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Objectives of the day

Baby steps of a program to solve relativistic QFT without discretizing:

1. A variational method: relativistic continuous matrix product states
arXiv:2102.07733 and arXiv:2102.07741

|Q,R⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩a

2. A subtle 1 + 1d field theory: the Sinh-Gordon model – near “self-duality”
arXiv:2209.05341

HShG(β) =

∫
dx : π2 :

2 +
: (∇ϕ)2 :

2 +
m2

β2 : cosh(βϕ) :



Quantum field theory: general objective

Long term goal
Find methods to solve “real world” quantum field theories (even without
structure) to good (machine?) precision

Go beyond the currently leading approaches
1. Perturbation theory ← need resummation / expensive large orders
2. Lattice Monte Carlo← need discretization / slow convergence of error / sign

3 promising alternatives
1. Bootstrap / SDP relaxations / Sum of Squares
2. Renormalization group ← functional or tensor network RG
3. Variational method ← Hamiltonian truncation or tensor network states
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Similarity between relativistic and critical models

▶ A critical model is scale invariant in the IR
▶ A relativistic QFT is scale invariant in the UV

This implies divergence of the entanglement entropy in 1 + 1d

S ∝ c log(Λ)

=⇒ Continuum limit requires finite entanglement scaling

double scaling (UV and IR) by Vanhecke, Verstraete, Van Acoleyen 2104.10564
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The variational method
directly in the continuum



Idea of the variational method

Variational method for ground state search

1. Guess a manifold M ⊂H with few parameters ν i.e. dimM≪ dimH

2. Tune ν to minimize energy ν = argminν∈M
⟨ν|H|ν⟩
⟨ν|ν⟩ and get

|ground state⟩ ≃ |ν⟩

Reason for compression (classical)

cat image “typical” image

atypical =⇒ compressible

Reason for compression (quantum)

low energy state random state

area law = atypical =⇒ compressible
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Feynman’s criticism

Feynman’s requirement in a nutshell

1. Extensive parameterization
Number of parameters ∝ Lα at most for system size L (not ∝ eL)

2. Computable expectation values
ψ known =⇒ ⟨O(x)O(y)⟩ψ computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted



Elegantly swallowing the bullet

Example: naive Hamiltonian truncation
With an IR cutoff L, momenta are discrete. Take as submanifold M the vector
space spanned by:

|k1, k2, · · · , kr⟩ = a†
k1

a†
k2
· · · a†

kr
|0⟩a

such that ⟨k1k2 · · · kr |H |k1k2 · · · kr⟩ ⩽ Etrunc → finite dimensional

Breaks extensiveness
▶ number of parameters ∝ eL×Etrunc

▶ error ∝ E−3
trunc (with renormalization refinements)

still good results, see e.g. Rychkov & Vitale for ϕ4
2 arXiv:1412.3460



Intuition: put 2 ingredients together
1- Extensive parameterization and 2- Computable expectation values
Realized by tensor network states on the lattice
e.g. in 1 + 1 dimensions: Matrix Product states (MPS)

|ψ(A)⟩ :=
∑

i1,i2,...,iN

tr [Ai1Ai2 · · ·AiN ] |i1, i2, . . . , iN⟩

where Ai are matrices ∈MD(C)

3- Not oversensitive to the UV
Realized by Hamiltonian truncation, i.e. working in the Fock basis

|k1, k2, · · · , kr⟩ = a†
k1

a†
k2
· · · a†

kr
|0⟩a

Strategy: MPS −→
continuum limit

CMPS (2010) −→
change of basis

RCMPS (2021)
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Relativistic continuous matrix product states

Definition
RCMPSs are a manifold of states parameterized by 2 (D × D) matrices Q,R

|Q,R⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩a

with
▶ a(x) = 1

2π

∫
dk eikxak where ak = 1√

2

(√
ωk ϕ̂(k) + i π̂(k)√

ωk

)
free modes

▶ trace taken over CD

▶ P path-ordering exponential

1. Continuum MPS (CMPS) + Gaussian disentangling (cMERA) |0⟩ψ → |0⟩a
(noted by Niloofar Vardian in 2208.14827)

2. “Non-commutative” free particle coherent state
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Basic properties of RCMPS

|Q,R⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩a

Feynman’s checklist:

