

Beating the quantum many-body problem

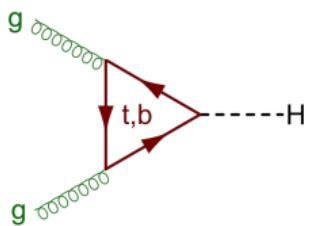
on the lattice, in the continuum,
with bits and qubits

DALL-E "Two cats falling into a blackhole in synthwave style, digital art"

Antoine Tilloy
June 2nd, 2023
QuanticFest

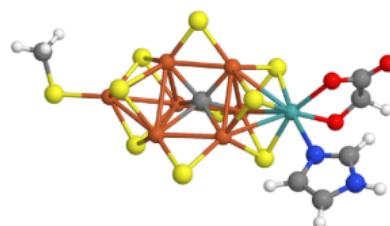
Open problems in theoretical physics

Fundamental Physics



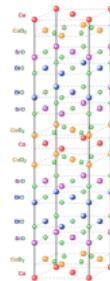
Strong force between
quarks and gluons

Chemistry



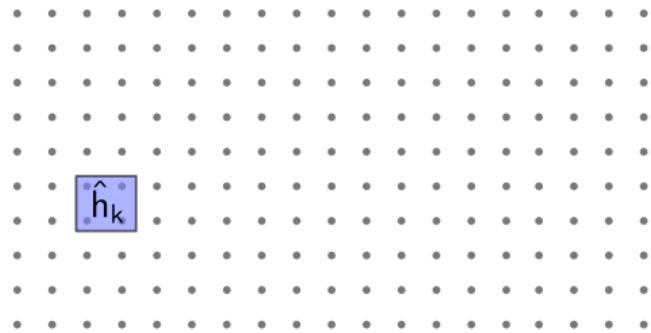
Atoms interacting to form molecules

Condensed matter



Cuprate perovskites superconductors

Quantum many-body problem on the lattice



Typical many-body problem

N spins on a lattice

$$\mathcal{H} = \bigotimes_{j=1}^n \mathcal{H}_j \text{ with } \mathcal{H}_j = \mathbb{C}^2$$

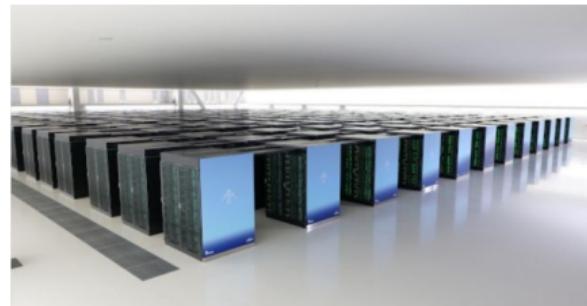
$$|\psi\rangle = \sum c_{i_1, i_2, \dots, i_n} |i_1, i_2, \dots, i_N\rangle$$

Problem:

Finding the low energy states of

$$H = \sum_{k=1}^N h_k$$

is **hard** because $\dim \mathcal{H} = 2^N$ for spins



Fugaku – 2 EFLOPS – 150 PB
cannot do $4 \times 4 \times 4$ spins

Quantum-many body problem: bits or qubits?

With bits – weak entanglement → compression with TNS

- ▶ Local H
- ▶ Low energy state properties
- ▶ Dynamics after local quench

With qubits – strong entanglement → “exact” representation

- ▶ Unstructured H
- ▶ Highly excited state statistics
- ▶ Dynamics after global quench

With bits, and for fundamental physics

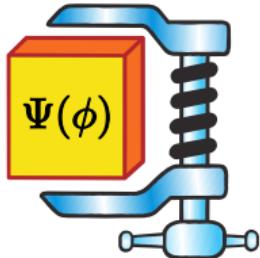
Two difficulties to solve

1. Lattice → continuum
2. Weird constrained degrees of freedom (“Gauge theories”)
3. 3 space dimensions

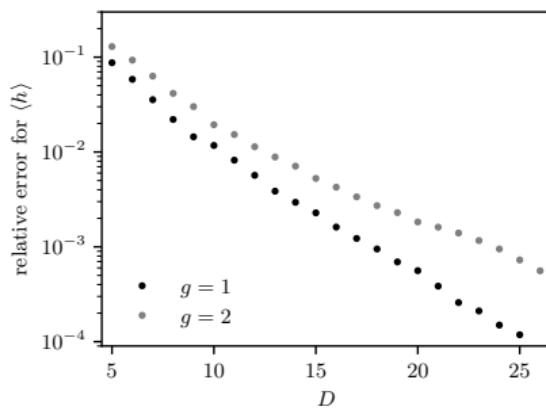
Tensor network states without lattice

Solve baby fundamental physics theories like

$$H = \int dx \frac{:\pi^2:_{\cdot m}}{2} + \frac{:(\nabla\phi)^2:_{\cdot m}}{2} + \frac{m^2}{2} :\phi^2:_{\cdot m} + g :\phi^4:_{\cdot m}$$



continuously infinitely many bosons on a line, interacting



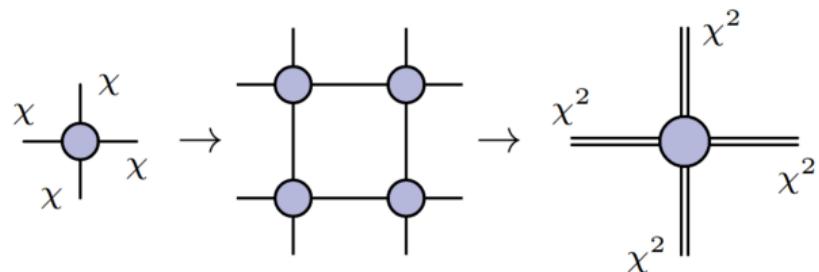
Karan and Edo: pushing to more models, beyond baby theories

Objective: completely nail down $1 + 1$ dimension

- ▶ $H_{\text{ShG}}(\beta) = \int dx \frac{:\pi^2:}{2} + \frac{:(\nabla\phi)^2:}{2} + \frac{m^2}{\beta^2} : \cosh(\beta\phi) :$
- ▶ $H_{\text{SG}}(\beta) = \int dx \frac{:\pi^2:}{2} + \frac{:(\nabla\phi)^2:}{2} - \frac{m^2}{\beta^2} : \cos(\beta\phi) :$
- ▶ $H_{O(2)} = \int dx \frac{:\pi^2:}{2} + \frac{:(\nabla\phi)^2:}{2} + \frac{m^2}{2} : |\phi|^2 : + g : |\phi|^4 :_m$
- ▶ ...

Tensor network renormalization

TNS can also be used for powerful coarse graining / renormalization



Alternative to analytical continuum limit

- ▶ Étienne works on rigorous aspects of this approach
- ▶ Leonardo works on implementing gauge degrees of freedom