
Solving the
Lindblad equation

Strategies and open problems

d
dt ρt = −i [H , ρt]

+
∑

k

LkρtL†
k −

1
2

{
L†

kLk , ρt

}

Antoine Tilloy
May 23, 2024
Quantic days, Annecy

What?

The most general continuous Markovian (time-local) equation for density
matrices ρ:

d
dt ρt = L(ρt)

= − i [H , ρt] +
∑

k

LkρtL†
k −

1
2

{
L†

kLk , ρt

}

▶ H = H†

▶ {Lk} are arbitrary

Lindblad equation as fundamental?

(So far) not a fundamental equation of Nature

Locality + Lk ̸= 0 =⇒ tr[Hρt] increasing

Lindblad equation as fundamental?

(So far) not a fundamental equation of Nature

Locality + Lk ̸= 0 =⇒ tr[Hρt] increasing

Germanium does not emit X-rays spontaneously

credit Catalina Curceanu

Neutron stars do not stay hot

credit ESA

Derivations of the Lindblad equation

2 options
1. Coupling with a bosonic bath in some Markov limit

2. Repeated interactions in the continuum limit ← easier

Derivations of the Lindblad equation

2 options
1. Coupling with a bosonic bath in some Markov limit

2. Repeated interactions in the continuum limit ← easier

Why?

▶ Simulate chips (or part of chips)

▶ Solving field theories with continuous matrix product states

Why?

▶ Simulate chips (or part of chips)
▶ Solving field theories with continuous matrix product states

3 main questions
1. Real-time evolution ρt

d
dt ρt = L(ρt)

2. Stationary state(s) ρ0
L(ρ0) = 0

3. Spectral gap ∆ := −Re(λ1)

L(ρ1) = λ1ρ1

Problem for Quantic

Large local Hilbert space

|H | = Nn
c instead of 2n

Simulating the Toffoli gate is already a hard problem

Problem for Quantic

Large local Hilbert space

|H | = Nn
c instead of 2n

Simulating the Toffoli gate is already a hard problem

Goal

In the “good qubit” regime:

Nn
c −→ C × (2 + ε)n

with arbitrarily small error

▶ Reasonable from complexity theory BQP ̸= BPP
▶ With enough noise Nn

c −→ poly(n) [for supremacy]

Goal

In the “good qubit” regime:

Nn
c −→ C × (2 + ε)n

with arbitrarily small error

▶ Reasonable from complexity theory BQP ̸= BPP
▶ With enough noise Nn

c −→ poly(n) [for supremacy]

The basics: “small” Hilbert space case

The one and only trick: L sparsity

Typical Lindbladian:

L(ρt) := −i [H , ρt] +

r∑
k=1

LkρtL†
k −

1
2

{
L†

kLk , ρt

}

2 sources of sparsity:

▶ Few generators r ≪ N – L(ρ) cost N4 → rN3

▶ Almost diagonal Lk – L(ρ) cost → rN2 (optimal)

=⇒ See L as a function not a matrix

The one and only trick: L sparsity

Typical Lindbladian:

L(ρt) := −i [H , ρt] +

r∑
k=1

LkρtL†
k −

1
2

{
L†

kLk , ρt

}

2 sources of sparsity:
▶ Few generators r ≪ N – L(ρ) cost N4 → rN3

▶ Almost diagonal Lk – L(ρ) cost → rN2 (optimal)

=⇒ See L as a function not a matrix

The one and only trick: L sparsity

Typical Lindbladian:

L(ρt) := −i [H , ρt] +

r∑
k=1

LkρtL†
k −

1
2

{
L†

kLk , ρt

}

2 sources of sparsity:
▶ Few generators r ≪ N – L(ρ) cost N4 → rN3

▶ Almost diagonal Lk – L(ρ) cost → rN2 (optimal)

=⇒ See L as a function not a matrix

The one and only trick: L sparsity

Typical Lindbladian:

L(ρt) := −i [H , ρt] +

r∑
k=1

LkρtL†
k −

1
2

{
L†

kLk , ρt

}

2 sources of sparsity:
▶ Few generators r ≪ N – L(ρ) cost N4 → rN3

▶ Almost diagonal Lk – L(ρ) cost → rN2 (optimal)

=⇒ See L as a function not a matrix

Real-time evolution – small H

Find t 7→ ρt for
d
dt ρt = L(ρt)

with L time independent

Solutions
1. Exponentiate ρt = etL · ρt=0 (with Krylov)
2. Solve the linear ordinary differential equation (ODE)

