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What?

The most general continuous Markovian (time-local) equation for density
matrices ρ:

d
dt ρt = L(ρt)

= − i [H , ρt ] +
∑

k

LkρtL†
k −

1
2

{
L†

kLk , ρt

}

▶ H = H†

▶ {Lk} are arbitrary



Lindblad equation as fundamental?

(So far) not a fundamental equation of Nature

Locality + Lk ̸= 0 =⇒ tr[Hρt ] increasing
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Germanium does not emit X-rays spontaneously

credit Catalina Curceanu



Neutron stars do not stay hot

credit ESA



Derivations of the Lindblad equation

2 options
1. Coupling with a bosonic bath in some Markov limit

2. Repeated interactions in the continuum limit ← easier
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▶ Simulate chips (or part of chips)

▶ Solving field theories with continuous matrix product states
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3 main questions
1. Real-time evolution ρt

d
dt ρt = L(ρt)

2. Stationary state(s) ρ0
L(ρ0) = 0

3. Spectral gap ∆ := −Re(λ1)

L(ρ1) = λ1ρ1



Problem for Quantic

Large local Hilbert space

|H | = Nn
c instead of 2n

Simulating the Toffoli gate is already a hard problem
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Goal

In the “good qubit” regime:

Nn
c −→ C × (2 + ε)n

with arbitrarily small error

▶ Reasonable from complexity theory BQP ̸= BPP
▶ With enough noise Nn

c −→ poly(n) [for supremacy]
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The basics: “small” Hilbert space case



The one and only trick: L sparsity

Typical Lindbladian:

L(ρt) := −i [H , ρt ] +

r∑
k=1

LkρtL†
k −

1
2

{
L†

kLk , ρt

}

2 sources of sparsity:

▶ Few generators r ≪ N – L(ρ) cost N4 → rN3

▶ Almost diagonal Lk – L(ρ) cost → rN2 (optimal)

=⇒ See L as a function not a matrix
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Real-time evolution – small H

Find t 7→ ρt for
d
dt ρt = L(ρt)

with L time independent

Solutions
1. Exponentiate ρt = etL · ρt=0 (with Krylov)
2. Solve the linear ordinary differential equation (ODE)

Exponentiation better for few points, ODE for full trajectory
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Solving a (linear) ordinary differential equation

From Rémi’s talk:
▶ Higher-order Runge-Kutta: numerically exact or blows up
▶ Low-order Rouchon: doesn’t blow up



Stationary state

Finding ρ0 such that L(ρ0) = ρ0

Strategies:
1. Do real time evolution for a long time
2. Solve the linear problem L(ρ0) = 0
3. Find the lowest eigenvector of L

Cost: always rN3 for iterative methods (N6 for strictly exact)
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Remark: Stochastic trajectory method
Quantum trajectory method
For ρt solution of Lindblad, ∃ |ψt⟩ obeying stochastic non-linear equation
such that:

ρt = E
[
|ψt⟩⟨ψt |

]

Example: photo-detection / homodyne-detection with η = 1
▶ Requires less memory
▶ Obliterates precision

Main interest: leveraging approximate algorithms made for pure states
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With bosons

Bosonic Hilbert space:

H = L2(R) = span{a†k |0⟩}

Need some truncation / compression



Compression

No free lunch
There will always be situations in which L2(R) cannot efficiently be compressed

A compression method that is not bad at something, cannot be good at anything
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Fock space truncation

Choose a†k |0⟩ for 0 ⩽ k ⩽ Nc
In real-space: Hermite functions

ψn(x) = Hn(x) exp(−x2/2)

Advantages:
▶ Error ∝ e−CNc , → numerically exact
▶ Lk often sparse in this basis
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Fock space truncation

No free lunch:
Nc ∝ |α|2

Good cat qubits require larger Hilbert space



State of the art: Dynamiqs

The previous tricks + smart use of hardware + autodiff + batching → dynamiqs

Close to the numerical optimum

QuantumOptics.jl also good (without seemless autodiff, batching, GPU)
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Technical open problems

Exact stationary state
Find ρ0 exactly at cost rN3.
Currently:
▶ rN3 approximate fixed-point algorithms (e.g. Krylov)
▶ N6 for linear solve

Precise time-dependent real-time evolution
Find a method more precise than Runge-Kutta for time-dependent real-time
dynamics

d
dt ρt = Lt(ρt)

using the fact that Lt is linear
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Summary for small Hilbert space

Lindblad for bosons = partial differential equations in 2nbosons + 1 dimensions

Good
▶ Solved numerically exactly at cost rN2 ∝ N2nbosons

c !
▶ It is implemented in user friendly libraries
▶ It is easy to implement manually to test

Bad
▶ For cats N ∼ (4|α|2)ncats

▶ Compute and memory cost ∝ |2α|4ncats
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Advanced: Large Hilbert space



Analytic solutions: lucky cases

Gaussian states
Equivalently:
▶ ρ is a Gaussian in configuration space
▶ ρ has a Gaussian Wigner function
▶ ρ = exp(quadratic in a, a†)

=⇒ ρ characterized by tr(aρ), tr(aaρ) and tr(a†aρ)

Quadratic Lindbladian

1. H at most quadratic in a, a†

2. Ak at most linear in a, a†

L quadratic =⇒ exactly solvable with Gaussian states

Small number of other exactly solvable (integrable) cases found by Tomaz Prosen
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Exact solutions are too rare to be really useful



An idea?

