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With tensor network states

▶ 3 + 1 dimensions
▶ Relativistic fermions
▶ Gauge fields
▶ Taking the continuum limit for relativistic models ← today

Objective: understand the continuum on the simplest non-trivial model: ϕ4
2



Relativistic field theory as a condensed
matter system



Casual definition of a relativistic scalar field ϕ4
2

Hamiltonian
A continuum of nearest neighbor coupled anharmonic oscillators

Ĥ =

∫
R

dx π̂(x)2

2
on-site inertia

+
[∇ϕ̂(x)]2

2
spatial stiffness

+
m2 ϕ̂2(x)

2 + g ϕ̂4(x)
on-site potential V̂

with [ϕ̂(x), π̂(y)] = iδ(x − y)1 – i.e. bosons / harmonic oscillators



Better definition of ϕ4
2

Renormalized ϕ4
2 theory

H =

∫
dx : π2 :m

2 +
: (∇ϕ)2 :m

2 +
m2

2 : ϕ2 :m +g : ϕ4 :m

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density ε0 finite for all g
3. Difficult to solve unless g ≪ m2 – not integrable
4. Phase transition around fc = g

4m2 = 11 i.e. g ≃ 2.7 in mass units



Better definition of ϕ4
2

Renormalized ϕ4
2 theory

H =

∫
dx : π2 :m

2 +
: (∇ϕ)2 :m

2 +
m2

2 : ϕ2 :m +g : ϕ4 :m

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density ε0 finite for all g
3. Difficult to solve unless g ≪ m2 – not integrable
4. Phase transition around fc = g

4m2 = 11 i.e. g ≃ 2.7 in mass units



Two (main) games in town

Perturbation theory
+ resummation

state of the art is O(g8)

arXiv:1805.05882
Serone, Spada, Villadoro

Lattice Monte-Carlo

arXiv:1807.03381
Bronzin, De Palma, Guagnelli



Short distance troubles



Similarity between relativistic and critical models
▶ A critical model is scale invariant in the IR

⟨O(x)O(y)⟩ ∼
|x−y |→+∞

1
|x − y |2∆O

▶ A relativistic QFT is scale invariant in the UV

⟨O(x)O(y)⟩ ∼
|x−y |→0

1
|x − y |2∆O

Consequence on entanglement
With a UV cutoff Λ = 1/a in 1 + 1 dimensions:

S ∝ log(Λ)

=⇒ infinite amount of information in high frequency modes
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Consequence for lattice discretizations

1. easy: taking thermodynamic limit

2. hard: taking small lattice spacing

A finely discretized relativistic QFT, seen as a
lattice model, is almost critical.
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UV “criticality” is usually milder than IR criticality

UV CFT tend to be kind
For QFT that are either

1. super renormalizable or
2. asymptotically free

the critical behavior at short distance is free

E.g. for ϕ4
2 at short distances

H −→ H0 =

∫
dx : π2 :m

2 +
: (∇ϕ)2 :m

2 +
m2

2 : ϕ2 :m

which is exactly solvable
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Objective

Stop wasting parameters on short distance criticality
1. Disentangle the trivial UV behavior
2. Put some tensor network on top to deal with the IR



Gaussian disentangling



Disentangle short distance criticality

1 – Bogoliubov transform
Define modes a(p), a†(p) as

a(p) = 1√
2

(
√
ωp ϕ(p) + i π(p)√

ωp

)
with ωp =

√
p2 + m2

which verify [a(p), a†(q)] = 2π δ(p − q) and yield

H0 =

∫
R

dp ωp a†
pap

The ground state of H0 is the Fock vacuum, i.e. |GS⟩ = |0⟩ with ∀p, ap |0⟩ = 0



Disentangle short distance criticality

2 – Go back to real space
Fourier transform the modes ap

a(x) = 1
2π

∫
R

dp e ipx ap

which enforces [a(x), a†(y)] = δ(x − y)

Note
1. We integrate with dp not ω−1/2

p dp
2. ϕ is not a local function of a, a†

ϕ(x) =
∫
R

dy J(x − y)
[
a(y) + a†(y)

]
with J(x) =

∫
R

dp√
2ωp

e ipx
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Tensor network intuition



Free particle entanglement entropy
We now have two possible ways to split H = H− ⊗H+

1. Standard one, yielding S ∝ logΛ
H+ = span

{
ϕ(x1) · · ·ϕ(xn)|Ω+⟩

}
for x ⩾ 0

}

2. The free particle one Sfree

H+ = span
{

a†(x1) · · · a†(xn)|0⟩ for x ⩾ 0
}
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Free particle entanglement entropy