Exponentiation better for few points, ODE for full trajectory

Real-time evolution – small H

Find t 7→ ρt for
d
dt ρt = L(ρt)

with L time independent

Solutions
1. Exponentiate ρt = etL · ρt=0 (with Krylov)
2. Solve the linear ordinary differential equation (ODE)

Exponentiation better for few points, ODE for full trajectory

Real-time evolution – small H

Find t 7→ ρt for
d
dt ρt = L(ρt)

with L time independent

Solutions
1. Exponentiate ρt = etL · ρt=0 (with Krylov)
2. Solve the linear ordinary differential equation (ODE)

Exponentiation better for few points, ODE for full trajectory

Solving a (linear) ordinary differential equation

From Rémi’s talk:
▶ Higher-order Runge-Kutta: numerically exact or blows up
▶ Low-order Rouchon: doesn’t blow up

Stationary state

Finding ρ0 such that L(ρ0) = ρ0

Strategies:
1. Do real time evolution for a long time
2. Solve the linear problem L(ρ0) = 0
3. Find the lowest eigenvector of L

Cost: always rN3 for iterative methods (N6 for strictly exact)

Stationary state

Finding ρ0 such that L(ρ0) = ρ0

Strategies:
1. Do real time evolution for a long time
2. Solve the linear problem L(ρ0) = 0
3. Find the lowest eigenvector of L

Cost: always rN3 for iterative methods (N6 for strictly exact)

Remark: Stochastic trajectory method
Quantum trajectory method
For ρt solution of Lindblad, ∃ |ψt⟩ obeying stochastic non-linear equation
such that:

ρt = E
[
|ψt⟩⟨ψt |

]

Example: photo-detection / homodyne-detection with η = 1
▶ Requires less memory
▶ Obliterates precision

Main interest: leveraging approximate algorithms made for pure states

Remark: Stochastic trajectory method
Quantum trajectory method
For ρt solution of Lindblad, ∃ |ψt⟩ obeying stochastic non-linear equation
such that:

ρt = E
[
|ψt⟩⟨ψt |

]

Example: photo-detection / homodyne-detection with η = 1
▶ Requires less memory
▶ Obliterates precision

Main interest: leveraging approximate algorithms made for pure states

With bosons

Bosonic Hilbert space:

H = L2(R) = span{a†k |0⟩}

Need some truncation / compression

Compression

No free lunch
There will always be situations in which L2(R) cannot efficiently be compressed

A compression method that is not bad at something, cannot be good at anything

Compression

No free lunch
There will always be situations in which L2(R) cannot efficiently be compressed

A compression method that is not bad at something, cannot be good at anything

Fock space truncation

Choose a†k |0⟩ for 0 ⩽ k ⩽ Nc
In real-space: Hermite functions

ψn(x) = Hn(x) exp(−x2/2)

Advantages:
▶ Error ∝ e−CNc , → numerically exact
▶ Lk often sparse in this basis

Fock space truncation

Choose a†k |0⟩ for 0 ⩽ k ⩽ Nc
In real-space: Hermite functions

ψn(x) = Hn(x) exp(−x2/2)

Advantages:
▶ Error ∝ e−CNc , → numerically exact
▶ Lk often sparse in this basis

Fock space truncation

No free lunch:
Nc ∝ |α|2

Good cat qubits require larger Hilbert space

State of the art: Dynamiqs

The previous tricks + smart use of hardware + autodiff + batching → dynamiqs

Close to the numerical optimum

QuantumOptics.jl also good (without seemless autodiff, batching, GPU)

State of the art: Dynamiqs

The previous tricks + smart use of hardware + autodiff + batching → dynamiqs

Close to the numerical optimum

QuantumOptics.jl also good (without seemless autodiff, batching, GPU)

Technical open problems

Exact stationary state
Find ρ0 exactly at cost rN3.
Currently:
▶ rN3 approximate fixed-point algorithms (e.g. Krylov)
▶ N6 for linear solve

Precise time-dependent real-time evolution
Find a method more precise than Runge-Kutta for time-dependent real-time
dynamics

d
dt ρt = Lt(ρt)

using the fact that Lt is linear

Technical open problems

Exact stationary state
Find ρ0 exactly at cost rN3.
Currently:
▶ rN3 approximate fixed-point algorithms (e.g. Krylov)
▶ N6 for linear solve

Precise time-dependent real-time evolution
Find a method more precise than Runge-Kutta for time-dependent real-time
dynamics

d
dt ρt = Lt(ρt)

using the fact that Lt is linear

Summary for small Hilbert space

Lindblad for bosons = partial differential equations in 2nbosons + 1 dimensions

Good
▶ Solved numerically exactly at cost rN2 ∝ N2nbosons

c !
▶ It is implemented in user friendly libraries
▶ It is easy to implement manually to test

