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Quantum field theory: a bit of strategy

Two ways to attack real world quantum field theories non-perturbatively
1. Start simpler so that it becomes simpler [e.g. 3]
2. Start more complex so that it becomes simpler [e.g. N =4 SYM]
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Scalar field theory for beginners

and condensed matter theorists



Intuitive definition: canonical quantization
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Hamiltonian

A continuum of nearest neighbor coupled anharmonic oscillators
A R(x)> Vb (x))? A
A= o TR BEE L v

Rd 2 2

on-site potential

on-site inertia spatial stiffness

with canonical commutation relations [&\)(x),ﬁ(y)] = i8%(x — y)1 (i.e. bosons)



Intuitive definition
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Hilbert space
Fock space et = Z[L2(RY)] — just like x, p — (a,a') do A, $ — l/l\),l/l\)T
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|\P> = ZJ'dX]_dXQ 000 an ipn(Xsz, co )anl/l\)T(Xl){l\)T()Q) o '{l\)T(Xn) |vac)

n=0
wave function local oscillator creation




What are the problems - Hilbert space approach

The Hamiltonian is ill defined on all states in the Hilbert space because of infinite
zero point energy i.e. terms o< P(x)Pt(x)

<W1|ﬁI|W2> = 400 and even <vac|l/-\llvac) x 89(0) = +00

If the divergent vacuum terms are removed, the Hamiltonian is not bounded from
below

VYY) e 2, (‘P[ﬁlﬁnite]\w = finite but IV, s.t. lim (Y, |Hsnitel¥Vs) = —00

n——+00



How are they are solved in the free case - Hamiltonian

Bogoliubov transform
Go from l/ﬁ(x),ﬂ;T(x) to a(p), a'(p) with

A 7t
a(p) = % (\/w_p(b(p) + \/(wi)> with w, = +/p? + m?

p
which vyields
1
Ho = Jdp Wp 5 (afa, + apal)

Solution
This solves the problematic free
> Take Horr =: H 35 part exactly, and allows to define
> |free ground state) = [vacuum), a finite interaction (in 1+ 1)

i T gt
» 2 built from al, ---al [vacuum),



Rigorous operator definition of cl)‘21

Renormalized ¢} theory

S o 2
H:de'ﬂ2'3+'(vf) 'a+m7:cl)2:a+g:c|)4:a

(note that : <> :, depends on m)

1. Rigorously defined relativistic QF T without cutoff (Wightman QFT)
2. Vacuum energy ¢q density finite
3. Very difficult to solve unless g < m? (perturbation theory)

4. Phase transition around f. = ;2; =11 i.e. g ~ 2.7 in mass units

Other well defined potentials —  : cos(fd) : or : cosh(Bd) :



The variational method

Solving the non-exactly solvable by compressing



Two (main) games in town

Perturbation theory
+ resummation

A = —12@g7+288 @g%
- (2304 Z +2592 @ + 10368 @) g'+0(g")

Py = —96—>—g*+ {uszﬁ + 3456 A—] - {41472@ + 1usz4i
+82944-@- n 41472@ + 82944_&_ + 27048_@_} ¢+ 0(e°),
state of the art is O(g®)
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Lattice Monte-Carlo
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The direct compression approach

Variational method for ground state search

1. Guess a manifold M C 4 with few parameters v i.e. dimM < dim.s7
(v|H|v)

2. Tune v to minimize energy v = argmin, ¢y Iy

and get
lground state) ~ |v)



The direct compression approach

Variational method for ground state search

1. Guess a manifold M C 7 with few parameters v i.e. dimM < dims?
(v|H|v)
(vIv)

2. Tune v to minimize energy v = argmin, ¢y and get

lground state) ~ |v)

Reason for compression (classical)

cat image “typical” image

atypical = compressible



The direct compression approach

Variational method for ground state search

1. Guess a manifold M C Z with few parameters v i.e. dimM < dim.#

... o . (‘\/|H|‘v>
2. Tune v to minimize energy v = argminy et “ryvy and get
lground state) ~ |v)
Reason for compression (classical) Reason for compression (quantum)

cat image “typical” image low energy state random state

atypical = compressible area law = atypical = compressible



Feynman’s criticism

Difficulties in Applying the Variational

Principle to Quantum Field Theories!

so I tried to do something along these lines with quantum chromodynamics. So
I'm talking on the subject of the application of the variational principle to field
theoretic problems, but in particular to quantum chromodynamics.

