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Quantum field theory: a bit of strategy

Two ways to attack real world quantum field theories non-perturbatively
1. Start simpler so that it becomes simpler [e.g. ϕ4

2]
2. Start more complex so that it becomes simpler [e.g. N = 4 SYM]

ϕ4
2 - pile of dirt QCD - Everest N = 4 SYM - Chrysler building
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Scalar field theory for beginners
and condensed matter theorists



Intuitive definition: canonical quantization

Hamiltonian
A continuum of nearest neighbor coupled anharmonic oscillators

Ĥ =

∫
Rd

ddx π̂(x)2

2
on-site inertia

+
[∇ϕ̂(x)]2

2
spatial stiffness

+ V (ϕ̂(x))
on-site potential

with canonical commutation relations [ϕ̂(x), π̂(y)] = iδd(x − y)1 (i.e. bosons)



Intuitive definition

Hilbert space
Fock space HQFT = F [L2(Rd)] – just like x , p → (a, a†) do π̂, ϕ̂→ ψ̂, ψ̂†

|Ψ⟩ =
+∞∑
n=0

∫
dx1dx2 · · · dxn φn(x1, x2, · · · , xn)︸ ︷︷ ︸

wave function

ψ̂†(x1)ψ̂
†(x2) · · · ψ̂†(xn)︸ ︷︷ ︸

local oscillator creation

|vac⟩



What are the problems - Hilbert space approach

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms ∝ ψ̂(x)ψ̂†(x)

⟨Ψ1|Ĥ |Ψ2⟩ = ±∞ and even ⟨vac|Ĥ |vac⟩ ∝ δd(0) = +∞
If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

∀ |Ψ⟩ ∈ H , ⟨Ψ|Ĥfinite|Ψ⟩ = finite but ∃ Ψn s.t. lim
n→+∞⟨Ψn|Hfinite|Ψn⟩ = −∞



How are they are solved in the free case - Hamiltonian
Bogoliubov transform
Go from ψ̂(x), ψ̂†(x) to a(p), a†(p) with

a(p) = 1√
2

(
√
ωp ϕ̂(p) +

π̂(p)
√
ωp

)
with ωp =

√
p2 + m2

which yields
H0 =

∫
dpωp

1
2
(
a†

pap + apa†
p
)

Solution
▶ Take HQFT ≡ : H :a
▶ |free ground state⟩ = |vacuum⟩a

▶ H built from a†
p1
· · · a†

pn
|vacuum⟩a

This solves the problematic free
part exactly, and allows to define
a finite interaction (in 1 + 1)



Rigorous operator definition of ϕ4
2

Renormalized ϕ4
2 theory

H =

∫
dx : π2 :a

2 +
: (∇ϕ)2 :a

2 +
m2

2 : ϕ2 :a +g : ϕ4 :a

(note that : ♢ :a depends on m)

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy ε0 density finite
3. Very difficult to solve unless g ≪ m2 (perturbation theory)
4. Phase transition around fc = g

4m2 = 11 i.e. g ≃ 2.7 in mass units

Other well defined potentials → : cos(βϕ) : or : cosh(βϕ) :



The variational method
Solving the non-exactly solvable by compressing



Two (main) games in town

Perturbation theory
+ resummation

state of the art is O(g8)

arXiv:1805.05882
Serone, Spada, Villadoro

Lattice Monte-Carlo

arXiv:1807.03381
Bronzin, De Palma, Guagnelli



The direct compression approach

Variational method for ground state search

1. Guess a manifold M ⊂ H with few parameters ν i.e. dimM ≪ dimH

2. Tune ν to minimize energy ν = argminν∈M
⟨ν|H|ν⟩
⟨ν|ν⟩ and get

|ground state⟩ ≃ |ν⟩

Reason for compression (classical)

cat image “typical” image

atypical =⇒ compressible

Reason for compression (quantum)

low energy state random state

area law = atypical =⇒ compressible
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Feynman’s criticism