Bad
▶ For cats N ∼ (4|α|2)ncats

▶ Compute and memory cost ∝ |2α|4ncats

Summary for small Hilbert space

Lindblad for bosons = partial differential equations in 2nbosons + 1 dimensions

Good
▶ Solved numerically exactly at cost rN2 ∝ N2nbosons

c !
▶ It is implemented in user friendly libraries
▶ It is easy to implement manually to test

Bad
▶ For cats N ∼ (4|α|2)ncats

▶ Compute and memory cost ∝ |2α|4ncats

Advanced: Large Hilbert space

Analytic solutions: lucky cases

Gaussian states
Equivalently:
▶ ρ is a Gaussian in configuration space
▶ ρ has a Gaussian Wigner function
▶ ρ = exp(quadratic in a, a†)

=⇒ ρ characterized by tr(aρ), tr(aaρ) and tr(a†aρ)

Quadratic Lindbladian

1. H at most quadratic in a, a†

2. Ak at most linear in a, a†

L quadratic =⇒ exactly solvable with Gaussian states

Small number of other exactly solvable (integrable) cases found by Tomaz Prosen

Analytic solutions: lucky cases

Gaussian states
Equivalently:
▶ ρ is a Gaussian in configuration space
▶ ρ has a Gaussian Wigner function
▶ ρ = exp(quadratic in a, a†)

=⇒ ρ characterized by tr(aρ), tr(aaρ) and tr(a†aρ)

Quadratic Lindbladian

1. H at most quadratic in a, a†

2. Ak at most linear in a, a†

L quadratic =⇒ exactly solvable with Gaussian states

Small number of other exactly solvable (integrable) cases found by Tomaz Prosen

Analytic solutions: lucky cases

Gaussian states
Equivalently:
▶ ρ is a Gaussian in configuration space
▶ ρ has a Gaussian Wigner function
▶ ρ = exp(quadratic in a, a†)

=⇒ ρ characterized by tr(aρ), tr(aaρ) and tr(a†aρ)

Quadratic Lindbladian

1. H at most quadratic in a, a†

2. Ak at most linear in a, a†

L quadratic =⇒ exactly solvable with Gaussian states

Small number of other exactly solvable (integrable) cases found by Tomaz Prosen

Exact solutions are too rare to be really useful

An idea?

Can’t we find a better basis??

NO!

An idea?

Can’t we find a better basis??

NO!

Linear stability should be abandonned

No “best” plane to approximate a sphere

Submanifold for local qubits

Many interesting subspaces M ⊂H are not vector spaces:
▶ coherent states
▶ Gaussian states
▶ ρ with fixed rank
▶ “Dynamical shifted Fock”

Example
ρν = |ψν⟩⟨ψν| with ψν(x) = exp(−ν1x2 − ν2x4)

Submanifold for local qubits

Many interesting subspaces M ⊂H are not vector spaces:
▶ coherent states
▶ Gaussian states
▶ ρ with fixed rank
▶ “Dynamical shifted Fock”

Example
ρν = |ψν⟩⟨ψν| with ψν(x) = exp(−ν1x2 − ν2x4)

Time-dependent variational principle (TDVP)

Time-dependent variational principle (TDVP)

Time-dependent variational principle (TDVP)

Time-dependent variational principle (TDVP)

McLachlan TDVP = minimize the error

error =
∥∥∥∥ d

dt ρ(νt) − L[ρ(νt)]

∥∥∥∥2

(1)

for convenience, take the Frobenius norm

∥A∥ =
√

tr(A†A) (2)

TDVP
∂

∂ d
dtνj

∥∥∥∥ d
dt ρ(νt) − L[ρ(νt)]

∥∥∥∥2

= 0

The time derivative of ρ is:
d
dt ρ(νt) =

∂ρ

∂νj

dνj

dt =
∂ρ

∂νj

d
dtνj

thus
d
dtνj tr

[(
∂ρ

∂νj

)†
∂ρ

∂νk
+ h.c.

]
− tr

[(
∂ρ

∂νj

)†

L(ρ) + h.c.
]
= 0

Hence the dynamics is d
dtνj = [g]−1

jk uk with

gjk = ℜe
{

tr
[(

∂ρ

∂νj

)†
∂ρ

∂νk

]}

uk = ℜe
{

tr
[(

∂ρ

∂νk

)†

L(ρ)

]}

TDVP
∂

∂ d
dtνj

∥∥∥∥ d
dt ρ(νt) − L[ρ(νt)]

∥∥∥∥2

= 0

The time derivative of ρ is:
d
dt ρ(νt) =

∂ρ

∂νj

dνj

dt =
∂ρ

∂νj

d
dtνj

thus

d
dtνj tr

[(
∂ρ

∂νj

)†
∂ρ

∂νk
+ h.c.

