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Prolegomena

Classical gravity

▶ Matter is classical
▶ Spacetime is classical

Semiclassical gravity

▶ Matter is quantum
▶ Spacetime is classical

Fully quantum gravity

▶ Matter is quantum
▶ Spacetime is quantum



Is the chimera possible?

I bet 99 to one that the outcome [of some proposed experiments] will be consistent
with gravity having quantum properties. – Carlo Rovelli



Two strategies to study the quantum nature of gravity

Bose et al., Marletto & Vedral Kafri-Taylor-Milburn, Diósi, Oppenheim



Standard semiclassical gravity



“Standard” semi-classical gravity

A semi-classical theory of gravity tells 2 stories:
1. Quantum matter moves in a curved classical space-time
2. The classical space time is curved by quantum matter

1 is known (QFTCST), 2 is not

The crucial question of semi-classical gravity is to know how quantum matter
should source curvature.
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Møller-Rosenfeld semi-classical gravity

The CHOICE of Møller and Rosenfeld it to take:

Rµν −
1
2R gµν = 8πG ⟨T̂µν⟩

→ source gravity via expectation values

There are:
▶ technical relativistic difficulties [renormalization of ⟨Tµν⟩]
▶ conceptual non-relativistic difficulties [Born rule,· · · ].

d
dt |ψt⟩ = −iH0|ψt⟩+ i G

∫
dx dy ⟨ψt |M̂(x)|ψt⟩ M̂(y)

|x − y | |ψt⟩.

Christian Møller

Leon Rosenfeld
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The problem with deterministic non-linear theories
Gisin 1989 (and Diósi, Polchinsky) → this is not allowed

Interpretations of QM are no longer empirically equivalent:

▶ with collapse (Copenhagen, GRW,...) – faster-than-light signalling

▶ without collapse (Many-Worlds, Bohm,...) – empirically absurd

=⇒
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The big question

What mathematical object can one
construct to source the gravitational field
while keeping things consistent?



The big question, generalized

How can one consistently couple
quantum and classical variables?

ρt ←→ zt



3 ways to do this

1. Continuous measurement and feedback
2. Spontaneous collapse models
3. General continuous dynamics with a classical subspace [used by Oppenheim]

Main result from 2403.19748 → Scipost: the 3 are mathematically equivalent



The First Way: Continuous measurement and
feedback



Continuous quantum measurement – derivation

Continuous measurement – without Zeno effect

▶ time between ancillas ∆t ∝ ε
▶ interaction strength ω ∝

√
ϵ



Continuous quantum measurement

Stochastic Master Equation (∼ 1987 – pre-theory by Gisin
1984)

Density matrix:

dρt = −i [H, ρt ] dt
standard quantum dynamics

+D[ĉ](ρt) dt
decoherence

+ H[ĉ](ρt) dWt
measurement backaction

Signal:
drt = tr

[
(ĉ + ĉ†) ρt

]
dt + dWt

with:
▶ D[O](ρ) = OρO† − 1

2
(
O†Oρ+ ρO†O

)
▶ H[O](ρ) = Oρ+ ρO† − tr

[
(O+ O†) ρ

]
ρ

▶ dWt
dt “white noise”

V. Belavkin

A. Barchielli

L. Diósi



Measurement based feedback

Step 1: Have the classical zt depend on rt

dzt = F (zt) dt + G(zt) drt

Step 2: Have the quantum depend on the classical

H −→ H + V (zt)

Consistent by construction since derivable as effective from Copenhaguen QM
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“Intuition pump” picture for gravity

AS IF – “There are detectors in space-time measuring the mass density continuously and
curving space-time accordingly.” → explains consistency



The Third Way: Embedding a classical sector in
quantum dynamics

ρ(z , t)



Formulation of the problem
Quantum-classical state
A state diagonal in the classical variables z

ρQC =

∫
dz ρQ(z) |z⟩⟨z |

▶ used early on (Diosi, Halliwell, Gisin)
▶ starting point of Oppenheim



Most general second order PDE

Constraints:
▶ Assuming z evolves continuously → at most second order derivatives

▶ ρ(z) physical → positivity conditions

∂ρt(z)
∂t =− i [H, ρt(z)] +

n∑
k=1

D[ĉk ](ρt(z))

−
∂

∂za

[
Fa(z)ρt(z) +

√
ηk Gak(z)

2 (ĉkρt(z) + ρt(z)ĉ†k )
]

+
1
2

∂2

∂za∂zb

[
Gak(z)Gbk(z)

4 ρt(z)
]

▶ The “Fokker-Planck” version of the “Langevin” dynamics of measurement +
feedback [proof via Itô’s lemma]



Most general second order PDE

Constraints:
▶ Assuming z evolves continuously → at most second order derivatives
▶ ρ(z) physical → positivity conditions

∂ρt(z)
∂t =− i [H, ρt(z)] +

n∑
k=1
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Back to gravity



Markovian/Newtonian limit

∆Φ(x) = 4πGM(x)

Technically easier

Newtonian limit = Markovian feedback limit

classical variable at time t ∝ measurement signal at time t

=⇒ technically infinitely easier =⇒ one can say something

Experimentally motivated

Hard to probe anything else in the near future and unknown!

