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Objectives of the day

Baby steps of a program to solve relativistic QF T without discretizing:

1. A variational method: relativistic continuous matrix product states
arXiv:2102.07733 and arXiv:2102.07741

|IQ, R) =tr {ﬂ)exp de RRT+R® aT(x)} } 0),

2. A subtle 1 4 1d field theory: the Sinh-Gordon model — near “self-duality”
arXiv:2209.05341
. (Vd)2: m?

Hsna(B) = JdX : st E cosh(B o) :




Quantum field theory: general objective

Long term goal

Find methods to solve “real world" quantum field theories (even without
structure) to good (machine?) precision

Go beyond the currently leading approaches
1. Perturbation theory <— need resummation / expensive large orders

2. Lattice Monte Carlo < need discretization / slow convergence of error / sign



Quantum field theory: general objective

Long term goal

Find methods to solve “real world" quantum field theories (even without
structure) to good (machine?) precision

Go beyond the currently leading approaches
1. Perturbation theory <— need resummation / expensive large orders

2. Lattice Monte Carlo < need discretization / slow convergence of error / sign

3 promising alternatives
1. Bootstrap / SDP relaxations / Sum of Squares
2. Renormalization group < functional or tensor network RG
3. Variational method < Hamiltonian truncation or tensor network states



Similarity between relativistic and critical models

» A critical model is scale invariant in the IR
» A relativistic QFT is scale invariant in the UV



Similarity between relativistic and critical models

» A critical model is scale invariant in the IR
» A relativistic QFT is scale invariant in the UV

This implies divergence of the entanglement entropy in 1+ 1d

S x clog(A)

—> Continuum limit requires finite entanglement scaling

double scaling (UV and IR) by Vanhecke, Verstraete, Van Acoleyen 2104.10564



The variational method

directly in the continuum



Idea of the variational method

Variational method for ground state search

1. Guess a manifold M C 7 with few parameters v i.e. dimM < dims?
(v|H|v)
(vIv)

2. Tune v to minimize energy v = argmin, ¢y and get

lground state) ~ |v)

Reason for compression (classical)

cat image “typical” image

atypical = compressible



Idea of the variational method

Variational method for ground state search

1. Guess a manifold M C Z with few parameters v i.e. dimM < dim.#

... o . (‘\/|H|‘v>
2. Tune v to minimize energy v = argminy et “ryvy and get
lground state) ~ |v)
Reason for compression (classical) Reason for compression (quantum)

cat image “typical” image low energy state random state

atypical = compressible area law = atypical = compressible



Feynman’s criticism

Difficulties in Applying the Variational

Principle to Quantum Field Theories!

so I tried to do something along these lines with quantum chromodynamics. So
I'm talking on the subject of the application of the variational principle to field
theoretic problems, but in particular to quantum chromodynamics.

I'm going to give away what I want to say, which is that I didn’t get anywhere!
I got very discouraged and I think I can see why the variational principle is not
very useful. So I want to take, for the sake of argument, a very strong view —
which is stronger than I really believe — and argue that it is no damn good at all!

Feynman'’s requirement in a nutshell

1. Extensive parameterization
Number of parameters oc L% at most for system size L (not o< el)

2. Computable expectation values
P known = (O(x)O(y))y, computable

3. Not oversensitive to the UV
no runaway minimization where higher and higher momenta get fitted



Elegantly swallowing the bullet

Example: naive Hamiltonian truncation

With an IR cutoff L, momenta are discrete. Take as submanifold .#Z the vector
space spanned by:
|kyy koy -+ o k) = af al, -+ af 0),

such that (kiko - - k|H|kiky - - - k) < Eqpune —  finite dimensional

Breaks extensiveness

» number of parameters oc el Ene

» error oc £ 3 (with renormalization refinements)

still good results, see e.g. Rychkov & Vitale for ¢p3 arXiv:1412.3460



Intuition: put 2 ingredients together

1- Extensive parameterization and 2- Computable expectation values

Realized by tensor network states on the lattice
e.g. in 1+ 1 dimensions: Matrix Product states (MPS)