]
− tr

[(
∂ρ

∂νj

)†

L(ρ) + h.c.
]
= 0

Hence the dynamics is d
dtνj = [g]−1

jk uk with

gjk = ℜe
{

tr
[(

∂ρ

∂νj

)†
∂ρ

∂νk

]}

uk = ℜe
{

tr
[(

∂ρ

∂νk

)†

L(ρ)

]}

TDVP
∂

∂ d
dtνj

∥∥∥∥ d
dt ρ(νt) − L[ρ(νt)]

∥∥∥∥2

= 0

The time derivative of ρ is:
d
dt ρ(νt) =

∂ρ

∂νj

dνj

dt =
∂ρ

∂νj

d
dtνj

thus
d
dtνj tr

[(
∂ρ

∂νj

)†
∂ρ

∂νk
+ h.c.

]
− tr

[(
∂ρ

∂νj

)†

L(ρ) + h.c.
]
= 0

Hence the dynamics is d
dtνj = [g]−1

jk uk with

gjk = ℜe
{

tr
[(

∂ρ

∂νj

)†
∂ρ

∂νk

]}

uk = ℜe
{

tr
[(

∂ρ

∂νk

)†

L(ρ)

]}

TDVP
∂

∂ d
dtνj

∥∥∥∥ d
dt ρ(νt) − L[ρ(νt)]

∥∥∥∥2

= 0

The time derivative of ρ is:
d
dt ρ(νt) =

∂ρ

∂νj

dνj

dt =
∂ρ

∂νj

d
dtνj

thus
d
dtνj tr

[(
∂ρ

∂νj

)†
∂ρ

∂νk
+ h.c.

]
− tr

[(
∂ρ

∂νj

)†

L(ρ) + h.c.
]
= 0

Hence the dynamics is d
dtνj = [g]−1

jk uk with

gjk = ℜe
{

tr
[(

∂ρ

∂νj

)†
∂ρ

∂νk

]}

uk = ℜe
{

tr
[(

∂ρ

∂νk

)†

L(ρ)

]}

Requirements
Solve the non-linear ODE

d
dtνj = [g]−1

jk uk

with Runger-Kutta (or other)

Only need:

gjk = ℜe
{

tr
[(

∂ρ

∂νj

)†
∂ρ

∂νk

]}

uk = ℜe
{

tr
[(

∂ρ

∂νk

)†

L(ρ)

]}

4 levels
▶ Exactly computable (Shifted Fock / MPS / Quantics) → best
▶ Well approximable (2d tensor networks)
▶ Can be directly sampled with Monte Carlo (some recurrent neural nets)
▶ Requires Markov Chain Monte Carlo for approximate sampling (generic

neural nets)

Requirements
Solve the non-linear ODE

d
dtνj = [g]−1

jk uk

with Runger-Kutta (or other)
Only need:

gjk = ℜe
{

tr
[(

∂ρ

∂νj

)†
∂ρ

∂νk

]}

uk = ℜe
{

tr
[(

∂ρ

∂νk

)†

L(ρ)

]}

4 levels
▶ Exactly computable (Shifted Fock / MPS / Quantics) → best
▶ Well approximable (2d tensor networks)
▶ Can be directly sampled with Monte Carlo (some recurrent neural nets)
▶ Requires Markov Chain Monte Carlo for approximate sampling (generic

neural nets)

Requirements
Solve the non-linear ODE

d
dtνj = [g]−1

jk uk

with Runger-Kutta (or other)
Only need:

gjk = ℜe
{

tr
[(

∂ρ

∂νj

)†
∂ρ

∂νk

]}

uk = ℜe
{

tr
[(

∂ρ

∂νk

)†

L(ρ)

]}

4 levels
▶ Exactly computable (Shifted Fock / MPS / Quantics) → best
▶ Well approximable (2d tensor networks)
▶ Can be directly sampled with Monte Carlo (some recurrent neural nets)
▶ Requires Markov Chain Monte Carlo for approximate sampling (generic

neural nets)

Local strategy I: dynamical shifted Fock
The shifted Fock ladder (vector space):

MNc
α = span{a†k |α⟩, k ⩽ Nc} = span{D(α)|k⟩, k ⩽ Nc}

=

The “dynamical” shifted Fock ladder (manifold):

