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What?

The most general continuous Markovian (time-local) equation for density
matrices p:

d
Ept = L(p¢)
. 1
== ilHpd + 3 Lol =3 {thtue

» H=H"
» {L,} are arbitrary



Lindblad equation as fundamental?

(So far) not a fundamental equation of Nature




Lindblad equation as fundamental?

(So far) not a fundamental equation of Nature

Locality + Ly #0 = tr[Hp;] increasing



Germanium does not emit X-rays spontaneously

credit Catalina Curceanu



Neutron stars do not stay hot

credit ESA



Derivations of the Lindblad equation

2 options
1. Coupling with a bosonic bath in some Markov limit




Derivations of the Lindblad equation

2 options
1. Coupling with a bosonic bath in some Markov limit

2. Repeated interactions in the continuum limit « easier

o > PR



Why?

» Simulate chips (or part of chips)



Why?

» Simulate chips (or part of chips)
» Solving field theories with continuous matrix product states



3 main questions

1. Real-time evolution p;

d
Ept = L(p:)

2. Stationary state(s) po

L(po) =0

3. Spectral gap A := —Re(A;)




Problem for Quantic

Large local Hilbert space

| 7| = NI instead of 2"



Problem for Quantic

Large local Hilbert space

| 7| = NI instead of 2"

Simulating the Toffoli gate is already a hard problem

?
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Goal

In the “good qubit” regime:
N — Cx (24 ¢)"

with arbitrarily small error



Goal

In the “good qubit” regime:
N — Cx (24 ¢)"

with arbitrarily small error

» Reasonable from complexity theory BQP # BPP
» With enough noise N7 — poly(n) [for supremacy]



The basics: “small” Hilbert space case
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The one and only trick: £ sparsity

Typical Lindbladian:

. . 1
Clpe) =il pd + Y Lepelf — 5 {LiLe e}
k=1

2 sources of sparsity:
» Few generators r < N — £(p) cost N* — riN3
» Almost diagonal L, — £(p) cost — rN? (optimal)

== See £ as a function not a matrix



Real-time evolution — small 7

Find t — p; for

d
T = L(p¢)

with £ time independent
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2. Solve the linear ordinary differential equation (ODE)



Real-time evolution — small 7

Find t — p; for

d
T = L(p¢)

with £ time independent

Solutions

L

1. Exponentiate p; = e'* - p;—o (with Krylov)

2. Solve the linear ordinary differential equation (ODE)

Exponentiation better for few points, ODE for full trajectory



Solving a (linear) ordinary differential equation

From Rémi’s talk:
» Higher-order Runge-Kutta: numerically exact or blows up

» Low-order Rouchon: doesn’t blow up




Stationary state

Finding pg such that L(pg) = po

Strategies:
1. Do real time evolution for a long time
2. Solve the linear problem £(py) =0
3. Find the lowest eigenvector of £



Stationary state

Finding pg such that L(pg) = po

Strategies:
1. Do real time evolution for a long time
2. Solve the linear problem £(py) =0
3. Find the lowest eigenvector of £

Cost: always rlV® for iterative methods (N® for strictly exact)



Remark: Stochastic trajectory method
Quantum trajectory method

For p; solution of Lindblad, 3 [\);) obeying stochastic non-linear equation
such that:

o = E{mmq
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Remark: Stochastic trajectory method
Quantum trajectory method

For p; solution of Lindblad, 3 ;) obeying stochastic non-linear equation
such that:

o = E{mmq

M\IAW”WL

o , 0 > - - V%@%

N

Example: photo-detection / homodyne-detection with 1 =1
» Requires less memory
» Obliterates precision

Main interest: leveraging approximate algorithms made for pure states



With bosons

Bosonic Hilbert space:

A = [2(R) = span{a'*|0)}

Need some truncation / compression



Compression

No free lunch

There will always be situations in which L?(R) cannot efficiently be compressed




Compression

No free lunch

There will always be situations in which L?(R) cannot efficiently be compressed

A compression method that is not bad at something, cannot be good at anything



Fock space truncation

Choose at¥|0) for 0 < k < N,
In real-space: Hermite functions

Pa(x) = Ha(x) exp(—x*/2)



Fock space truncation

Choose at¥|0) for 0 < k < N,
In real-space: Hermite functions

Pa(x) = Ha(x) exp(—x*/2)

Advantages:
» Error o e~ “Ne, — numerically exact

» L, often sparse in this basis



Fock space truncation

No free lunch:
N, o |of?