1. Extensive because of P exp
∫

2. Obervables computable at cost D3 (non trivial!)
requires [a(x), a†(y)] = δ(x − y)

3. No UV problems
|0, 0⟩ = |0⟩a is the ground state of H0 hence exact CFT UV fixed point
⟨Q,R | : P(ϕ) : |Q,R⟩ is finite for all Q,R (not trivial!)
Entanglement Entropy in a(x) basis is finite
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The variational algorithm

Optimization
Compute e0 = ⟨Q,R |h|Q,R⟩ and ∇Q,Re0
Minimize e0 with (geometric improvements of) gradient descent

Computations of e0 and ∇e0 in a nutshell:
1. Vb = ⟨:ebϕ(x) :⟩QR computable by solving an ODE with cost ∝ D3

2. ⟨:ϕn :⟩QR computable doing ∂n
bVb

∣∣∣
b=0

→ ∝ D3

3. e0 = ⟨h⟩QR computable by summing such terms at cost D3 → ∝ D3

4. ∇e0 computable by solving the adjoint ODE (backpropagation) → ∝ D3

Functioning Julia implementation. OptimKit.jl to solve the Riemannian
minimization, KrylovKit.jl to solve fixed point equations,
DifferentialEquations.jl (Vern7 solver) to solve ODE. Soon Rcmps.jl?
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Using the optimized state
After optimization: |Q,R⟩ ≃ |0⟩int. with ⟨Q,R | ĥ |Q,R⟩ = e0 + ε

This gives:
▶ All equal-time N-point functions

⟨ϕ(x1)ϕ(x2) · · ·ϕ(xn)⟩ ≃ ⟨Q,R | ϕ̂(x1) ϕ̂(x2) · · · ϕ̂(xn) |Q,R⟩

at cost D3 by solving coupled linear ODEs

▶ In particular all Euclidean 2-point functions =⇒ spectral function

⟨ϕ(x)ϕ(0)⟩ =
∫+∞

0
dµµρ(µ)K0(µx)

One could get more observable with real-time evolution and tangent space
methods, but is it needed in principle?
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Hamiltonian definition of ϕ4
2

Renormalized ϕ4
2 theory

H =

∫
dx : π2 :m

2 +
: (∇ϕ)2 :m

2 +
m2

2 : ϕ2 :m +g : ϕ4 :m

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density ε0 finite for all g
3. Difficult to solve unless g ≪ m2 (perturbation theory)
4. Phase transition around fc = g

4m2 = 11 i.e. g ≃ 2.7 in mass units



Results: ϕ4
2 energy density
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g
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relative error

New: D can now be pushed to 32 or even 64 with some effort



Results: ϕ4
2 – field expectation value ⟨ϕ⟩

1 2 3 4 5

g

0.0

0.2
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0.6

0.8

|〈φ
〉|

D = 5
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New: the mass can be fitted from 2-point function and agrees with RHT to 10−3



Hamiltonian definition of Sine-Gordon theory

Renormalized cos(βϕ) theory

H =

∫
dx : π2 :m

2 +
: (∇ϕ)2 :m

2 −
m2

β2 : cos(βϕ) :m

1. Well defined for b = β/
√

8π < 1/
√

2
2. Ground energy density → −∞ for b → 1/

√
2 but renormalizable until b = 1

3. Vertex operators, mass spectrum, and (renormalized) energy known exactly



Results: cos(βϕ) (rescaled) energy density

Fits arbitrarily well for b ∈ [0, 1/
√

2[, collapses to −∞ for b larger
Numerically refines Coleman’s argument from b = 1 to b = 1/

√
2 + ϵ(D)