W(A)) == Z tr[Ay Ay - - Ayl iy iy ooy i)

il)i2>"-)iN

where A; are matrices € Mp(C)

3- Not oversensitive to the UV
Realized by Hamiltonian truncation, i.e. working in the Fock basis

ke, koy - -+ o k) = a,tla,tz . a;|o>a



Intuition: put 2 ingredients together

1- Extensive parameterization and 2- Computable expectation values

Realized by tensor network states on the lattice
e.g. in 1+ 1 dimensions: Matrix Product states (MPS)

W(A)) == Z tr[Ay Ay - - Ayl iy iy ooy i)

il)i2>"-)iN

where A; are matrices € Mp(C)

3- Not oversensitive to the UV

Realized by Hamiltonian truncation, i.e. working in the Fock basis

ke, koy - -+ o k) = a,tla,tz . a;|o>a

Strategy: MPS  —  CMPS (2010) —  RCMPS (2021)

continuum limit change of basis



Relativistic continuous matrix product states

Definition
RCMPSs are a manifold of states parameterized by 2 (D x D) matrices Q, R

|Q,R) =tr {iPexp de RRT1T+R® aT(x)} } 10),

with
> a(x) = % [ dk e™*a) where a, = % (w/wk $(k) + 1%) free modes

k
» trace taken over CP
» P path-ordering exponential



Relativistic continuous matrix product states

Definition
RCMPSs are a manifold of states parameterized by 2 (D x D) matrices Q, R

|Q,R) =tr {iPexp de RRT1T+R® aT(x)} } 10),

with
> a(x) = % [ dk e™*a) where a, = % (w/wk $(k) + 1%) free modes

» trace taken over CP

» P path-ordering exponential

1. Continuum MPS (CMPS) + Gaussian disentangling (cMERA) |0)y, — [0),
(noted by Niloofar Vardian in 2208.14827)

2. “Non-commutative” free particle coherent state



Basic properties of RCMPS

|Q,R) =tr {Texp de QR1T+R® aT(x)] } 0),
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Basic properties of RCMPS

|Q,R) =tr {Texp de QR1T+R® aT(x)] } 0),

Feynman'’s checklist:

1. Extensive because of Pexp [

2. Obervables computable at cost D? (non trivial!)
requires [a(x), aT(y)] = 8(x — y)
3. No UV problems
|0,0) = |0), is the ground state of Hy hence exact CFT UV fixed point
(Q,R|: P(d) : |Q, R) is finite for all Q, R (not triviall)
Entanglement Entropy in a(x) basis is finite



The variational algorithm

Optimization

Compute gy = (Q, R|h|Q, R) and Vg re
Minimize ey with (geometric improvements of ) gradient descent
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Computations of g and V¢ in a nutshell:
1. V, = (:e?®):) op computable by solving an ODE with cost oc D?

. (:¢":) gr computable doing 9}V, , — o D3
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3. ey = (h)qr computable by summing such terms at cost D3 — oc D3
4. Vey computable by solving the adjoint ODE (backpropagation) — oc D3



The variational algorithm

Optimization

Compute gy = (Q, R|h|Q, R) and Vg re
Minimize ey with (geometric improvements of ) gradient descent

Computations of g and V¢ in a nutshell:
1. V, = (:e?®):) op computable by solving an ODE with cost oc D?