I'm going to give away what I want to say, which is that I didn’t get anywhere!
I got very discouraged and I think I can see why the variational principle is not
very useful. So I want to take, for the sake of argument, a very strong view —
which is stronger than I really believe — and argue that it is no damn good at all!

Feynman'’s requirement in a nutshell

1. Extensive parameterization
Number of parameters oc L% at most for system size L (not o< el)

2. Computable expectation values
P known = (O(x)O(y))y, computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted



Elegantly swallowing the bullet

Example: naive Hamiltonian truncation

With an IR cutoff L, momenta are discrete. Take as submanifold .# the vector
space spanned by:
|k1> k2) T kr> - a/tla/tz T a/tr|0>a

such that (kika - - -k |H|kika - - - k;) < Etpune — finite dimensional

Breaks extensiveness

» number of parameters oc el EFtrunc

» error oc £ 2 (with renormalization refinements)

still good results, see Rychkov & Vitale arXiv:1412.3460



Relativistic continuous matrix product states

RCMPS: A variational ansatz to solve 1 + 1d relativitic QF T without
discretization or cutoff and to arbitrary precision

Definition
(Verstraete & Cirac 2010 for non-relativistic — AT 2021 for relativistic)
A RCMPS is a manifold of states parameterized by 2 (D x D) matrices @, R

|Q,R) =tr {fPexp de Q®1+R® aT(x)} } 0),

with
> a(x) = % [ dk e™ay where a, = \% (,/wp (T)(p) + i%)
» trace taken over CP
» P path-ordering exponential



On the lattice

the variational method with tensor networks in a simpler context



Quantum many-body problem on the lattice

................... Typical many-body problem
o, N spins on a lattice

Ui A =@t 4=C
e (W) =2 Gty inl ity iy - i)

Problem:

Finding the low energy states of

N
H = Z hy
k=1

Fugaku — 2 EFLOPS - 150 PB
is hard because dim s# = 2V for spins cannot do 4 x 4 x 4 spins



Variational optimization

Generic (spin d/2) state € -

W) = D Gy lity

15025+ yin

Exact variational
optimization

To find the ground state:

i (1A)
|0>_|¢>e9f (Whp)

» dim .7 = dV

)iN>



Variational optimization

Generic (spin d/2) state € J:

|1|)> - Z Ciryiy o+ i ’il’ T )iN>

15025+ yin

Approx. variational
optimization

To find the ground state:

_ min (WIARY)
|0>_|w>e/f (Whp)

» dim.Z o Poly(N) or fixed



Interesting states are weakly entangled

Low energy state

W) =10) or 1) ..

Reduced density
matrix

p = troe [} (]

Entanglement
entropy
S = —tr[plog p]

Area law

S x [0D|



Interesting states are weakly entangled

Low energy state

W) =10) or 1) ..

Reduced density
matrix

p = troe [} (]

Entanglement
entropy
S = —tr[plog p]

Area law

S x [0D|



Typical states are strongly entangled

Random state
W) = Upaarltrivial)

Reduced density
matrix

p = troe [} (W]

Entanglement
entropy
S= —tr[p log p]

Volume law

S x |D|



The solution in 1 +1: Matrix Product States (MPS)

Definition
A MPS for a translation invariant chain of N qudits (C9) with periodic boundary
conditions is a state

(WA = > trlA A, Ayl liy iy ...y in)

1402y eeeyipy

where A; are d matrices € Mp(C).

» The matrices A; for i = 1...d are the free parameters

» The size D of the matrices is the bond dimension (quantifies freedom)
» Correlation functions (and (H)) efficiently computable

» Entanglement entropy verifies Area Law



Optimization

To find lowest energy state, with generic TNS, still need to optimize the poly(D)
parameters

» Naive gradient descent inefficient (works
only for D < 10)

» Riemanian gradient descent highly efficient
(= TDVP)

Metric on tensor network state manifold

1. W(A)) € A a state in the tensor network manifold
2. W(A), W) =W -V ab(A)) the tangent vector in A along direction W
3. ga(V, W) :=Re (W(A), Vip(A), W) induced Hilbert metric

Note: best is to do Riemanian quasi-Newton, like Riemanian conjugate gradient
or Riemanian LBFGS — OptimKit.jl by Haegeman et al.



