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Quantum field theory: general objective

Long term goal

Find methods to solve “real world" quantum field theories (even without
structure) to good (machine?) precision

Go beyond the currently leading approaches
1. Perturbation theory <— need resummation / expensive large orders

2. Lattice Monte Carlo < need discretization / slow convergence of error / sign

3 promising alternatives
1. Bootstrap / SDP relaxations / Sum of Squares
2. Renormalization group < functional or tensor network RG
3. Variational method < Hamiltonian truncation or tensor network states



Variational method and RCMPS

In 1 4+ 1 dimensions, relativistic continuous matrix product states are an ansatz
with few parameters to efficiently find ground states and compute observables
[arXiv:2102.07733 and arXiv:2102.07741]
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Variational method and RCMPS

In 1 4+ 1 dimensions, relativistic continuous matrix product states are an ansatz
with few parameters to efficiently find ground states and compute observables
[arXiv:2102.07733 and arXiv:2102.07741]

|Q, R) = tr {(Pexp de Q1+ R® aT(x)] } 0),

» No explicit UV or IR cutoff needed
» Works well on ¢3 (super poly precision)

Useful next steps: extend to fermions, gauge theories, 2 + 1 and 3 + 1 dim

What | did: look at the Sinh-Gordon model because it is weird and controversial



The Sinh-Gordon model

An exactly solvable model that is surprisingly subtle. Two recent studies
» Konik, Lajer, and Mussardo [KLM] arXiv:2007.00154
» Bernard and LeClair [BLC] arXiv:2112.05490



The Sinh-Gordon model

An exactly solvable model that is surprisingly subtle. Two recent studies
» Konik, Lajer, and Mussardo [KLM] arXiv:2007.00154
» Bernard and LeClair [BLC] arXiv:2112.05490

[Equal-time quantization] Hamiltonian definition

. . 2. 2
HShG(B):JdX.WQ.m+.(Vd;) .m+%

:cosh(Bd) :m

[Radial quantization] Dilation operator definition

Dspc(b) = Do + HL dz [Vu(z,2") +V_p(z,2")]

2
Equivalent formulations with b = 3/+/8m and u = _mP R g2b%ve

24+2b2 7th2



The Sinh-Gordon model: puzzles

2 . . 2. 2
Hshe(B) = JdX '7[2 e (Vd;) =+ % :cosh(Bd) :m

Should be easy:
1. Intuitively should always make sense (cosh(B¢) always relevant)
2. S-matrix, energy density, masses, vertex operators, “exactly” known
3. Apparent b — b~ duality with normalized coupling b = /+/8m



The Sinh-Gordon model: puzzles

2 . . 2. 2
Hshe(B) = JdX '7[2 e (Vd;) =+ % :cosh(Bd) :m

Should be easy:
1. Intuitively should always make sense (cosh(B¢) always relevant)
2. S-matrix, energy density, masses, vertex operators, “exactly” known
3. Apparent b — b~ duality with normalized coupling b = /+/8m

But unclear what the domain of validity of the formula is...
» Mass vanishes at b =1 and likely stays at 0 [KLM and BLC]
» Likely no self-duality
» Could the exact formula break down before b =17
» Very hard to check numerically (despite thorough exploration of KLM)



Outline

The variational method in the continuum

Relativistic continuous matrix product states (RCMPS)
Warm-up with &3 and cos(B )

cosh(B¢) numerics

LAl o

Some lessons



The variational method

in the continuum



The direct compression approach

Variational method for ground state search

1. Guess a manifold M C 4 with few parameters v i.e. dimM < dim.s7
(v|H|v)

2. Tune v to minimize energy v = argmin, ¢y Iy

and get
lground state) ~ |v)



The direct compression approach

Variational method for ground state search

1. Guess a manifold M C Z with few parameters v i.e. dimM < dim.#

... o . (‘\/|H|‘v>
2. Tune v to minimize energy v = argminy et “ryvy and get
lground state) ~ |v)
Reason for compression (classical) Reason for compression (quantum)

cat image “typical” image low energy state random state

atypical = compressible area law = atypical = compressible



Feynman’s criticism

Difficulties in Applying the Variational

Principle to Quantum Field Theories!

so I tried to do something along these lines with quantum chromodynamics. So
I'm talking on the subject of the application of the variational principle to field
theoretic problems, but in particular to quantum chromodynamics.

