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Two “realist” reconstructions of QM
de Broglie - Bohm

♣ The wave-function ψ evolves
unitarily

∂t |ψ⟩ = −iH |ψ⟩

♠ “Particles move”

Objective collapse

♣ The wave-function does not
evolve unitarily

∂t |ψ⟩ = −iH |ψ⟩+ε f (ψ,w) |ψ⟩

♠ The real world is made from ψ

or collapse events (“flashes”)
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A connection on two levels
Weak inclusion
For a reasonably generic collapse model on a system S, there exists a bath of
oscillators B and some (carefully chosen) unitary dynamics on S + B such that
the two models are empirically indistinguishable.

Collapse on S ⇐⇒
empirically

dBB (or MW or . . .) on S + B

Strong inclusion
With the same choice of B, one can supplement the bath oscillators with
Bohmian positions (hidden variables) qB such that ψcollapse

S (·) = ψdBB
S+B(·, qB), and

the collapse model noise has the same law as a linear functional of qB.

Collapse on S ⇐⇒
ontologically

dBB on S + B
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The principle and origin of collapse
models (Ghirardi-Rimini-Weber)



The idea of collapse models

Other names : [Objective / spontaneous / dynamical] [reduction / collapse]
[model / program]

Schödinger equation + tiny non-linear bit

d
dtψt = −

i
 h

H ψt + ε(ψ) ,

H is the Standard Model Hamiltonian (or non-relativistic approx)

Careful : a priori ad hoc, the objective is primarily to show it’s possible possible



Ghirardi Rimini Weber model

The GRW modification (1986)

Every dt, with proba λdt particle k collapses around point xf

ψt −→
L̂k(xf )ψt

∥L̂k(xf )ψt∥
avec proba P(xf ) = ∥L̂k(xf )ψt∥2

with an envelope L̂k(xf ) =
1

(πr2
C)

3/4 e−(x̂k−xf )
2/(2r2

C) . GianCarlo Ghirardi
1935 - 2018



Why it works

If one takes λ = 10−16s−1 (historical value) :
1. An electron collapses every 300 million years.
2. A cat, with ≃ 1028 electrons, is localized to rc in less than a picosecond.

In brief : one can semi-rigorously derive the measurement postulate simply by
studying the dynamics of the measurement apparatus

Microscopic degrees of freedom (spin, photon, etc.) do not collapse because of
their intrinsic dynamics, but when they are coupled to something macroscopic.
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Metaphysics – Ontology

What is real ? What is the world made of ?

1. GRW0 The wave-function ψt itself (but infinite
literature of subtleties)

2. GRWm The mass density ⟨M̂(x)⟩

⟨M̂(x)⟩ =
∑

k

∫
dx1 · · · dxn |ψ(x1, · · · , x , · · · , xn)|

2

x in kth position

3. GRWf The events (tf , xf ) where the wave-function
collapse (the flashes) – [Bell’s choice !]



Experimental consequences

1. Loss of interference
pattern with
macro-molecules

2. Matter heats up
(slowly...)

3. Micro vibrations
4. Spontaneous emission

of photons

Some candidates
1) Experiments of Markus Arndt 2) Neutron stars 3) Mirrors of LISA
Pathfinder 4) Germanium crystals underground in Gran Sasso



The structure of collapse models
(Gisin’s "theorem")



Could we do things differently ?

Steven Weinberg tried but ...

Gisin’s theorem (1989)

Non-linear deterministric modifications of Schrödinger’s
equation allow to send signals faster than light (or break
Born’s rule).

Reason : with such a modification, one can empirically
distinguish
▶ a statistical mixture (Alice measured, Bob doesn’t

know the result)
▶ an entangled state (Alice didn’t measure)

Nicolas Gisin



Linearity of the master equation
Empirical content of GRW
Crucial point : we can only measure frequencies in practice πk = ⟨ψ|Π̂k |ψ⟩,
which are in addition averaged over jumps πk = E

[
⟨ψ|Π̂k |ψ⟩

]
πk = E

[
⟨ψ|Π̂k |ψ⟩

]
= tr

(
Π̂k E

[
|ψ⟩⟨ψ|

])
= tr

(
ρ̂ Π̂k

)
.

