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Goal: strongly coupled relativistic field theories

QCD = High T, supra of HEP



Goal: strongly coupled relativistic field theories

QCD = High T, supra of HEP

Monte Carlo on Wick-rotated lattice-discretized = only game in town
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With tensor network states

NS w}m
l’ |
l'll/rurnruuf;"HT { >
AT Y
NS afbe Aee vl HZL & Qco

» 3+ 1 dimensions

» Relativistic fermions

» Gauge fields

» Taking the continuum limit for relativistic models +— today

Objective: understand the continuum on the simplest non-trivial model: ¢3



Relativistic field theory as a condensed
matter system



Casual definition of a relativistic scalar field ¢3
SR [V V(9]

oty

Hamiltonian

A continuum of nearest neighbor coupled anharmonic oscillators

P L L BT
R

on-site inertia  spatial stiffness on-site potential V/

A

with [$(x),7’f(y)] = id(x — y)1 — i.e. bosons / harmonic oscillators



Better definition of ¢}

Renormalized ¢} theory
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Better definition of ¢}

Renormalized ¢} theory

Lol o

e 2, 2
H:J'dx'ﬂ2'm+'(vd2)) 'm+m7:cb2:m+g:d>4:m

Rigorously defined relativistic QF T without cutoff (Wightman QFT)
Vacuum energy density ¢ finite for all g
Difficult to solve unless g < m? — not integrable

Phase transition around f. = ;= L5 =11ie. g~ 2.7 in mass units



Two (main) games in town

Perturbation theory
+ resummation

A = —12@g7+288 @g%
- (2304 Z +2592 @ + 10368 @) g'+0(g")

Py = —96—>—g*+ {uszﬁ + 3456 A—] - {41472@ + 1usz4i
+82944-@- n 41472@ + 82944_&_ + 27048_@_} ¢+ 0(e°),
state of the art is O(g®)
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Lattice Monte-Carlo
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Short distance troubles



Similarity between relativistic and critical models
» A critical model is scale invariant in the IR
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Similarity between relativistic and critical models

» A critical model is scale invariant in the IR

1

|x7y|N—>+oo |X — y|2Ao

(0(x)O(y))

» A relativistic QFT is scale invariant in the UV

1
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(O(x)0(y)

Consequence on entanglement

With a UV cutoff A =1/ain 1+ 1 dimensions:
S o log(A)

= infinite amount of information in high frequency modes



Consequence for lattice discretizations

1. easy: taking thermodynamic limit
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Consequence for lattice discretizations

1. easy: taking thermodynamic limit

2. hard: taking small lattice spacing
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Consequence for lattice discretizations

11.10
1. easy: taking thermodynamic limit \
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2. hard: taking small lattice spacing 10.98 1
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A finely discretized relativistic QF T, seen as a fe estimate continuum

extrapolation with GILT-TNR

lattice model, is almost critical. Clément Delcamp, AT, 2020



UV “criticality” is usually milder than IR criticality

UV CFT tend to be kind
For QFT that are either
1. super renormalizable or
2. asymptotically free
the critical behavior at short distance is free



UV “criticality” is usually milder than IR criticality

UV CFT tend to be kind
For QFT that are either
1. super renormalizable or
2. asymptotically free
the critical behavior at short distance is free

E.g. for ¢3 at short distances

Co2 . 2. 2
H—>H0:J'dx'ﬁ2'm+'(vd2)) 'm+m7:d)2:m

which is exactly solvable



Objective

Stop wasting parameters on short distance criticality
1. Disentangle the trivial UV behavior
2. Put some tensor network on top to deal with the IR



Gaussian disentangling



Disentangle short distance criticality

1 — Bogoliubov transform

Define modes a(p), a'(p) as

a(p)=%(\/w_p¢(p)+i$(wi)) with w, = +/p? + m?

p

which verify [a(p), a(q)] = 27t8(p — q) and yield

H0:J dpw, aT
R

The ground state of Hj is the Fock vacuum, i.e. |GS) =[0) with Vp, a,|0) =0



Disentangle short distance criticality

2 — Go back to real space

Fourier transform the modes a,
(x) L J dp e a
a(x) = —
27 Jg g P

which enforces [a(x), af(y)] = 8(x — y)



Disentangle short distance criticality

2 — Go back to real space

Fourier transform the modes a,

1 .
a(x) = o JR dp e a,

which enforces [a(x), af(y)] = 8(x — y)

Note
1. We integrate with dp not w,?l/zdp

2. & is not a local function of a, a

o) = |

dydx =) [aly) +ally)] with J(x) = J 4P _ giex

R \/2(,Up



Tensor network intuition
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Free particle entanglement entropy
We now have two possible ways to split 7% = # &
1. Standard one, yielding S o log A

A, = span{dx) - blx,)IQ)} for x > 0}
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Free particle entanglement entropy
We now have two possible ways to split 7% = # &
1. Standard one, yielding S o log A

A, =span{d(x) -+ blx,)IQ)} for x>0}
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2. The free particle one Sgrec
I = span{aT(xl) - a'(x,)|0) for x > 0}
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Free particle entanglement entropy

Super-renormalizability = Gaussian disentangling kills the divergent part of S:

