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Quantum Mechanics in a nutshell
Principles

1. System — vector [) in a Hilbert space ¢
2. Evolution — generated by H self-adjoint on 7

d i
E’¢t> - _f_LHN)t)

3. Measurement — Ideal measurement = self-adjoint O = >, AcPx
Result k with probability py = (V|Px[p) followed by collapse
Pilb)

S TS

Remark:

» Conceptual subtleties in 2 = 3, “measurement problem”



The standard model of particle physics

The standard model is an instantiation of quantum mechanics that is
potentially fundamental

1. Hilbert space ¢ (the fundamental particles and their statistics)
2. Hamiltonian H (all the forces/interactions between the particles)

Completed by the independent detection of the Higgs boson by the Atlas and CMS collaborations at the LHC



The standard model: theory and practice

Theory: The standard model cannot be exact even in principle
1. no gravity

2. mathematically breaks down at (insanely) short distances
(H does not exist as a self-adjoint operator on the J# we would like, even
non-rigorously with state of the art renormalization group theory)
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Theory: The standard model cannot be exact even in principle
1. no gravity

2. mathematically breaks down at (insanely) short distances
(H does not exist as a self-adjoint operator on the J# we would like, even
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Practice: The standard model is exact for all practical purposes

» Electron - photon physics tested to 12 digits

g = 2.100115965218085(76)

» Ultra high energy subtleties irrelevant for realizable phenomena



Quantum many-body problem on the lattice

................... Typical many_body problem

"""""""""""" N spins on a lattice
I 1 D H = Qi A with A = C
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Quantum many-body problem on the lattice

ooooooooooooooooooo Typical many_body problem

................... N spins on a lattice
R A =@swith A=
................... ) =3 Cil,iz,---,in’ila Iy in)

Problem:

Finding the low energy states of

N
H = Z hy
k=1

is hard because dim .7 = 2V for spins



Quantum many-body problem on the lattice

................... Typical many-body problem
o, N spins on a lattice

Ui A =@t 4=C
e (W) =2 Gty inl ity iy - i)

Problem:

Finding the low energy states of

N
H = Z hy
k=1

Fugaku — 2 EFLOPS - 150 PB
is hard because dim s# = 2V for spins cannot do 4 x 4 x 4 spins



Perturbation theory

Main idea: usuall H = Hy + AV where Hy is diagnalizable exactly
— Taylor expand in A
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Perturbation theory

Main idea: usuall H = Hy + AV where Hy is diagnalizable exactly
— Taylor expand in A

Field theoretic perturbation theory

1. Interaction representation: [;); = e~ Hoth,) and V, = e~ "ot Veitht

2. Schrodinger equation
d —iA
a|1|)t>/ - ?Vt|ll)t>l

3. Formal integration
i [f
We)r = Texp {_EJ du Vu:| [Wo)

0
4. Dyson expansion

+00o . n
iA
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n=0



Diagrammatic reorganization of the expansion

Perturbation theory = Feynman diagrams

Order 6 in A

Order 2 in A



Divergence of the expansion

First noted by Dyson in a 2 page letter

any physical quantity = f(A) = Z a,\" diverges V A
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First noted by Dyson in a 2 page letter

any physical quantity = f(A) = Z a,\" diverges V A
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Successes

Fundamental Physics

Quantum electrodynamics

Nature is kind: A >~ 1/137 <« 1
[electron-photon interaction is weak]

Condensed matter

Metals/insulators/superconductors

Nature is kind: taking A =0 is fine
[electron-electron interaction weak]



Open problems

Fundamental Physics

Strong force between
quarks and gluons

Nature semi-kind
A= |0g[Ekin/Eo]
Eq ~ 200 MeV
Ein kinetic energy

Chemistry

Atoms interacting to
form molecules

Nature not kind A ~ 1
but mean-field like
approximations fairly
efficient

Condensed matter

Cuprate perovskites
superconductors

Nature not kind A ~ 1
electrons interact
strongly and get
entangled



Consequences

Nuclear Physics

o

A 4
4
2Ky ‘ 7 * “Ba
o e

<)

nuclei properties
only measured in
test reactors

Catalysis High T,
superconductors

N+ 3H

1129 kj/mol 14

Ammonia costly to No room temp. supra
produce No flying cars
1% of CO2 prod. Costly electricity transport



Many options

Many popular approximations to go beyond standard perturbation theory
» Dynamical mean field theory (DMFT) for condensed matter
» Density functional theory (DFT) for chemistry
» Quantum Monte-Carlo
» Diagrammatic Monte-Carlo
» Resummation /resurgence



Many options

Many popular approximations to go beyond standard perturbation theory
» Dynamical mean field theory (DMFT) for condensed matter
» Density functional theory (DFT) for chemistry
» Quantum Monte-Carlo
» Diagrammatic Monte-Carlo
» Resummation /resurgence

2 bleeding edge promising approaches
1. Quantum computing

2. Classical compression (variational method)



Quantum Computing

If quantum mechanics is difficult to simulate, make the simulator quantum

mechanical
Trapped ions Superconducting circuits
(ionQ, Maryland,Honeywell) (IBM, Google, QUANTIC, Alice&Bob)

» highly non trivial: not just analog simulation, ultimately digital quantum
computation with error correction