Hence all falsifiable predictions of the model are in ρ̂ = E
[
|ψ⟩⟨ψ|

]

GRW master equation
Everything is made such that E cancels away the non-linearity

d
dt ρ̂t = −

i
 h
[Ĥ , ρ̂t ] + λ

N∑
k=1

{∫
dxf L̂k(xf )ρ̂t L̂k(xf )

}
− ρ̂t
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Les modèles de collapse modernes
(à bruit coloré)



Modern collapse models (with colored noise)

One wonders which type of non-linear stochastic Schrödinger equations one can
write :

∂t |ψ⟩ = −iH |ψ⟩+ ε f (ψ,w)
non-linear

|ψ⟩ (1)

One gets strong constraints on f by requiring that
▶ Equation (1) reduces superpositions in a certain basis (typically position)
▶ The master equation on ρt = E

[
|ψt⟩⟨ψt |

]
is linear :

ρt = Φt · ρ0 CompletelyPositiveTracePreserving

Necessary to stay safe from Nicolas Gisin’s anger.
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Recipe – step 1 : start from a linear equation

Linear Stochastic differential equation

d
dt |ϕw(t)⟩ =

[
− iH +

√
γwi(t)Ai

noise
− 2√γAi

∫ t

0
ds Dij(t, s)

δ

δwj(s)

]
non-trivial yet necessary memory term

|ϕw(t)⟩,

with Gaussian colored noise : E [wi(t)wj(s)] = Dij(t, s) où D > 0

▶ Master equation : For ρt = E
[
|ϕw(t)⟩⟨ϕw(t)|

]
, one gets ρt = Φt · ρ0

with Φt (CPTP) thanks to the memory term
▶ Dilation : the master equation admits a unitary dilation by adding a bath of

harmonic oscillators → weak inclusion is intuitive
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Recipe – step 2 : normalize ϕ and cook the noise
Normalize
The norm of |ϕw(t)⟩ is not constant, one needs to normalize

|ψw(t)⟩ :=
1√

⟨ϕw(t)|ϕw(t)⟩
|ϕw(t)⟩

but, horror ! |ψw(t)⟩ does not give a linear master equation upon E

Cook the noise
One restores the linearity by continuously changing the law of the noise

∀t ⩾ 0, w [t]
j (s) = wj(s) + 2√γ

∫ t

0
dτDij(τ, s)⟨Ai⟩τ,

to get a new noise that depends on the complete trajectory |ϕw⟩

The collapse model is contained in the evolution of |ψw [t](t)⟩.
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Salient points to remember
Generic collapse models i.e. with colored noise, are more subtle than they seem.
In particular, 2 difficulties :

1. Memory term :

2√γAi

∫ t

0
ds Dij(t, s)

δ

δwj(s)
|ϕw(t)⟩

necessary to maintain consistency but extremely not intuitive
2. Cooking / noise redefinition :

∀t ⩾ 0, w [t]
j (s) = wj(s) + 2√γ

∫ t

0
dτDij(τ, s)⟨Ai⟩τ,

also necessary, but highly non-trivial to derive

→ Equivalent in dBB : conditioning for 1 and piloting equation for 2
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Dilation and Bohmianization



Explicit dilation
Objective : find an explicit bath B such that

tracing over bath trB[|ψS+B⟩⟨ψS+B |] = average over noise E[|ψw⟩⟨ψw |]

Solution : continuum of harmonic oscillators [x̂j,ω, p̂j ′,ω ′] = iδj,j ′δ(ω−ω ′)

HB =
∑

j

∫
R

dω ω a†
j,ωaj,ω and HB↔S =

∑
j,k

Aj ⊗
∫
R

dω κj,k,ω p̂k,ω

with κk,ℓ,ω = κk,ℓ,−ω.
Link with the 2-point function of the noise :

Djk(t − s) =
∫
R+

dω κj,ℓ,ωκk,ℓ,ω cos(t − s)

→ explicit version of the weak inclusion [proof : Wick’s theorem]
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Technical subtlety
For what follows we need to change of basis for B

1. go into interaction representation for the bath (rotating basis)
2. define new oscillator variables

x̂+
j,ω =

x̂j,ω + x̂j,−ω√
2

p̂+
j,ω =

p̂j,ω + p̂j,−ω√
2

x̂−
j,ω =

p̂j,ω − p̂j,−ω√
2

p̂−
j,ω =

−x̂j,ω + x̂j,−ω√
2

This new basis is still a legitimate oscillator basis, with canonical
commutation relations