Super-renormalizability =⇒ Gaussian disentangling kills the divergent part of S:

Conjecture
For any bosonic QFT with strongly relevant interaction V (ϕ) in 1 + 1d, the free
particle entanglement entropy Sfree is finite in the ground state

Hence the ground state has an efficient (continuous) MPS representation:
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Trading entanglement for (mild) non-locality

H local in ϕ(x) hence mildly non-local in a(x), e.g.∫
dxϕ(x)2 =

∫
dx

∫
dx1 dx2 J(x1 − x)J(x2 − x)(a(x1) + a†(x1))(a(x2) + a†(x2))

1. UV singular
J(x) ∼

0
1√
|x |

2. IR nice
J(x) ∼

+∞ e−m|x |
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Remarks on Gaussian disentanglement

Idea used the lattice, in Quantum chemistry, for impurity models e.g.
▶ Krumnow, Veis, Legeza, and Eisert 2016
▶ Wu, Fishman, Pixley, Stoudenmire 2022

Here minor differences
1. The disentangler is not optimized (not needed)
2. The disentangler does not have a simple local representation
3. The disentangler makes the optimization well defined → kills divergence



Relativistic continuous matrix product
states



Relativistic continuous matrix product states

aka continuous matrix product states (CMPS) [Verstraete and Cirac 2010]
on Gaussian disentanglement steroids

Definition
RCMPSs are a manifold of states parameterized by 2 (D × D) matrices Q,R

|Q,R⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩

with
▶ |0⟩ is the Fock vacuum of the free model H0

▶ trace taken over CD

▶ P path-ordering exponential



Basic properties of RCMPS

|Q,R⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩a

Checklist:

1. Extensive because of P exp
∫

2. Observables computable at cost D3 (non trivial!)
requires [a(x), a†(y)] = δ(x − y)

3. No UV problems
|0, 0⟩ = |0⟩ is the ground state of H0 hence exact CFT UV fixed point
⟨Q,R | : P(ϕ) : |Q,R⟩ is finite for all Q,R (not trivial!)



Tensor network intuition

In the continuum limit contracting a non-uniform ladder is numerically exact
with high order Runge-Kutta.



The variational algorithm

Optimization
Compute e0 = ⟨Q,R |h|Q,R⟩ and ∇Q,Re0
Minimize e0 with (geometric improvements of) gradient descent

Computations of e0 and ∇e0 in a nutshell:
1. Vb = ⟨:ebϕ(x) :⟩QR computable by solving an ODE with cost ∝ D3

2. ⟨:ϕn :⟩QR computable doing ∂n
bVb

∣∣∣
b=0

→ ∝ D3

3. e0 = ⟨h⟩QR computable by summing such terms at cost D3 → ∝ D3

4. ∇e0 computable by solving the adjoint ODE (backpropagation) → ∝ D3

Functioning Julia implementation. OptimKit.jl to solve the Riemannian
minimization, KrylovKit.jl to solve fixed point equations,
DifferentialEquations.jl (Vern7 solver) to solve ODE. Soon Rcmps.jl?
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Using the optimized state

After optimization: |Q,R⟩ ≃ |0⟩int. with ⟨Q,R | ĥ |Q,R⟩ = e0 + ε

This gives:
▶ All equal-time N-point functions

⟨ϕ(x1)ϕ(x2) · · ·ϕ(xn)⟩ ≃ ⟨Q,R | ϕ(x1)ϕ(x2) · · ·ϕ(xn) |Q,R⟩

at cost D3 by solving coupled linear ODEs

▶ In particular all Euclidean 2-point functions =⇒ spectral function

⟨ϕ(x)ϕ(0)⟩ =
∫+∞

0
dµµρ(µ)K0(µx)



Results: ϕ4
2 energy density
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New: D can now be pushed to 32 or even 64 with some effort



Results: ϕ4
2 – field expectation value ⟨ϕ⟩
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Todo-list for continuous tensor networks

In 1 + 1 dimensions
▶ Solve Fermion / Gauge theories
▶ Go beyond strongly renormalizable interactions
▶ Do general CFT perturbations
▶ Compute more observables (masses, spectra, c-function...)

And of course the grand goal: do higher dimensions!

Many problems, feel free to attack them!



Summary

Problem
▶ Relativistic QFT have infinite entanglement at short distance

Solution in 1 + 1d

|Q,R⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩

1. Ansatz for 1 + 1 relativistic QFT
2. The ϕ(x)→ a(x) trick disentangles the divergent UV
3. The CMPS on top solves the rest
4. Efficient (cost poly D, error plausibly 1/superpoly D )