Good cat qubits require larger Hilbert space



State of the art: Dynamigs

The previous tricks + smart use of hardware + autodiff 4+ batching — dynamiqgs

dynamigs

High-performance quantum sys s simulation with JAX
cetsterted

Close to the numerical optimum



State of the art: Dynamigs

The previous tricks + smart use of hardware + autodiff 4+ batching — dynamiqgs

dynamigs

High-performance quantum systems simulation with JAX.
cetsterted

Close to the numerical optimum

QuantumOptics.jl also good (without seemless autodiff, batching, GPU)



Technical open problems

Exact stationary state

Find po exactly at cost riN3.

Currently:
» rN? approximate fixed-point algorithms (e.g. Krylov)
» N° for linear solve



Technical open problems

Exact stationary state

Find pg exactly at cost riN3.

Currently:
» rN? approximate fixed-point algorithms (e.g. Krylov)
» N° for linear solve

Precise time-dependent real-time evolution

Find a method more precise than Runge-Kutta for time-dependent real-time
dynamics

d
Ept = L:(pt)

using the fact that £; is linear



Summary for small Hilbert space

Lindblad for bosons = partial differential equations in 2npesons + 1 dimensions

Good
» Solved numerically exactly at cost rN? oc N2 osons]
» It is implemented in user friendly libraries

» It is easy to implement manually to test



Summary for small Hilbert space

Lindblad for bosons = partial differential equations in 2npesons + 1 dimensions

Good
» Solved numerically exactly at cost rN? oc N2 osons]
» It is implemented in user friendly libraries

» It is easy to implement manually to test

Bad
» For cats N ~ (4]o]?)"eass
» Compute and memory cost oc [2o¢|*7eas



Advanced: Large Hilbert space



Analytic solutions: lucky cases

Gaussian states
Equivalently:
» o is a Gaussian in configuration space
» p has a Gaussian Wigner function
» p = exp(quadratic in a,a’)
—  p characterized by tr(ap), tr(aap) and tr(afap)
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Analytic solutions: lucky cases

Gaussian states
Equivalently:
» o is a Gaussian in configuration space
» p has a Gaussian Wigner function
» p = exp(quadratic in a,a’)
—  p characterized by tr(ap), tr(aap) and tr(afap)

Quadratic Lindbladian

1. H at most quadratic in a, a

2. A, at most linear in a, a

L quadratic = exactly solvable with Gaussian states

Small number of other exactly solvable (integrable) cases found by Tomaz Prosen



Exact solutions are too rare to be really useful




An idea?

Can’t we find a better basis??



An idea?

Can’t we find a better basis??

NO!



Linear stability should be abandonned

No “best” plane to approximate a sphere
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Submanifold for local qubits

Many interesting subspaces M C . are not vector spaces:
» coherent states
» Gaussian states
» p with fixed rank
» “Dynamical shifted Fock”



Submanifold for local qubits

Many interesting subspaces M C .7 are not vector spaces:
» coherent states
» Gaussian states
» p with fixed rank
» “Dynamical shifted Fock”

Example
Pv = N—’v)(ll)v’ with P (x) = eXp(_‘le2 - V2X4)



Time-dependent variational principle (TDVP)
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Time-dependent variational principle (TDVP)
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Time-dependent variational principle (TDVP)
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Time-dependent variational principle (TDVP)

McLachlan TDVP = minimize the error

d 2
error = H&p(vt) — Llp(ve)]

for convenience, take the Frobenius norm

[All = /tr(ATA)



TDVP

0

0

d
dt

Vj

d

dt

p(ve) — Llp(ve)]

2



TDVP

2

2y |[gEo0) —Llotvel | =0
The time derivative of p is:
d op dv; op d
&P(Vt) = a_vjﬁ = a—W&Vj

thus



TDVP

2

2y |[gEo0) —Llotvel | =0
The time derivative of p is:
d op dv; op d
EP(W) = E)_VJE = a—\/j&\/j

thus

d o0 \' 9p
vt [ (22) 2P ihe =0
de r[(avj) v, T

.|.
—tr [(ﬂ> L(p) + h.c.
a'VJ'