Aparté on quantum computing

DOES
1. Solve the quantum many-body problem directly

2. Factor prime numbers fast and break RSA

» Turing Machines with best algorithm t = Cexp (n1/3)
» Shor's algorithm on quantum bits t o< n®



Aparté on quantum computing

DOES
1. Solve the quantum many-body problem directly

2. Factor prime numbers fast and break RSA

» Turing Machines with best algorithm t = Cexp (n1/3)
» Shor's algorithm on quantum bits t o< n®

DOES NOT

1. Solve by trying all solutions
= only quadratic gain n — +/n for search
2. Solve hard optimization problem in general
= no exponential gain for NP-hard problems (conjecture)



The direct compression approach

Variational method for ground state search

1. Guess a manifold M C 4 with few parameters v i.e. dimM < dim.s7
(v|H|v)

2. Tune v to minimize energy v = argmin, ¢y Iy

and get
lground state) ~ |v)
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The direct compression approach

Variational method for ground state search

1. Guess a manifold M C Z with few parameters v i.e. dimM < dim.#

... o . (‘\/|H|‘v>
2. Tune v to minimize energy v = argminy et “ryvy and get
lground state) ~ |v)
Reason for compression (classical) Reason for compression (quantum)

cat image “typical” image low energy state random state

atypical = compressible area law = atypical = compressible



Many-body problem

Problem
Finding low energy states of
N
A=) h
k=1

is hard because dim 57 o 2N



Variational optimization

Generic (spin 1/2) state € 7"

W)= > Gy ity i)

iy =1

Exact variational
optimization

To find the ground state:

i (1A)
|0>_|¢>e9f (Whp)

» dim .7 = 2N



Variational optimization

Generic (spin 1/2) state € 7

W) = Z Cir, oy yin 11577+ 5 i)

iy =1

Approx. variational
optimization

To find the ground state:

_ min (WIARY)
|0>_|w>e/f (Whp)

» dim.Z o Poly(N) or fixed



Interesting states are weakly entangled

Low energy state

W) =10) or 1) ..

Reduced density
matrix

p = troe [} (]

Entanglement
entropy
S = —tr[plog p]

Area law

S x [0D|
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Typical states are strongly entangled

Random state
W) = Upaarltrivial)

Reduced density
matrix

p = troe [} (W]

Entanglement
entropy
S= —tr[p log p]

Volume law

S x |D|



Matrix Product States (MPS) aka tensor trains

Definition
A MPS for a translation invariant chain of N spins/qubits (5% = C?) with
periodic boundary conditions is a state

|1])(A)> = Z tr [AilAi2"'AiN] |i1)i2)-")iN>

ilyi2>"-yiN

where A; are 2 matrices € Mp(C).

» The matrices A; for i = %1 are the free parameters

» The size D of the matrices is the bond dimension (quantifies freedom)
» Correlation functions (and (H)) efficiently computable

» Optimizing over A provably gives good results for gapped H



Tensor network states in a nutshell

.zip or .jpg for complex quantum states that appear in Nature

1. Exponential reduction: 2V —s N x D?? parameters
[N number of spins, D amount of entanglement, d space dimension (1,2, 3)]

2. Efficient compression: compression error < e~ or 1/superpoly(D)
[For a large number of a priori non-trivial problems]

[History: 1992 for d =1, 2004 for d > 2, 2016 for 2d-Hubbard at T = Q]



Some facts

d =1 spatial dimension d > 2 spatial dimension

Theorems (colloquially) Folklore
1. For gapped H, TNS |A) 1. For gapped H, TNS |A) _
approximate well |0) with D fixed approximate well [0) with D fixed
2. All |A) are ground states of 2. Most |A) are ground states of
gapped H gapped H



State of the art

Dense: all states approximable (trivial)
Efficient: cost Poly(D) error 1/superPoly(D)

It's all a matter of prefactors and exponents

» 1 space dimension — D > 1000 — machine precision
(MPS results “numerically exact”)

» 2 space dimensions — D ~ 10 — efficient
(PEPS efficient to 1072 — 107° depending on problems)

» 3 space dimensions — D ~ 3 — theoretically efficient but too expensive



Summary

We know the laws of Nature for all practical purposes

But solving them is hard because of the tensor product structure in QM
Perturbation theory saved the day for many problems

Many crucial problems are blocked by our inability to simulate large N QM
Quantum computing is a solution

vvVvyVvyyvVyy

Classical compression based on tensor networks is another



The quantum many-body problem in the continuum

From the lattice to the continuum and Quantum Field Theory (QFT)

.............
.............
.............
.............
-------------
.............
.............

W)= Y Gudiheci)  — )= Do we]0)

i1>i2)"’ )iN

New problem: 2V C-parameters — dimJ# = co™ even at finite size!

Question Can one compress co® down to a manageable number of parameters?



Grand challenge

Grand challenge

Compress field wavefunctions () and use them to solve the (9)
continuous-many-body problem directly leveraging a

continuous generalization of tensor networks

Ambitious but sound- first insights in 2010 and recent progress

non-relativistic relativistic critical
d =1 space
d > 2 space Tilloy-Cirac

2019
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Numerics

energy density (h)o r

relative error
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