Conjecture

For any bosonic QFT with strongly relevant interaction V(¢) in 1 + 1d, the free
particle entanglement entropy S is finite in the ground state



Free particle entanglement entropy

Super-renormalizability = Gaussian disentangling kills the divergent part of S:

Conjecture

For any bosonic QFT with strongly relevant interaction V(&) in 1+ 1d, the free
particle entanglement entropy S is finite in the ground state

Hence the ground state has an efficient (continuous) MPS representation:
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Trading entanglement for (mild) non-locality
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Trading entanglement for (mild) non-locality
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H local in ¢(x) hence mildly non-local in a(x), e.g.

de¢(x)2 - jdx j dxt dxa J(x — x)J (0 — x)(a(xa) + at () (ale) + ot (30)
1. UV singular

A 1
G 4—”‘|’°| J(x) 0 Ix|
/ 2. IR nice

J(x) ~ e m
+o0




Remarks on Gaussian disentanglement

|dea used the lattice, in Quantum chemistry, for impurity models e.g.
» Krumnow, Veis, Legeza, and Eisert 2016
» Wu, Fishman, Pixley, Stoudenmire 2022

Here minor differences
1. The disentangler is not optimized (not needed)
2. The disentangler does not have a simple local representation

3. The disentangler makes the optimization well defined — kills divergence



Relativistic continuous matrix product
states



Relativistic continuous matrix product states

aka continuous matrix product states (CMPS) [Verstraete and Cirac 2010]
on Gaussian disentanglement steroids

Definition

RCMPSs are a manifold of states parameterized by 2 (D x D) matrices Q, R

|Q, R) :tr{iPexp deQ@]l +R® aT(x)} } |0)

with
» |0) is the Fock vacuum of the free model Hy
» trace taken over CP

» P path-ordering exponential



Basic properties of RCMPS

|Q, R) =tr {iPexp de RR1T+R® aT(x)] } 10),

Checklist:

1. Extensive because of Pexp [

2. Observables computable at cost D3 (non trivial!)
requires [a(x), a(y)] = 8(x — y)

3. No UV problems
|0,0) = |0) is the ground state of Hy hence exact CFT UV fixed point
(Q,R|: P(d) : |Q, R) is finite for all Q, R (not triviall)



Tensor network intuition
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In the continuum limit contracting a non-uniform ladder is numerically exact
with high order Runge-Kutta.



The variational algorithm

Optimization

Compute gy = (Q, R|h|Q, R) and Vg re
Minimize ey with (geometric improvements of ) gradient descent
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Optimization

Compute gy = (Q, R|h|Q, R) and Vg re
Minimize ey with (geometric improvements of ) gradient descent

Computations of g and V¢ in a nutshell:
1. V, = (:e?®):) op computable by solving an ODE with cost oc D?

. (:¢":) gr computable doing 9}V, , — o D3

2
3. ey = (h)qr computable by summing such terms at cost D3 — oc D3
4. Vey computable by solving the adjoint ODE (backpropagation) — oc D3



The variational algorithm

Optimization

Compute gy = (Q, R|h|Q, R) and Vg re
Minimize ey with (geometric improvements of ) gradient descent

Computations of g and V¢ in a nutshell:
1. V, = (:e?®):) op computable by solving an ODE with cost oc D?

. (:¢":) gr computable doing 9}V, , — o D3

2
3. ey = (h)qr computable by summing such terms at cost D3 — oc D3
4. Vey computable by solving the adjoint ODE (backpropagation) — oc D3

Functioning Julia implementation. OptimKit. jl to solve the Riemannian
minimization, KrylovKit. j1 to solve fixed point equations,
DifferentialEquations.jl (Vern7 solver) to solve ODE. Soon Rcmps. j17



Using the optimized state

After optimization: |Q, R) ~ |0)i,. with (Q, R| h |Q,R) = e+ ¢

This gives:
» All equal-time N-point functions

(P0a) dlx) -+ d(xa)) = (Q Rl dx1) b)) - - d(x) |Q, R)

at cost D3 by solving coupled linear ODEs

» In particular all Euclidean 2-point functions = spectral function

(6(x)0(0)) =J " dp () Ko (1x)

0



Results: ¢35 energy density

energy density (h)g, r relative error
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New: D can now be pushed to 32 or even 64 with some effort



Results: ¢35 — field expectation value ()
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New: the mass can be fitted from 2-point function and agrees with RHT to 103



Todo-list for continuous tensor networks

In 1+ 1 dimensions
» Solve Fermion / Gauge theories
» Go beyond strongly renormalizable interactions
» Do general CFT perturbations

» Compute more observables (masses, spectra, c-function...)

And of course the grand goal: do higher dimensions!

Many problems, feel free to attack them!



Summary

Problem
» Relativistic QFT have infinite entanglement at short distance

Solution in 14 1d

|Q,R>=tr{?exp deQ@]l—FR@aT(X)]}Im

Ansatz for 1 4 1 relativistic QFT
The ¢(x) — a(x) trick disentangles the divergent UV
The CMPS on top solves the rest
Efficient (cost poly D, error plausibly 1/superpoly D)

ol s



