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Prolegomena

Classical gravity

▶ Matter is classical
▶ Spacetime is classical

Semiclassical gravity

▶ Matter is quantum
▶ Spacetime is classical

Fully quantum gravity

▶ Matter is quantum
▶ Spacetime is quantum



Standard semiclassical gravity



“Standard” semi-classical gravity

A semi-classical theory of gravity tells 2 stories:
1. Quantum matter moves in a curved classical space-time
2. The classical space time is curved by quantum matter

1 is known (QFTCST), 2 is not

The crucial question of semi-classical gravity is to know how quantum matter
should source curvature.
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Møller-Rosenfeld semi-classical gravity

The CHOICE of Møller and Rosenfeld it to take:

Rµν −
1
2R gµν = 8πG ⟨T̂µν⟩

→ source gravity via expectation values

There are:
▶ technical relativistic difficulties [renormalization of ⟨Tµν⟩]
▶ conceptual non-relativistic difficulties [Born rule,· · · ].

Christian Møller

Leon Rosenfeld
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Schrödinger-Newton

1. Non-relativistic limit of the “sourcing” equation:

∇2Φ(x , t) = 4πG ⟨ψt |M̂(x)|ψt⟩

2. Non-relativistic limit of QFTCST (just external field)

d
dt |ψ⟩ = −i

(
H0 +

∫
dx Φ(x , t)M̂(x)

)
|ψt⟩,

Putting the two together: Schrödinger-Newton equation

d
dt |ψt⟩ = −iH0|ψt⟩+ i G

∫
dx dy ⟨ψt |M̂(x)|ψt⟩ M̂(y)

|x − y | |ψt⟩.
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The problem with deterministic non-linear theories
Gisin 1989 → this is not allowed

Interpretations of QM are no longer empirically equivalent:

▶ with collapse (Copenhagen, GRW,...) – faster-than-light signalling

▶ without collapse (Many-Worlds, Bohm,...) – empirically absurd

=⇒
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The big question

What mathematical object can one
construct to source the gravitational field
while keeping things consistent?



The big question, generalized

How can one consistently couple
quantum and classical variables?

ρt ←→ zt



Two strategies to study the quantum nature of gravity

Bose et al., Marletto & Vedral Kafri-Taylor-Milburn, Diósi, Oppenheim



3 ways to do this

1. Continuous measurement and feedback
2. Spontaneous collapse models
3. General continuous dynamics with a classical subspace [used by Oppenheim]

Main result from 2403.19748 → Scipost: the 3 are mathematically equivalent



The First Way: Continuous measurement and
feedback



Continuous quantum measurement – derivation

Continuous measurement – without Zeno effect

▶ time between ancillas ∆t ∝ ε
▶ interaction strength ω ∝

√
ϵ



Continuous quantum measurement

Stochastic Master Equation (∼ 1987 – pre-theory by Gisin
1984)

Density matrix:

dρt = −i [H, ρt ] dt
standard quantum dynamics

+D[ĉ](ρt) dt
decoherence

+ H[ĉ](ρt) dWt
measurement backaction

Signal:
drt = tr

[
(ĉ + ĉ†) ρt

]
dt + dWt

with:
▶ D[O](ρ) = OρO† − 1

2
(
O†Oρ+ ρO†O

)
▶ H[O](ρ) = Oρ+ ρO† − tr

[
(O+ O†) ρ

]
ρ

▶ dWt
dt “white noise”

V. Belavkin

A. Barchielli

L. Diósi



The measurement signal

The signal – or continuous result

drt = tr
[
(ĉ + ĉ†) ρt

]
dt + dWt

→ A noisy version of the quantum expectation value

Experimental aside
The signal yt is routinely measured, for various measured operators, in superconducting
circuits using via homodyne / heterodyne detection



Measurement based feedback

Step 1: Have the classical zt depend on rt

dzt = F (zt) dt + G(zt) drt

Step 2: Have the quantum depend on the classical

H −→ H + V (zt)

Consistent by construction since derivable as effective from Copenhaguen QM
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Most general stochastic equations

Quantum stochastic master equation

dρ = −i [H0 + V (z), ρ] dt +
n∑

k=1
D[ĉk ](ρ) dt +√ηk M[ĉk ](ρ) dWk ,

Signal stochastic differential equation (the quantum classical glue)

drk =
1
2tr[(ĉk + ĉ†k )ρ] dt + 1

2√ηk
dWk .

Classical stochastic differential equation

dza = Fa(z) dt + Gak(z)
√
ηk drk

F , G are functions – V (z), ĉk are operators



“Intuition pump” picture for gravity

AS IF – “There are detectors in space-time measuring the mass density continuously and
curving space-time accordingly.” → explains consistency



The Second Way: Spontaneous collapse models



The idea of collapse models

Other names: [Objective / spontaneous / dynamical] [reduction / collapse] [model /
program]

Schödinger equation + tiny non-linear bit

d
dtψt = −

i
 h

H ψt + ε(ψ) ,

H is the Standard Model Hamiltonian (or non-relativistic approx)



The easier Ghirardi-Rimini-Weber model

The GRW modification (1986)

Every dt, with probability λdt particle k collapses around point xf

ψt −→
L̂k(xf )ψt

∥L̂k(xf )ψt∥
with proba P(xf ) = ∥L̂k(xf )ψt∥2

with an envelope L̂k(xf ) =
1

(πr2
C)

3/4 e−(x̂k−xf )
2/(2r2

C) . GianCarlo Ghirardi
1935 - 2018



Spontaneous collapse models

Mathematically, (continuous) Markovian spontaneous collapse models are equivalent to
continuous measurement of appropriate observables

O −→ M̂σ(x)



Metaphysics – Ontology – beables

What is real ? What is the world made of ?