Some facts
1 spatial dimension > 2 spatial dimension

Theorems (colloquially) Folklore
1. For gapped H, tensor network 1. For gapped H, tensor network
states |A) approximate well |0) as states |A) approximate well |0) as
D increases D increases
2. All |A) are ground states of local 2. Most |A) are ground states of

gapped H local gapped H



Relativistic matrix product states
taking MPS to the limit



The quantum many-body problem in the continuum

From the lattice to the continuum and Quantum Field Theory (QFT)

.............
.............
.............
.............
-------------
.............
.............

W)= Y Gudiheci)  — )= Do we]0)

i1>i2)"’ )iN

New problem: 2V C-parameters — dimJ# = co™ even at finite size!

Question Can one compress co® down to a manageable number of parameters?



Relativistic continuous matrix product states

RCMPS: A variational ansatz to solve 1 + 1d relativitic QF T without
discretization or cutoff and to arbitrary precision

Definition
(Verstraete & Cirac 2010 for non-relativistic — AT 2021 for relativistic)
A RCMPS is a manifold of states parameterized by 2 (D x D) matrices @, R

|Q,R) =tr {fPexp de Q®1+R® aT(x)} } 0),

with
> a(x) = % [ dk e™ay where a, = \% (,/wp (T)(p) + i%)
» trace taken over CP
» P path-ordering exponential



Basic properties of RCMPS

|Q,R) =tr {(Pexp de RR1T+R® aT(x)] } 10),

Feynman's checklist:

1. Extensive because of Pexp [

2. Obervables computable at cost D? (non trivial!)
requires [a(x), aT(y)] = 8(x — y) i.e. quantum noise techniques

3. No UV problems
|0,0) = |0), is the ground state of Hy hence exact CFT UV fixed point
(Q, Rlhg41Q, R) is finite for all Q, R (not triviall)



The variational algorithm

Procedure:
Compute gy = (Q, R|he|Q, R) and Vg reg
Minimize ey with TDVP aka gradient descent with a metric

Computations of ¢y and V¢ in a nutshell:
1. V, = (:e®™):) g computable by solving an ODE with cost o< D3

. (:¢":)qr computable doing 97V, — o« D3

2
3. ey = (h)qr computable by summing such terms at cost D® — oc D3
4. Vey computable by solving the adjoint ODE (backpropagation) — o D3



¢3 theory

W=

Well-defined
Non-integrable - hard to carry accurate computations
Well understood qualitatively

phase transition for g ~ 2.7



Results: ¢35 energy density

energy density (h)g. r relative error
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Results: ¢4

— field expectation value ()

084 *+ D=5 x ¥
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Sinh-Gordon theory

2. 2.
szdx'z '—I—'(V;b) "+ w:cosh(Bd):

1. Well-defined (at least for 3 < v/47t and probably § < v/8m)
2. Integrable - exact results by Zamolodchikov et al.

3. Controversies about qualitative behavior
[see Konik Lajer Mussardo arXiv:2007.00154]

4. Phase transition at 3 = /87 (77)



Results for Sinh-Gordon — energy density
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Results for Sinh-Gordon — energy density
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Results for Sinh-Gordon — (: exp(ad) :) at = 2.0

1.00

]
x
Q
[a]
[ad

i
w0~
N O

o
N
191

T
39644
DUOoD

0.00



<

~ ++ ** **** BgwdS |

__ + & X Sunnn
i ¥aYaYaYal

a o) I8k

s

4]

T

<=

S

o

Pa

(D]

N

|

o

(=]

o

S

(@]

<

=

=

S 1 1 1 1

m S 2 2 Q 5]

“— — o.wHM. . o n o o

7)) {ol"A D)

e

=

(/)]

Q

o



Discussion

Remaining objectives do more realistic theories

non-relativistic relativistic critical
d =1 space
d > 2 space AT-Cirac

2019
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Summary

|Q,R):tr{?exp deQ@ll-l-R®aT(X)}}|0>a

Ansatz for 1 + 1 relativistic QFT

No cutoff, UV or IR, extensive, computable

UV is captured exactly even at D =0

Efficient (cost poly D, error 1/superpoly D ) and now competitive

gD

Rigorous (variational)