Can be nitpicked

No “independent” gravitational degrees of freedom. Can it be extended?



Markovian/Newtonian limit

∆Φ(x) = 4πGM(x)

Technically easier

Newtonian limit = Markovian feedback limit

classical variable at time t ∝ measurement signal at time t

=⇒ technically infinitely easier =⇒ one can say something

Experimentally motivated

Hard to probe anything else in the near future and unknown!

Can be nitpicked

No “independent” gravitational degrees of freedom. Can it be extended?



Markovian/Newtonian limit

∆Φ(x) = 4πGM(x)

Technically easier

Newtonian limit = Markovian feedback limit

classical variable at time t ∝ measurement signal at time t

=⇒ technically infinitely easier =⇒ one can say something

Experimentally motivated

Hard to probe anything else in the near future and unknown!

Can be nitpicked

No “independent” gravitational degrees of freedom. Can it be extended?



Concrete model
1. Step 1: continuous measurement

Choice of operators measure (infinitely many):
▶ Mass density [ultra local]

O→ M̂(x) then solve ∆Φ(x) = 4πGM(x)

▶ Directly gravitational field [non-local, minimally
decoherent]

O→ Φ̂(x) = G
∫

d3y M̂(y)
|x − y |

2. Step 2: Feedback

Put classical field Φ(x) in Schrödinger equation
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Result

Standard computations for Φ̂(x) measurement and feedback give, for ρt = E[|ψt⟩⟨ψt |]:

∂tρ =− i
[
H0 +

1
2

∫∫
dxdyV (x , y)M̂(x)M̂(y), ρt

]
−

1
8

∫∫
dxdy D(x , y)

[
M̂(x),

[
M̂(y), ρt

]]
,

with the gravitational pair-potential

V =

[
4πG
∇2

]
(x , y) = −

G
|x − y | ,

and the positional decoherence

D(x , y) = G
|x − y | Diósi-Penrose decoherence

=⇒ Diosi-Penrose model is the minimally decoherent semi-classical gravity model!



Lack of measurement locality and entanglement

Ability to generate entanglement as a smoking of quantum gravity:
▶ Bose et al. / Marletto & Vedral 2017

The minimally-decoherent option

O(x)→ Φ̂(x) = G
∫

d3y M̂(y)
|x − y |

does generate entanglement because measurement not spatially local
[Trillo & Navascues 2024] [Feng, Marletto, Vedral 2025]

Quantitatively very different entanglement generation, but not a YES/NO answer!



Regularization

Even for the minimal decoherence prescription, the decoherence is infinite.

Adding a regulator at a length scale σ has 2 effects:
▶ It tames decoherence, making it finite
▶ It regularizes the pair potential ∝ 1

r for r ≲ σ

=⇒ there is a trade-off.
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Tests of the cutoff length
Experimentally:

10−15 → 10−10m
decoherence constraint

≪ σ ⩽ 10−4m
gravitational constraint

Importantly σ > ℓCompton ≫ ℓPlanck.

credit VIP collaboration – Catalina Curceanu

copyright Jonas Schmöle - Aspelmeyer group



Summary
Conceptually: 3 equivalent ways to construct hybrid quantum-classical dynamics

1. Measurement and feedback which shows consistency
2. Spontaneous collapse which shows empirical effects + measurement problem

solution
3. Quantum Classical PDE which shows generality

Quantum classical dynamics are possible, well understood, and classified

For gravity
▶ Newtonian limit: well defined models – minimizing decoherence gives Diosi-Penrose

model
▶ General case: being explored by Oppenheim et al. – big progress, but not clear all

constraints can be met
▶ Typically generates spatial entanglement if we ask for low decoherence



Bonuses and Miscellanea



Spontaneous collapse models



The idea of collapse models

Other names: [Objective / spontaneous / dynamical] [reduction / collapse] [model /
program]

Schödinger equation + tiny non-linear bit

d
dtψt = −

i
 h

H ψt + ε(ψ) ,

H is the Standard Model Hamiltonian (or non-relativistic approx)



Spontaneous collapse models

Mathematically, (continuous) Markovian spontaneous collapse models are equivalent to
continuous measurement of appropriate observables

O −→ M̂σ(x)



Metaphysics – Ontology – beables

What is real ? What is the world made of ?

1. GRW0 The wave-function ψt itself (but infinite literature
of subtleties)

2. GRWm The mass density ⟨M̂(x)⟩

⟨M̂(x)⟩ =
∑

k

∫
dx1 · · · dxn |ψ(x1, · · · , x , · · · , xn)|

2

x in kth position

3. GRWf The events (tf , xf ) where the wave-function
collapse (the flashes) – [Bell’s choice!]

Fact: (continuous) flashes = signal



Collapse model picture of hybrid dynamics

“The gravitational interaction is mediated by a stochastic field, which is the local beable
of the theory”