Feynman’s requirement in a nutshell

1. Extensive parameterization
Number of parameters ∝ Lα at most for system size L (not ∝ eL)

2. Computable expectation values
ψ known =⇒ ⟨O(x)O(y)⟩ψ computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted



Elegantly swallowing the bullet

Example: naive Hamiltonian truncation
With an IR cutoff L, momenta are discrete. Take as submanifold M the vector
space spanned by:

|k1, k2, · · · , kr⟩ = a†
k1

a†
k2
· · · a†

kr
|0⟩a

such that ⟨k1k2 · · · kr |H |k1k2 · · · kr⟩ ⩽ Etrunc → finite dimensional

Breaks extensiveness
▶ number of parameters ∝ eL×Etrunc

▶ error ∝ E−3
trunc (with renormalization refinements)

still good results, see Rychkov & Vitale arXiv:1412.3460



Relativistic continuous matrix product states
RCMPS: A variational ansatz to solve 1 + 1d relativitic QFT without

discretization or cutoff and to arbitrary precision

Definition
(Verstraete & Cirac 2010 for non-relativistic −→ AT 2021 for relativistic)
A RCMPS is a manifold of states parameterized by 2 (D × D) matrices Q,R

|Q,R⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩a

with
▶ a(x) = 1

2π

∫
dk eikxak where ak = 1√

2

(√
ωp ϕ̂(p) + i π̂(p)√

ωp

)
▶ trace taken over CD

▶ P path-ordering exponential



On the lattice
the variational method with tensor networks in a simpler context



Quantum many-body problem on the lattice

Typical many-body problem

N spins on a lattice
H =

⊗n
j=1 Hj with Hj = C2

|ψ⟩ =
∑

ci1,i2,··· ,in |i1, i2, · · · iN⟩

Problem:

Finding the low energy states of

H =

N∑
k=1

hk

is hard because dim H = 2N for spins
Fugaku – 2 EFLOPS – 150 PB
cannot do 4 × 4 × 4 spins



Variational optimization
Generic (spin d/2) state ∈ H :

|ψ⟩ =
∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN⟩

Exact variational
optimization
To find the ground state:

|0⟩ = min
|ψ⟩∈H

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

▶ dim H = dN



Variational optimization
Generic (spin d/2) state ∈ H :

|ψ⟩ =
∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN⟩

Approx. variational
optimization
To find the ground state:

|0⟩ = min
|ψ⟩∈M

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

▶ dim M ∝ Poly(N) or fixed



Interesting states are weakly entangled
Low energy state
|ψ⟩ = |0⟩ or |1⟩ ...

Reduced density
matrix
ρ = trDc

[
|ψ⟩⟨ψ|

]
Entanglement
entropy
S = −tr

[
ρ log ρ

]
Area law

S ∝ |∂D|
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Typical states are strongly entangled
Random state
|ψ⟩ = UHaar|trivial⟩

Reduced density
matrix
ρ = trDc

[
|ψ⟩⟨ψ|

]
Entanglement
entropy
S = −tr

[
ρ log ρ

]
Volume law

S ∝ |D|



The solution in 1 +1: Matrix Product States (MPS)

Definition
A MPS for a translation invariant chain of N qudits (Cd) with periodic boundary
conditions is a state

|ψ(A)⟩ :=
∑

i1,i2,...,iN

tr [Ai1Ai2 · · ·AiN ] |i1, i2, . . . , iN⟩

where Ai are d matrices ∈ MD(C).

▶ The matrices Ai for i = 1 . . . d are the free parameters
▶ The size D of the matrices is the bond dimension (quantifies freedom)
▶ Correlation functions (and ⟨H⟩) efficiently computable
▶ Entanglement entropy verifies Area Law



Optimization
To find lowest energy state, with generic TNS, still need to optimize the poly(D)
parameters

▶ Naive gradient descent inefficient (works
only for D ⩽ 10)

▶ Riemanian gradient descent highly efficient
(= TDVP)

Metric on tensor network state manifold

1. |ψ(A)⟩ ∈ M a state in the tensor network manifold
2. |ψ(A),W ⟩ = W · ∇A|ψ(A)⟩ the tangent vector in A along direction W
3. gA(V ,W ) := Re ⟨ψ(A),V |ψ(A),W ⟩ induced Hilbert metric

Note: best is to do Riemanian quasi-Newton, like Riemanian conjugate gradient
or Riemanian LBFGS → OptimKit.jl by Haegeman et al.



