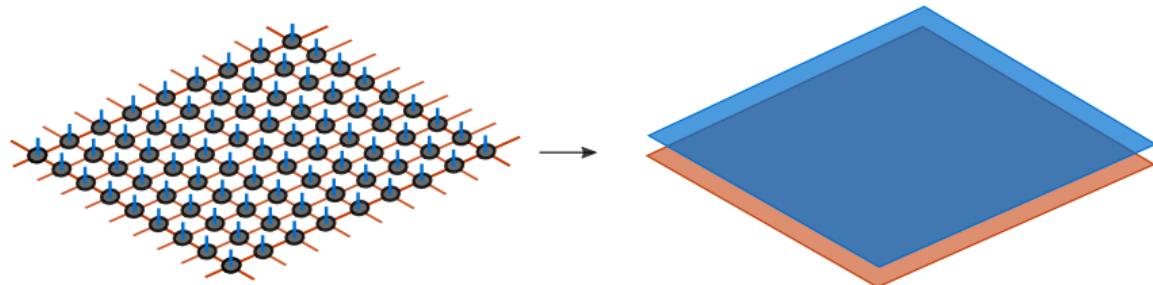


Still possible compression (Zhou, Stoudenmire, Waintal)

♣ Extend to problems that should not be so hard but unadapted

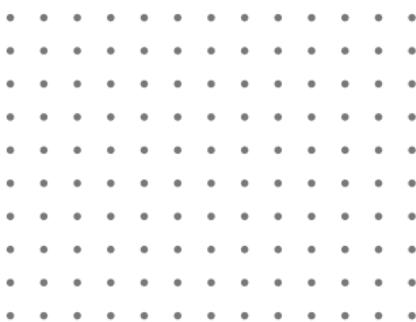
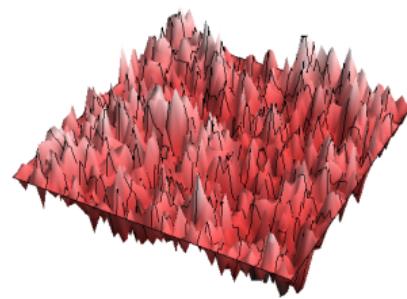
1. Continuum field theories

Tensor network states for continuum theories



The quantum many-body problem in the continuum

From the lattice to the continuum and Quantum Field Theory (QFT)



$$|\Psi\rangle = \sum_{i_1, i_2, \dots, i_N} c_{i_1 i_2 \dots i_N} |i_1 i_2 \dots i_N\rangle \quad \longrightarrow \quad |\Psi\rangle = \int \mathcal{D}\phi \psi(\phi) |\phi\rangle$$

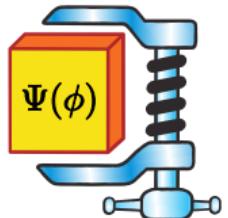
New problem: 2^N \mathbb{C} -parameters $\rightarrow \dim \mathcal{H} = \infty^\infty$ even at finite size!

Question Can one compress ∞^∞ down to a manageable number of parameters?

Objective

Continuous tensor networks

Compress field wavefunctions $\Psi(\phi)$ and use them to solve the continuous-many-body problem directly leveraging a continuous generalization of tensor networks



First insights in 2010 and recent progress

	non-relativistic	relativistic	critical
$d = 1$ space	Verstraete-Cirac 2010	Tilloy 2021	
$d \geq 2$ space	Tilloy-Cirac 2019		

no idea

heuristics

clear definition

fast algorithm

Relativistic CMPS

Definition

$$|R, Q\rangle = \text{tr} \left\{ \mathcal{P} \exp \left[\int dx Q \otimes \mathbb{1} + R \otimes a^\dagger(x) \right] \right\} |0\rangle_a$$

$a^\dagger(x)$ Fourier transform of mode creation operator,

$|0\rangle_a$ Fock vacuum annihilated by $a(x)$,

\mathcal{P} path ordering operator

Some properties

1. Expectation values can be evaluated to machine precision at cost D^3
2. R, Q can be optimized with geometric methods

Numerics

For φ^4 theory:

$$H = \int dx \frac{:\pi^2:}{2} + \frac{:(\nabla\phi)^2:}{2} + \frac{m^2}{2} :\phi^2: + g :\phi^4:$$