I'm going to give away what I want to say, which is that I didn’t get anywhere!
I got very discouraged and I think I can see why the variational principle is not
very useful. So I want to take, for the sake of argument, a very strong view —
which is stronger than I really believe — and argue that it is no damn good at all!

Feynman'’s requirement in a nutshell

1. Extensive parameterization
Number of parameters oc L% at most for system size L (not o< el)

2. Computable expectation values
P known = (O(x)O(y))y, computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted



Elegantly swallowing the bullet

Example: naive Hamiltonian truncation

With an IR cutoff L, momenta are discrete. Take as submanifold .#Z the vector
space spanned by:
|kyy koy -+ o k) = af al, -+ af 0),

such that (kiko - - k|H|kiky - - - k) < Eqpune —  finite dimensional

Breaks extensiveness

» number of parameters oc el Ene

» error oc £ 3 (with renormalization refinements)

still good results, see e.g. Rychkov & Vitale for ¢p3 arXiv:1412.3460



Intuition

1- Extensive parameterization and 2- Computable expectation values

Realized by tensor network states on the lattice
e.g. in 1+ 1 dimensions: Matrix Product states (MPS)

W(A)) == Z tr[Ay Ay - - Ayl iy iy ooy i)

il)i2>"-)iN

where A; are matrices € Mp(C)

3- Not oversensitive to the UV
Realized by Hamiltonian truncation, i.e. working in the Fock basis

ke, koy - -+ o k) = a,tla,tz . a;|o>a



Intuition

1- Extensive parameterization and 2- Computable expectation values

Realized by tensor network states on the lattice
e.g. in 1+ 1 dimensions: Matrix Product states (MPS)

W(A)) == Z tr[Ay Ay - - Ayl iy iy ooy i)

il)i2>"-)iN

where A; are matrices € Mp(C)

3- Not oversensitive to the UV

Realized by Hamiltonian truncation, i.e. working in the Fock basis

ke, koy - -+ o k) = a,tla,tz . a;|o>a

Strategy: MPS  —  CMPS (2010) —  RCMPS (2021)

continuum limit change of basis



Relativistic continuous matrix product

states (RCMPS)



Relativistic continuous matrix product states

RCMPS: A variational ansatz to solve 1 + 1d relativitic QF T without
discretization or cutoff and to (in principle) arbitrary precision

Definition
RCMPSs are a manifold of states parameterized by 2 (D x D) matrices Q, R

|Q, R) = tr {Texp de RRT1T+R® aT(X)] } 0),

with
> a(x) = 5 [ dke™*ay where a, = 5 (\/wk (k) + ’%)

» trace taken over CP

» P path-ordering exponential



Basic properties of RCMPS

|Q, R) =tr {iPexp de RR1T+R® aT(x)] } 10),

Feynman'’s checklist:

1. Extensive because of Pexp [

2. Obervables computable at cost D? (non trivial!)
requires [a(x), a(y)] = 8(x — y)

3. No UV problems
|0,0) = |0), is the ground state of Hy hence exact CFT UV fixed point
(Q,R|: P(d) : |Q, R) is finite for all Q, R (not triviall)
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The variational algorithm

Procedure:
Compute gy = (Q, RIh|Q, R) and Vg reg
Minimize ey with TDVP (essentially Riemannian gradient descent)

Computations of ¢ and Ve, in a nutshell:
1. V, = (:eP®):) or computable by solving an ODE with cost oc D3

. {:¢":) gr computable doing 97V, s, X D3

2
3. ey = (h)gr computable by summing such terms at cost D® — o D3
4. Ve, computable by solving the adjoint ODE (backpropagation) — o D3

Functioning Julia implementation. OptimKit.jl to solve the Riemannian
minimization, KrylovKit. j1 to solve fixed point equations,
DifferentialEquations.jl (Vern7 solver) to solve ODE. Soon Remps. j17



Warmup with Cbg and cos(B )



Hamiltonian definition of ¢3

Renormalized ¢} theory

Lol o

e 2, 2
H:J'dx'ﬂ2'm+'(vd2)) 'm+m7:cb2:m+g:d>4:m

Rigorously defined relativistic QF T without cutoff (Wightman QFT)
Vacuum energy ¢g density finite
Difficult to solve unless g < m? (perturbation theory)

Phase transition around f. = ;= L5 =11ie. g~ 2.7 in mass units



Results: ¢35 energy density

energy density (h)g. r relative error
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Results: ¢4