Some facts
1 spatial dimension

Theorems (colloquially)

1. For gapped H , tensor network
states |A⟩ approximate well |0⟩ as
D increases

2. All |A⟩ are ground states of local
gapped H

⩾ 2 spatial dimension

Folklore

1. For gapped H , tensor network
states |A⟩ approximate well |0⟩ as
D increases

2. Most |A⟩ are ground states of
local gapped H



Relativistic matrix product states
taking MPS to the limit



The quantum many-body problem in the continuum

From the lattice to the continuum and Quantum Field Theory (QFT)

|Ψ⟩ =
∑

i1,i2,··· ,iN

ci1i2···iN |i1i2 · · · iN⟩ −→ |Ψ⟩ =
∫
Dϕ ψ(ϕ) |ϕ⟩

New problem: 2N C-parameters → dimH = ∞∞ even at finite size!

Question Can one compress ∞∞ down to a manageable number of parameters?



Relativistic continuous matrix product states
RCMPS: A variational ansatz to solve 1 + 1d relativitic QFT without

discretization or cutoff and to arbitrary precision

Definition
(Verstraete & Cirac 2010 for non-relativistic −→ AT 2021 for relativistic)
A RCMPS is a manifold of states parameterized by 2 (D × D) matrices Q,R

|Q,R⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩a

with
▶ a(x) = 1

2π

∫
dk eikxak where ak = 1√

2

(√
ωp ϕ̂(p) + i π̂(p)√

ωp

)
▶ trace taken over CD

▶ P path-ordering exponential



Basic properties of RCMPS

|Q,R⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩a

Feynman’s checklist:

1. Extensive because of P exp
∫

2. Obervables computable at cost D3 (non trivial!)
requires [a(x), a†(y)] = δ(x − y) i.e. quantum noise techniques

3. No UV problems
|0, 0⟩ = |0⟩a is the ground state of H0 hence exact CFT UV fixed point
⟨Q,R |hϕ4 |Q,R⟩ is finite for all Q,R (not trivial!)



The variational algorithm

Procedure:
Compute e0 = ⟨Q,R |hϕ4 |Q,R⟩ and ∇Q,Re0
Minimize e0 with TDVP aka gradient descent with a metric

Computations of e0 and ∇e0 in a nutshell:
1. Vb = ⟨:ebϕ(x) :⟩QR computable by solving an ODE with cost ∝ D3

2. ⟨:ϕn :⟩QR computable doing ∂n
bVb

∣∣∣
b=0

→ ∝ D3

3. e0 = ⟨h⟩QR computable by summing such terms at cost D3 → ∝ D3

4. ∇e0 computable by solving the adjoint ODE (backpropagation) → ∝ D3



ϕ4
2 theory

H =

∫
dx : π2 :

2 +
: (∇ϕ)2 :

2 +
m2

2 : ϕ2 : +g : ϕ4 :

1. Well-defined
2. Non-integrable - hard to carry accurate computations
3. Well understood qualitatively
4. phase transition for g ≃ 2.7



Results: ϕ4
2 energy density
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Results: ϕ4
2 – field expectation value ⟨ϕ⟩
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Sinh-Gordon theory

H =

∫
dx : π2 :

2 +
: (∇ϕ)2 :

2 + µ : cosh(βϕ) :

1. Well-defined (at least for β ⩽
√

4π and probably β ⩽
√

8π)
2. Integrable - exact results by Zamolodchikov et al.
3. Controversies about qualitative behavior

[see Konik Lajer Mussardo arXiv:2007.00154]
4. Phase transition at β =

√
8π (??)



Results for Sinh-Gordon – energy density



Results for Sinh-Gordon – energy density



Results for Sinh-Gordon – ⟨: exp(αϕ) :⟩ at β = 2.0



Results for Sinh-Gordon – ⟨: exp(αϕ) :⟩ at β = 4.0



Discussion

Remaining objectives do more realistic theories

non-relativistic relativistic critical
d = 1 space Verstraete-Cirac

2010
AT
2021

d ⩾ 2 space AT-Cirac
2019

no idea heuristics clear definition fast algorithm



Summary

|Q,R⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩a

1. Ansatz for 1 + 1 relativistic QFT
2. No cutoff, UV or IR, extensive, computable
3. UV is captured exactly even at D = 0
4. Efficient (cost poly D, error 1/superpoly D ) and now competitive
5. Rigorous (variational)