[x̂+
j,ω, p̂+

j,ω] = i [x̂+
j,ω, p̂−

j,ω] = 0
[x̂−

j,ω, p̂+
j,ω] = 0 [x̂−

j,ω, p̂−
j,ω] = i ,



Bohmianizing the bath : 1 conditioning
Step 1 : condition the state of S + B for fixed particle positions in B

ψS,xB(t, xS) := ψS+B(t, xS , xB) ⇔ |ψS,xB(t)⟩ := ⟨xB |ψS+B(t)⟩

Observation 1
|ψS,xB(t)⟩ obeys the same differential equation as |ϕw(t)⟩ with the “noise”

w̃k(t) =
∫
R+

dω κk,ℓ,ω [cos(ωt) x+
ℓ,ω + sin(ωt) x−

ℓ,ω]

Observation 2
If the system S + B is initially in the state |ψS+B⟩ = |ψS⟩ ⊗ |0⟩B and if initial
Bohmian variables B are drawn from Born’s rule, w̃ (which is deterministic !) has
the same law as the noise w the collapse model before cooking
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Bohmianizing the bath : 2 evolve the particles

Step 2 : condition not on xB fixed in B, but on positions xB(t) evolving
according to Bohmian dynamics

|ψS,xB(t)⟩ −→ |ψS,xB(t)(t)⟩ with dxB(t)
dt = V

ψS+B
dBB [xB(t)]

i.e. the standard conditional wavefunction in dBB

Observation 3
The field w̃ [t] obtained from xB(t) is linked to w̃ through the same non-trivial
transformation linking w [t] and w .

∀t ⩾ 0, w̃ [t]
j (s) = w̃j(s) + 2√γ

∫ t

0
dτDij(τ, s)⟨Ai⟩τ,
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Technical subtlety

Expressing the velocity field (guiding law or pilot equaiton) for a generic dBB
theory with a Hamiltonian at most order 2 in p̂

d
dt x(t) = V[x(t)] =

ℜe
[
⟨ψt |Π̂x(t)V̂|ψt⟩

]
⟨ψt |Π̂x(t)|ψt⟩

,

with
V̂ = −i [H , x̂ ]

which extends the standard

V(x(t), |ψt⟩] =
1
mℑm

[
∂xψt(x)
ψt(x)

] ∣∣∣
x=x(t)

to generic Hilbert spaces (not just L2(R))



Bohmianizing the bath : conclusion
The 3 observations

1. The wavefunction of S + B where we fix bath particles has the same
dynamics as |ϕw⟩ if we assume the linear field w̃ has the same value as the
noise w .

2. If Bohmian positions of the bath are initially drawn from the Born rule
(which is the case at equilibrium in dBB), then w̃ indeed has the same law
as w .

3. Letting the bath particle evolve according to the standard Bohmian guiding
laws transforms the field in the same way that cooking cooking changes the
collapse field.

imply the strong result
▶ The wavefunction ψS by fixing the bath positions to their real-time dBB

value xB(t) i.e. ψS+B(xB(t), ·) is a stochastic process with the same law as
ψ

[t]
w the wavefunction of the collapse model

▶ The law of the field w̃ [t] (linear functional of the Bohmian positions) is the
same as the law of the cooked noise w [t] in the full collapse model.
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Discussion



Implications of the weak result – empirical inclusion

▶ Collapse models make different predictions from standard quantum
mechanics

→ No, their predictions differ only from a specific instance, the standard
model

▶ Collapse models induce a stochasticity with specific signatures
→ No, this randomness is empirically undistinguishable from standard
quantum randomness coming from unknown degrees of freedom

▶ Collapse models bring nothing to foundations then ?
→ they do, they solve the measurement problem, which is an empirical
problem
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Implications du résultat fort – inclusion ontologique

Pot pourri :

▶ Des dynamiques aléatoire et déterministe peuvent être identiques – la
différence est alors nomologique (dans l’écriture de la loi, i.e. la filtration)

▶ Pour les modèles de collapse généraux colorés, la dynamique est plus
facilement intuitable et plausible dans sa formulation dBB
→ restreindre l’appellation aux modèles Markoviens comme GRW ?

▶ Il est tentant de répéter les mêmes constructions à des « bains » existants
(comme les photons)
→ description dBB partielle équivalente à leur « unraveling » stochastique
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Conclusion

Il n’y a qu’une manière de choisir une branche
Les deux approches les plus précises et explicites pour choisir une branche de la
fonction d’onde – pour éviter Many World en étant réaliste – utilisent en fait de
manière cachée la même dynamique.

Peut-on faire autrement ?