— field expectation value ()
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Hamiltonian definition of Sine-Gordon theory

Renormalized cos(¢) theory

B 2, 2
H:de'ﬂ2'm+'(vd;) 'm—%:cos(ﬁd)) -

1. Well defined for b = B/v/8m < 1/+/2
2. Ground energy density — —oo for b — 1/+4/2 but renormalizable until b =1

3. Vertex operators, mass spectrum, and (renormalized) energy known exactly



Results: cos(f¢d) (rescaled) energy density
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Results: cos(f¢d) (rescaled) energy density

—0.030
0.000
~ —0.025 -0.035
=
~
o
W

—0.050
—0.040
-0.075

—0.045

1 1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6

b= B/{8r b= B8

Fits arbitrarily well for b € [0, 1/\/5[, collapses to —oo for b larger
Numerically refines Coleman's argument from b=1to b =1/v/2 + ¢(D)



Getting serious with cosh(B¢)



The Sinh-Gordon model

Renormalized Hamiltonian of cos(¢) theory

2. 5 2. 2
H:de ’712"" + - (de)) - -l—%:cosh(ﬁ(b) -

1. Constructed rigorously by Frohlich and Park for b = B //8m < 1/+/2
2. No value of b at which the potential is obviously ill-defined

3. Analytical results for all b > 0, likely valid only for b < 1
(or even just b < 1//27)

4. Conjectured to be massless for b > 1 by KLM and BLC

5. One can try RCMPS for all b >0



Results:
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Results: vertex operators (:e??:)

Known exactly from FLZZ formula up to a = (b + b™!)/2 (Seiberg bound)
B=2.0<b~04

B=40<b=~0.8 B=65<b~13
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Results: 2-point func (:e?®¥)::e20(0)) _ (:g20(x):) (: @20(0);)

B=20=b~0.4 f=40=b~0.8 f=65=b~13
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Discussion and open problems



Understanding expressiveness of RCMPS

Standard Entanglement Entropy
Defined for “standard” locality

o= | TT ot @1) (wio)

x<0

Gives 51 = —tr (p>0 Iog p>0) X |Og(/\)



Understanding expressiveness of RCMPS

Standard Entanglement Entropy o
*
Defined for “standard” locality *;’,‘I:*
10 2 i:***¢
o= | TT ot @1) (wio) ] he
x<0 « " ¥
" <+
Gives 51 = —tr (p>0 Iog p>0) X |Og(/\) ¥ * B=4
=8
. 10741 Bzég
Exotic Entanglement Entropy ¥ Lo
0.2 W2 1.0
Defined for BEMES maideon of lemliiy b gfEr
trace over a'(x) - - - a'(x,)[0)m for x, <0 EEE is finite at least for

Gives S; = O(1) (numerically) b<1/V2



Sinh-Gordon theory: what do we know?

Still uncertainty, following KLM, BLC, and the present study...

Personnally think

1. 99% chance: Hamiltonian H has no self-duality b — b~}
80% chance: Any reasonable definition of the model is massless for b > 1
70% chance: Energy formula correct for b € [0,1], and g =0 for b > 1.
50% chance: FLZZ formula correct for all a > (b+ b~1)/2
50% chance: The model makes sense, without renormalization, for b > 1
6. 50% confidence: UV fixed point does not change for b > 1

LAl ol

Open problems: rigorously construct the model for b > 1/4/2 / Find if it has
an entanglement phase transition



Todo-list for continuous tensor networks
In 14+ 1 dimensions
» Solve Fermion / Gauge theories
» Go into the b > 1/\/§ of Sine-Gordon
» Do general CFT perturbations

» Compute more observables (masses, spectra, c-function...)



Todo-list for continuous tensor networks
In 1+ 1 dimensions
» Solve Fermion / Gauge theories
» Go into the b > 1/\/§ of Sine-Gordon
» Do general CFT perturbations
» Compute more observables (masses, spectra, c-function...)

Remaining objectives do higher dimensions!

non-relativistic relativistic critical
d =1 space
d > 2 space AT-Cirac

2019

N N <o deniion S



Summary

|Q,R):tr{?exp deQ@ll-l-R®aT(X)}}|0>a

Ansatz for 1 + 1 relativistic QFT

No cutoff, UV or IR, extensive, computable

Efficient (cost poly D, error 1/superpoly D )

Rigorous (variational)

Works well for ¢4, Sine-Gordon, and Sinh-Gordon at b < 1/\/§

gD