TDVP

2

2y |[gEo0) —Llotvel | =0
The time derivative of p is:
d op dv; op d
EP(W) = E)_VJE = a—\/j&\/j

thus

d o0 \' 9p op \'
Svitr | (o2 ) S dhe|—tr| (<2 ) £ he| =0
dt r[(avj) v r[(avj (0) +h.c

d

Hence the dynamics is J;v; = [g];l e with

B (90 \' 2p
gjk—fﬁe{tr (a—vj> a_‘\/k]}

I t
ue = Re {tr (E ) (p)] }
a\/k

&




Requirements
Solve the non-linear ODE

EVJ' = [g]jk Uk

with Runger-Kutta (or other)



Requirements
Solve the non-linear ODE

with Runger-Kutta (or other)

Only need:
B 7o \T p
conli(2Y 2])
[ T
RICIRD)

u, = Re




Requirements
Solve the non-linear ODE

—V: =
dt ’

with Runger-Kutta (or other)
Only need:

gik = Re {tr

u, = Re {tr

4 levels

gl u

(2) 2]}
() o]}

» Exactly computable (Shifted Fock / MPS / Quantics) — best

» Well approximable (2d tensor networks)

» Can be directly sampled with Monte Carlo (some recurrent neural nets)
» Requires Markov Chain Monte Carlo for approximate sampling (generic

neural nets)



Local strategy I: dynamical shifted Fock
The shifted Fock ladder (vector space)'
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Local strategy I: dynamical shifted Fock
The shifted Fock ladder (vector space)'

MNe = span{aTkloc <N, } = span{D(«)|k), k < N}

The "dynamical” shifted Fock ladder (manifold):

The multi “dynamical” shifted Fock ladder (manifold):

s
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e 4
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MY = {p) € My, € C} =
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Dynamical shifted Fock
Proposed by Schlegel, Minganti, Savona in 2306.13708
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Dynamical shifted Fock: pros and cons

The Good
» Good intuition for compression
» Works as intended N. — 2+ ¢

The Bad
» Sparsity lost
» Potential ill-conditioning (fixable)
» Cannot destroy the blobs too much

Likely not faster for 1 mode



Quantics

Idea of Adrien Moulinas and Xavier Waintal

Write 1 as an MPS in binary:

P (X0.-X1X0X3Xa X5X5 ) = <A(O)X0|A(1)X A(2)XQA(3)X3A(4)X4A

Wy Ky Ny Ay Ay g g

S S N A A

with
» A(0)g, A(0); and A(6)q, A(6); vectors € CX
» A(1)o,A(1)q,---A(5)o, A(5); matrices € CX ®@ CX

(5)x|A(6))



Quantics: pros and cons

Still to be tested, but:

The Good (promising):
» Leverages powerful tensor network routines (could be fast!)

» Can resolve arbitrarily small scales

The Bad (worrying):
» Not super clear when it should work intuitively

» Entanglement in scale??



Matrix product state like approaches
Mainly 3 options (tried at Eviden on slightly different problems)
1. Matrix Product States for stochastic V

My My mg mg mg
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1. Matrix Product States for stochastic V

My My mg mg mg

1b(nl)"' >n6) ‘b_{@_L_g__L)

2. Matrix Product Operators for p
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Matrix product state like approaches
Mainly 3 options (tried at Eviden on slightly different problems)
1. Matrix Product States for stochastic V

My My mg mg mg

P(ny, -y ng) = @_é_,@_uL—g—LJ

2. Matrix Product Operators for p

My my mg mg mg

p(ny, -+ ngy my, -, mg) ?_?def—%} H

s My My ey g by

3. Matrix Product Density Operator for p (aka purification)

Mg, My My Mg Mg My

@_
p(”l)"' y Moy My - - )m6 f:&,i.(f@\%m
nm,

7,”'”5 ”"’LFWS 4



MPS approaches: intuition

Hope: x o (2 4+ €)" (not much inter-cat entanglement)
» No local physical space compression
» Asymptotic cost N? x (2 + ¢)"

No gain on < 2 modes



Strategy

Small exact simulations: memory cost N2"
» Mostly Solved

» Few open problems (very high order Rouchon, cheaper exact stationary
states)

» No huge gain expected unless ultra-stiff

» Well implemented

Large simulations: target is memory cost C x (2 + ¢)?"
» Local compression way (Dynamically shifted Fock, Quantics)

» Global compression way (MPS,MPO,MPDO)
» Nothing well implemented yet

Do not ask for performance increase at the beginning for small systems!