. (:¢":) gr computable doing 9}V, , — o D3

2
3. ey = (h)qr computable by summing such terms at cost D3 — oc D3
4. Vey computable by solving the adjoint ODE (backpropagation) — oc D3

Functioning Julia implementation. OptimKit. jl to solve the Riemannian
minimization, KrylovKit. j1 to solve fixed point equations,
DifferentialEquations.jl (Vern7 solver) to solve ODE. Soon Rcmps. j17



Using the optimized state
After optimization: |Q, R) ~ |0);,. with (Q, R| h IQ,R) = e+ ¢



Using the optimized state
After optimization: |Q, R) ~ |0);,. with (Q, R| h IQ,R) = e+ ¢

This gives:
» All equal-time N-point functions

(b0a) b)) - - dx)) = (QRI dx1) D) - - d(xa) IQ, R)

at cost D? by solving coupled linear ODEs



Using the optimized state
After optimization: |Q, R) ~ |0);,. with (Q, R| h IQ,R) = e+ ¢

This gives:
» All equal-time N-point functions

(b0a) b)) - - dx)) = (QRI dx1) D) - - d(xa) IQ, R)

at cost D? by solving coupled linear ODEs

» In particular all Euclidean 2-point functions = spectral function

((x)0(0)) =J " dp p () Ko (x)

0



Using the optimized state
After optimization: |Q, R) ~ |0);,. with (Q, R| h IQ,R) = e+ ¢

This gives:
» All equal-time N-point functions

(b0a) b)) - - dx)) = (QRI dx1) D) - - d(xa) IQ, R)

at cost D? by solving coupled linear ODEs

» In particular all Euclidean 2-point functions = spectral function

((x)0(0)) =J " dp p () Ko (x)

0

One could get more observable with real-time evolution and tangent space
methods, but is it needed in principle?



Hamiltonian definition of ¢3

Renormalized ¢} theory

Lol o

e 2, 2
H:J'dx'ﬂ2'm+'(vd2)) 'm+m7:cb2:m+g:d>4:m

Rigorously defined relativistic QF T without cutoff (Wightman QFT)
Vacuum energy density ¢ finite for all g
Difficult to solve unless g < m? (perturbation theory)

Phase transition around f. = ;= L5 =11ie. g~ 2.7 in mass units



Results: ¢35 energy density

energy density (h)g, r relative error
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New: D can now be pushed to 32 or even 64 with some effort



Results: ¢35 — field expectation value ()
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New: the mass can be fitted from 2-point function and agrees with RHT to 103



Hamiltonian definition of Sine-Gordon theory

Renormalized cos(¢) theory

B 2, 2
H:de'ﬂ2'm+'(vd;) 'm—%:cos(ﬁd)) -

1. Well defined for b = B/v/8m < 1/+/2
2. Ground energy density — —oo for b — 1/+4/2 but renormalizable until b =1

3. Vertex operators, mass spectrum, and (renormalized) energy known exactly



Results: cos(f¢d) (rescaled) energy density
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Fits arbitrarily well for b € [0, 1/\/5[, collapses to —oo for b larger
Numerically refines Coleman's argument from b=1to b =1/v/2 + ¢(D)



The Sinh-Gordon model

the surprisingly subtle cosh(f¢) potential



The Sinh-Gordon model

An exactly solvable model that is surprisingly subtle. Two recent studies
» Konik, Lajer, and Mussardo [KLM] arXiv:2007.00154
» Bernard and LeClair [BLC] arXiv:2112.05490

[Equal-time quantization] Hamiltonian definition

. . 2. 2
HShG(B):JdX.WQ.m+.(Vd;) .m+%

:cosh(Bd) :m

[Radial quantization] Dilation operator definition

Dspc(b) = Do + HL dz [Vu(z,2") +V_p(z,2")]

2
Equivalent formulations with b = 3/+/8m and u = _mP R g2b%ve

24+2b2 7th2



The Sinh-Gordon model: puzzles

2 . . 2. 2
Hshe(B) = JdX '7[2 e (Vd;) =+ % :cosh(Bd) :m

Should be easy:
1. Intuitively should always make sense (cosh(B¢) always relevant)
2. S-matrix, energy density, masses, vertex operators, “exactly” known
3. Apparent b — b~ duality with normalized coupling b = /+/8m