1. GRW0 The wave-function ψt itself (but infinite literature
of subtleties)

2. GRWm The mass density ⟨M̂(x)⟩

⟨M̂(x)⟩ =
∑

k

∫
dx1 · · · dxn |ψ(x1, · · · , x , · · · , xn)|

2

x in kth position

3. GRWf The events (tf , xf ) where the wave-function
collapse (the flashes) – [Bell’s choice!]

Fact: (continuous) flashes = signal
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Collapse model picture of hybrid dynamics

“The gravitational interaction is mediated by a stochastic field, which is the local beable
of the theory”



The Third Way: Embedding a classical sector in
quantum dynamics

ρ(z , t)



Formulation of the problem
Quantum-classical state
A state diagonal in the classical variables z

ρQC =

∫
dz ρQ(z) |z⟩⟨z |

▶ used early on (Diosi, Halliwell, Gisin)
▶ starting point of Oppenheim



Most general second order PDE

Constraints:
▶ Assuming z evolves continuously → at most second order derivatives
▶ ρ(z) physical → positivity conditions

∂ρt(z)
∂t =− i [H, ρt(z)] +

n∑
k=1

D[ĉk ](ρt(z))

−
∂

∂za

[
Fa(z)ρt(z) +

√
ηk Gak(z)

2 (ĉkρt(z) + ρt(z)ĉ†k )
]

+
1
2

∂2

∂za∂zb

[
Gak(z)Gbk(z)

4 ρt(z)
]



Equivalence via Ito’s lemma

This PDE is the “Fokker-Planck” version of the “Langevin” dynamics of measurement
+ feedback:

Equivalence
Using Itô’s lemma, one has:

∀f E[ρt f (zt)]
measurement and feedback

=

∫
f (z) ρt(z) dz

hybrid PDE

.



Back to gravity



History
Newtonian early work
Source gravity by measuring the mass
density:

∇2Φ(x) = 4πGSM̂(x)

toy model – [Kafri, Taylor, Milburn 2014]
full Newtonian potential – [Diósi & T 2015]

General relativistic extensions
Construct a PDE for ρ(z) for z the
gravitational degrees of freedom in ADM
general relativity

[Oppenheim, Weller-Davies, Layton, Soda,
Russo, ... 2018 → today]



Markovian/Newtonian limit

Technically

Newtonian limit = Markovian feedback limit

z ∝ dr

=⇒ technically infinitely easier =⇒ one can say something

Experimentally

Hard to probe anything else in the near future



Model
1. Step 1: continuous mass density measurement

We imagine that space-time is filled with detectors weakly measuring the mass
density:

The equation for matter is now as before with

O→ M̂(x), ∀x ∈ R3

γ→ γ(x , y) coding detector strength and correlation

and there is a “mass density signal” S(x) in every
point.

2. Step 2: Feedback
We take the mass density signal S(x) to source the
gravitational field φ:

∇2φ(x) = 4πG S(x)

which is formally equivalent to quantum feedback.
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Result

Standard quantum feedback like computations give for ρt = E[|ψt⟩⟨ψt |]:

∂tρ =− i
[
H0 +

1
2

∫∫
dxdyV (x , y)M̂(x)M̂(y), ρt

]
−

1
8

∫∫
dxdy D(x , y)

[
M̂(x),

[
M̂(y), ρt

]]
,

with the gravitational pair-potential

V =

[
4πG
∇2

]
(x , y) = −

G
|x − y | ,

and the positional decoherence

D(x , y) =
[γ

4 + V ◦ γ−1 ◦ V ⊤
]
(x , y)



Principle of least decoherence

D(x , y) =
[γ

4 + V ◦ γ−1 ◦ V ⊤
]
(x , y)

There is still a (functional) degree of freedom γ(x , y):
▶ Large ∥γ∥ =⇒ strong “measurement” induced decoherence
▶ Small ∥γ∥ =⇒ strong “feedback” decoherence

There is an optimal (non-local) kernel that minimizes decoherence.

Diagonalizing in Fourier, one gets a global minimum for

γ = 2
√

V ◦ V ⊤ = −2V

Hence:
D(x , y) = −V (x , y) = G

|x − y |
This is just the decoherence kernel of the Diósi-Penrose model (erstwhile heuristically
derived)!
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derived)!



Regularization
Even for the minimal decoherence prescription, the decoherence is infinite.

Adding a regulator at a length scale σ has 2 effects:
▶ It tames decoherence, making it finite
▶ It regularizes the pair potential ∝ 1

r for r ≲ σ

=⇒ there is a trade-off.

Experimentally:
10−15 → 10−10m
decoherence constraint

≪ σ ⩽ 10−4m
gravitational constraint

Importantly σ > ℓCompton ≫ ℓPlanck.
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Summary

Conceptually: 3 equivalent ways to construct hybrid quantum-classical dynamics
1. Measurement and feedback which shows consistency
2. Spontaneous collapse which shows empirical effects + measurement problem

solution
3. Quantum Classical PDE which shows generality

Quantum classical dynamics are possible and well understood

For gravity
▶ Newtonian limit: well defined models – minimizing decoherence gives Diosi-Penrose

model
▶ General case: being explored by Oppenheim et al. – big progress, but not clear all

constraints can be met