Can’t we find a better basis??

NO!
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Linear stability should be abandonned

No “best” plane to approximate a sphere



Submanifold for local qubits

Many interesting subspaces M ⊂H are not vector spaces:
▶ coherent states
▶ Gaussian states
▶ ρ with fixed rank
▶ “Dynamical shifted Fock”

Example
ρν = |ψν⟩⟨ψν| with ψν(x) = exp(−ν1x2 − ν2x4)
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Time-dependent variational principle (TDVP)

McLachlan TDVP = minimize the error

error =
∥∥∥∥ d

dt ρ(νt) − L[ρ(νt)]

∥∥∥∥2

(1)

for convenience, take the Frobenius norm

∥A∥ =
√

tr(A†A) (2)



TDVP
∂

∂ d
dtνj

∥∥∥∥ d
dt ρ(νt) − L[ρ(νt)]

∥∥∥∥2

= 0

The time derivative of ρ is:
d
dt ρ(νt) =

∂ρ

∂νj

dνj

dt =
∂ρ

∂νj

d
dtνj

thus
d
dtνj tr

[(
∂ρ

∂νj

)†
∂ρ
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+ h.c.

]
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]
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Hence the dynamics is d
dtνj = [g ]−1
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gjk = ℜe
{
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Requirements
Solve the non-linear ODE

d
dtνj = [g ]−1

jk uk

with Runger-Kutta (or other)

Only need:

gjk = ℜe
{
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)†
∂ρ

∂νk

]}

uk = ℜe
{
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4 levels
▶ Exactly computable (Shifted Fock / MPS / Quantics) → best
▶ Well approximable (2d tensor networks)
▶ Can be directly sampled with Monte Carlo (some recurrent neural nets)
▶ Requires Markov Chain Monte Carlo for approximate sampling (generic

neural nets)
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Local strategy I: dynamical shifted Fock
The shifted Fock ladder (vector space):

MNc
α = span{a†k |α⟩, k ⩽ Nc} = span{D(α)|k⟩, k ⩽ Nc}

=

The “dynamical” shifted Fock ladder (manifold):

MNc = {|ψ⟩ ∈Mα, α ∈ C} =

The multi “dynamical” shifted Fock ladder (manifold):

MNc
(n) =

{
|ψ⟩ =

n∑
i=1

|ψi⟩, |ψi⟩ ∈M

}
=
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Dynamical shifted Fock
Proposed by Schlegel, Minganti, Savona in 2306.13708



Dynamical shifted Fock: pros and cons

The Good
▶ Good intuition for compression
▶ Works as intended Nc → 2 + ε

The Bad
▶ Sparsity lost
▶ Potential ill-conditioning (fixable)
▶ Cannot destroy the blobs too much

Likely not faster for 1 mode



Quantics

Idea of Adrien Moulinas and Xavier Waintal

Write ψ as an MPS in binary:

ψ(x0.x1x2x3x4x5x6) = ⟨A(0)x0 |A(1)x1A(2)x2A(3)x3A(4)x4A(5)x5 |A(6)x6⟩

=

with
▶ A(0)0,A(0)1 and A(6)0,A(6)1 vectors ∈ Cχ

▶ A(1)0,A(1)1, · · ·A(5)0,A(5)1 matrices ∈ Cχ ⊗ Cχ



Quantics: pros and cons

Still to be tested, but:

The Good (promising):
▶ Leverages powerful tensor network routines (could be fast!)
▶ Can resolve arbitrarily small scales

The Bad (worrying):
▶ Not super clear when it should work intuitively
▶ Entanglement in scale??



Matrix product state like approaches
Mainly 3 options (tried at Eviden on slightly different problems)

1. Matrix Product States for stochastic ψ

ψ(n1, · · · , n6) =

2. Matrix Product Operators for ρ

ρ(n1, · · · , n6,m1, · · · ,m6) =

3. Matrix Product Density Operator for ρ (aka purification)

ρ(n1, · · · , n6,m1, · · · ,m6) =
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MPS approaches: intuition

Hope: χ ∝ (2 + ε)n (not much inter-cat entanglement)
▶ No local physical space compression
▶ Asymptotic cost N4

c ∗ (2 + ε)n

No gain on ⩽ 2 modes



Strategy

Small exact simulations: memory cost N2n
c

▶ Mostly Solved
▶ Few open problems (very high order Rouchon, cheaper exact stationary

states)
▶ No huge gain expected unless ultra-stiff
▶ Well implemented

Large simulations: target is memory cost C × (2 + ε)2n

▶ Local compression way (Dynamically shifted Fock, Quantics)
▶ Global compression way (MPS,MPO,MPDO)
▶ Nothing well implemented yet

Do not ask for performance increase at the beginning for small systems!