MNc = {|ψ⟩ ∈Mα, α ∈ C} =

The multi “dynamical” shifted Fock ladder (manifold):

MNc
(n) =

{
|ψ⟩ =

n∑
i=1

|ψi⟩, |ψi⟩ ∈M

}
=

Local strategy I: dynamical shifted Fock
The shifted Fock ladder (vector space):

MNc
α = span{a†k |α⟩, k ⩽ Nc} = span{D(α)|k⟩, k ⩽ Nc}

=

The “dynamical” shifted Fock ladder (manifold):

MNc = {|ψ⟩ ∈Mα, α ∈ C} =

The multi “dynamical” shifted Fock ladder (manifold):

MNc
(n) =

{
|ψ⟩ =

n∑
i=1

|ψi⟩, |ψi⟩ ∈M

}
=

Local strategy I: dynamical shifted Fock
The shifted Fock ladder (vector space):

MNc
α = span{a†k |α⟩, k ⩽ Nc} = span{D(α)|k⟩, k ⩽ Nc}

=

The “dynamical” shifted Fock ladder (manifold):

MNc = {|ψ⟩ ∈Mα, α ∈ C} =

The multi “dynamical” shifted Fock ladder (manifold):

MNc
(n) =

{
|ψ⟩ =

n∑
i=1

|ψi⟩, |ψi⟩ ∈M

}
=

Dynamical shifted Fock
Proposed by Schlegel, Minganti, Savona in 2306.13708

Dynamical shifted Fock: pros and cons

The Good
▶ Good intuition for compression
▶ Works as intended Nc → 2 + ε

The Bad
▶ Sparsity lost
▶ Potential ill-conditioning (fixable)
▶ Cannot destroy the blobs too much

Likely not faster for 1 mode

Quantics

Idea of Adrien Moulinas and Xavier Waintal

Write ψ as an MPS in binary:

ψ(x0.x1x2x3x4x5x6) = ⟨A(0)x0 |A(1)x1A(2)x2A(3)x3A(4)x4A(5)x5 |A(6)x6⟩

=

with
▶ A(0)0,A(0)1 and A(6)0,A(6)1 vectors ∈ Cχ

▶ A(1)0,A(1)1, · · ·A(5)0,A(5)1 matrices ∈ Cχ ⊗ Cχ

Quantics: pros and cons

Still to be tested, but:

The Good (promising):
▶ Leverages powerful tensor network routines (could be fast!)
▶ Can resolve arbitrarily small scales

The Bad (worrying):
▶ Not super clear when it should work intuitively
▶ Entanglement in scale??

Matrix product state like approaches
Mainly 3 options (tried at Eviden on slightly different problems)

1. Matrix Product States for stochastic ψ

ψ(n1, · · · , n6) =

2. Matrix Product Operators for ρ

ρ(n1, · · · , n6,m1, · · · ,m6) =

3. Matrix Product Density Operator for ρ (aka purification)

ρ(n1, · · · , n6,m1, · · · ,m6) =

Matrix product state like approaches
Mainly 3 options (tried at Eviden on slightly different problems)

1. Matrix Product States for stochastic ψ

ψ(n1, · · · , n6) =

2. Matrix Product Operators for ρ

ρ(n1, · · · , n6,m1, · · · ,m6) =

3. Matrix Product Density Operator for ρ (aka purification)

ρ(n1, · · · , n6,m1, · · · ,m6) =

Matrix product state like approaches
Mainly 3 options (tried at Eviden on slightly different problems)

1. Matrix Product States for stochastic ψ

ψ(n1, · · · , n6) =

2. Matrix Product Operators for ρ

ρ(n1, · · · , n6,m1, · · · ,m6) =

3. Matrix Product Density Operator for ρ (aka purification)

ρ(n1, · · · , n6,m1, · · · ,m6) =

MPS approaches: intuition

Hope: χ ∝ (2 + ε)n (not much inter-cat entanglement)
▶ No local physical space compression
▶ Asymptotic cost N4

c ∗ (2 + ε)n

No gain on ⩽ 2 modes

Strategy

Small exact simulations: memory cost N2n
c

▶ Mostly Solved
▶ Few open problems (very high order Rouchon, cheaper exact stationary

states)
▶ No huge gain expected unless ultra-stiff
▶ Well implemented

Large simulations: target is memory cost C × (2 + ε)2n

▶ Local compression way (Dynamically shifted Fock, Quantics)
▶ Global compression way (MPS,MPO,MPDO)
▶ Nothing well implemented yet

Do not ask for performance increase at the beginning for small systems!