The Sinh-Gordon model
the surprisingly subtle cosh(βϕ) potential



The Sinh-Gordon model
An exactly solvable model that is surprisingly subtle. Two recent studies
▶ Könik, Lájer, and Mussardo [KLM] arXiv:2007.00154
▶ Bernard and LeClair [BLC] arXiv:2112.05490

[Equal-time quantization] Hamiltonian definition

HShG(β) =

∫
dx : π2 :m

2 +
: (∇ϕ)2 :m

2 +
m2

β2 : cosh(βϕ) :m

[Radial quantization] Dilation operator definition

DShG(b) = D0 + µ

∫
C

dz [Vb(z , z∗) + V−b(z , z∗)]

Equivalent formulations with b = β/
√

8π and µ = m2+2b2

24+2b2
πb2 e2b2γE



The Sinh-Gordon model: puzzles

HShG(β) =

∫
dx : π2 :m

2 +
: (∇ϕ)2 :m

2 +
m2

β2 : cosh(βϕ) :m

Should be easy:
1. Intuitively should always make sense (cosh(βϕ) always relevant)
2. S-matrix, energy density, masses, vertex operators, “exactly” known
3. Apparent b → b−1 duality with normalized coupling b = β/

√
8π

But unclear what the domain of validity of the formula is...
▶ Mass vanishes at b = 1 and likely stays at 0 [KLM and BLC]
▶ Likely no self-duality
▶ Could the exact formula break down before b = 1?
▶ Very hard to check numerically (despite thorough exploration of KLM)
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Some KLM results



Results: (rescaled) energy density



Results: vertex operators ⟨:eaφ :⟩

Known exactly from FLZZ formula up to a = (b + b−1)/2 (Seiberg bound)



Results: 2-point func ⟨:eaφ(x): :eaφ(0):⟩− ⟨:eaφ(x):⟩⟨:eaφ(0):⟩



New: mass gap from spectral function fit



Discussion and open problems



Understanding expressiveness of RCMPS

Standard Entanglement Entropy
Defined for “standard” locality

ρ⩾0 =

∫ ∏
x⩽0

dϕ(x)⟨ϕ|Ψ⟩⟨Ψ|ϕ⟩

Gives S1 = −tr (ρ⩾0 log ρ⩾0) ∝ log(Λ)

Exotic Entanglement Entropy
Defined for RCMPS notion of locality
trace over a†(x1) · · · a†(xn)|0⟩m for xk ⩽ 0
Gives S1 = O(1) (numerically)

EEE is finite at least for
b ⩽ 1/

√
2



Sinh-Gordon theory: what do we know?
Still uncertainty, following KLM, BLC, and the present study...
Would benefit from extrapolations in D!

My estimates:
1. 99% chance: Hamiltonian H has no self-duality b → b−1

2. 80% chance: Any reasonable definition of the model is massless for b ⩾ 1
3. 70% chance: Energy formula correct for b ∈ [0, 1], and e0 = 0 for b ⩾ 1.
4. 50% chance: FLZZ formula correct for all a ⩾ (b + b−1)/2
5. 50% chance: The model makes sense, without renormalization, for b ⩾ 1

Open problems:
▶ Rigorously construct the model for b ⩾ 1/

√
2

▶ Find if the model has an entanglement phase transition or crossover near
b = 1/

√
2
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Todo-list for continuous tensor networks

In 1 + 1 dimensions
▶ Solve Fermion / Gauge theories
▶ Go into the b ⩾ 1/

√
2 of Sine-Gordon

▶ Do general CFT perturbations
▶ Compute more observables (masses, spectra, c-function...)

And of course the grand goal: do higher dimensions!

Come work on it in Paris!
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Summary

|Q,R⟩ = tr
{
P exp

[∫
dx Q ⊗ 1+ R ⊗ a†(x)

]}
|0⟩a

1. Ansatz for 1 + 1 relativistic QFT
2. No cutoff, UV or IR, extensive, computable
3. Efficient (cost poly D, error plausibly 1/superpoly D )
4. New: larger D and reliable mass estimates
5. Works well for ϕ4

2, Sine-Gordon, and Sinh-Gordon at b ⩽ 1/
√

2