The Sinh-Gordon model: puzzles

2 . . 2. 2
Hshe(B) = JdX '7[2 e (Vd;) =+ % :cosh(Bd) :m

Should be easy:
1. Intuitively should always make sense (cosh(B¢) always relevant)
2. S-matrix, energy density, masses, vertex operators, “exactly” known
3. Apparent b — b~ duality with normalized coupling b = /+/8m

But unclear what the domain of validity of the formula is...
» Mass vanishes at b =1 and likely stays at 0 [KLM and BLC]
» Likely no self-duality
» Could the exact formula break down before b =17
» Very hard to check numerically (despite thorough exploration of KLM)



Some KLM results
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Results:
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Results: vertex operators (:e??:)

Known exactly from FLZZ formula up to a = (b + b™!)/2 (Seiberg bound)
B=2.0<b~04

B=40<b=~0.8 B=65<b~13
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Results: 2-point func (:e?®¥)::e20(0)) _ (:g20(x):) (: @20(0);)

B=20=b~0.4 f=40=b~0.8 f=65=b~13
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New: mass gap from spectral function fit
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Discussion and open problems



Understanding expressiveness of RCMPS

Standard Entanglement Entropy o
*
Defined for “standard” locality *;’,‘I:*
10 2 i:***¢
o= | TT ot @1) (wio) ] he
x<0 « " ¥
" <+
Gives 51 = —tr (p>0 Iog p>0) X |Og(/\) ¥ * B=4
=8
. 10741 Bzég
Exotic Entanglement Entropy ¥ Lo
0.2 W2 1.0
Defined for BEMES maideon of lemliiy b gfEr
trace over a'(x) - - - a'(x,)[0)m for x, <0 EEE is finite at least for

Gives S; = O(1) (numerically) b<1/V2



Sinh-Gordon theory: what do we know?

Still uncertainty, following KLM, BLC, and the present study...
Would benefit from extrapolations in D!

My estimates:

1. 99% chance: Hamiltonian H has no self-duality b — b~}
80% chance: Any reasonable definition of the model is massless for b > 1
70% chance: Energy formula correct for b € [0,1], and g =0 for b > 1.
50% chance: FLZZ formula correct for all a > (b+ b~1)/2

50% chance: The model makes sense, without renormalization, for b > 1

oo
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Still uncertainty, following KLM, BLC, and the present study...
Would benefit from extrapolations in D!

My estimates:

1. 99% chance: Hamiltonian H has no self-duality b — b~}
80% chance: Any reasonable definition of the model is massless for b > 1
70% chance: Energy formula correct for b € [0,1], and g =0 for b > 1.
50% chance: FLZZ formula correct for all a > (b+ b~1)/2

50% chance: The model makes sense, without renormalization, for b > 1

oo

Open problems:
» Rigorously construct the model for b > 1//2

» Find if the model has an entanglement phase transition or crossover near

b=1/v2



Todo-list for continuous tensor networks

In 14 1 dimensions
» Solve Fermion / Gauge theories
» Go into the b > 1/\/§ of Sine-Gordon
» Do general CFT perturbations

» Compute more observables (masses, spectra, c-function...)



Todo-list for continuous tensor networks

In 14 1 dimensions
» Solve Fermion / Gauge theories
» Go into the b > 1/\/§ of Sine-Gordon
» Do general CFT perturbations

» Compute more observables (masses, spectra, c-function...)

And of course the grand goal: do higher dimensions!

Come work on it in Paris!



Summary

|Q,R):tr{?exp deQ@ll-l-R®aT(X)}}|0>a

Ansatz for 1 + 1 relativistic QFT

No cutoff, UV or IR, extensive, computable

Efficient (cost poly D, error plausibly 1/superpoly D)

New: larger D and reliable mass estimates

Works well for ¢4, Sine-Gordon, and Sinh-Gordon at b < 1/\/§

gD



