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Main idea of collapse models

Other names: [objective / spontaneous / dynamical] [collapse / reduction]
[models / program]

Schrödinger equation + peanut non-linear perturbation

d
dtψt = −

i
 h

H ψt + ε(ψ) ,

H is the standard model Hamiltonian (or a non-relativistic simplification)

First consistent equation of this type: [Gisin 1984]



The easier Ghirardi-Rimini-Weber model

The GRW modification (1986)

Every dt, with probability λdt particle k collapses around
point xf

ψt −→
L̂k(xf )ψt

∥L̂k(xf )ψt∥
with proba P(xf ) = ∥L̂k(xf )ψt∥2

with an envelope L̂k(xf ) =
1

(πr2
C)

3/4 e−(x̂k−xf )
2/(2r2

C) .
GianCarlo Ghirardi
1935 - 2018



Why it works (solves the measurement problem)

Fixing e.g. λ = 10−16s−1 (historical value) :
1. An electron collapses every 300 million years
2. A cat made of ≃ 1028 electrons is localized up to rc in less than a picosecond

In brief: one can semi-rigorously derive the measurement postulate by studying
the stochastic dynamics of measurement devices

Microscopic degrees of freedom (spin, photon, etc.) do not collapse because of
their intrinsic dynamics, but when they are coupled to something macroscopic
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Experimental consequences

1. Loss of interferences
for big molecules

2. Matter slowly heats up
3. Stuff vibrates
4. Photons spontaneously

get emitted

Some candidates
1) Markus Arndt’s experiments 2) Neptune / neutron stars 3) Mirors of LISA
pathfinder 4) Germanium crystals in Gran Sasso



Could we have done things differently?
Steven Weinberg tried...

Gisin’s theorem (1989)

Non-linear deterministic modifications of the Schrödinger
equation allow to send signals faster than light.
(or break Born’s rule)

Reason: such a modification makes
1. a proper statistical mixture (Alice measured but

Bob does not know the result)
2. an improper mixture, from an entangled state

(Alice did not measure)
locally distinguishable by Bob.

Timeline:
1. Gisin’s theorem

1989
2. Weinberg’s

proposal 1989
3. Gisin’s explicit

rebuttal 1990
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Linearity of the master equation
Empirical content of GRW
Crucial point: one can only measure frequencies πk = ⟨ψ|Π̂k |ψ⟩, averaged over
jumps not knowable a priori π̄k = E [πk ]

π̄k = E
[
⟨ψ|Π̂k |ψ⟩

]
= tr

(
Π̂k E

[
|ψ⟩⟨ψ|

])
= tr

(
ρ̂ Π̂k

)
.

=⇒ all falsifiable predictions of the model are in ρ̂ = E
[
|ψ⟩⟨ψ|

]

Master equation of GRW
Collapse probabilities are chosen exactly so that E removes the non-linearity

d
dt ρ̂t = −

i
 h
[Ĥ , ρ̂t ] + λ

N∑
k=1

{∫
dxf L̂k(xf )ρ̂t L̂k(xf )

}
− ρ̂t
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Consequences of the linearity of the master equation
All collapse models proposed so far obey a linear master equation e.g. for
Markovian collapse models

d
dt ρ̂t = Lρ̂t (1)

It is the only thing one can probe experimentally.

What does it tell about the
underlying non-linear model? → weirdly very little

Unraveling
For ρ verifying (1), ∃ infinitely many stochastic equations for |ψ⟩ such that
ρ = E|ψ⟩⟨ψ|. [e.g. Dalibard, Castin, Mølmer]

Dilation
For ρ verifying (1) one can find a bigger Hilbert space Hbig = H ⊗ Haux such
that |Ψ⟩ ∈ Hbig verifies a standard linear Schrödinger equation and
ρ = traux[|Ψ⟩⟨Ψ|].
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Repeated interactions

In discrete time, unravelings and dilations are trivial to understand:

If measurement A gives a discretized GRW, measurement B gives an alternative
stochastic evolution, and non-measurement a unitary one.



Many shades of models with identical predictions

For example for GRW.
On can construct empirically equivalent models that are:
▶ stochastic but continuous, and that do not collapse cats
▶ deterministic but with an added peculiar dark sector in the Standard Model



A counterexample?

Interesting thought experiment inspired from Feldmann & Tumulka
arXiv:1109.6579

Imagine we live in a world where rC ≪ 10−16m.
→ Each collapse makes an audible bang!

Or does it make:
▶ A constant buzzing (continuous unraveling)
▶ No noise at all? (unitary dilation)
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Resolution
Empirically, all the models have to agree: we would hear bangs

Support of ψ in configuration space:

Same as the usual explanation of “discrete” photon clicks standard QED.
=⇒ impossible to distinguish this objective randomness from quantum
randomness



Summary of the reasoning

1. One introduces non-linear modifications of quantum mechanics to solve the
measurement problem [Gisin 1984]

2. These modifications have experimental consequences (advantage or
inconvenient)

3. But these modification are strongly constrained by the need for a linear
master equation [Gisin 1989]

4. The master equation contains all the empirical predictions of the model (but
not the metaphysics)

5. Infinitely many stochastic models or even unitary ones can reproduce the
same master equation, and thus the empirical content of these models

6. In fine: collapse models solve the measurement problem, but their empirical
content does not differ from quantum theory understood broadly, but rather
from the standard model
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What if the predictions of GRW are verified

▶ Logically, one could still defend some orthodox view of quantum
mechanics, introducing a peculiar non-relativistic dark sector

▶ The standard GRW account would have had the great advantage of having
predicted it

What would the community choose?


