Quantum field theory (QFT) is the main tool we use to understand the fundamental particles and their interactions. It also appears in the context of condensed matter physics, as an effective description. But it is unfortunately also a notoriously difficult subject: first because it is tricky to define non-trivial instances rigorously (it’s not known for any one that exists in Nature), and also because even assuming it can be done, it is then very difficult to solve to extract accurate predictions.

There is a subset of QFTs where there is no difficulty: free QFTs. Free QFTs are easy because one can essentially define them in a non-rigorous way first, physicist style, then “solve” them exactly, and finally take the solution itself as a rigorous definition of what we actually meant in the first place. Then, to define the interacting theories, the historical solution has been to see them as perturbations of the free ones. This comes with well known problems: interacting theories are not as close to free ones as one would naively think, so the expansions one obtains are weird: they diverge term by term, and if the divergences are subtracted in a smart way (renormalization), the expansions still diverge as a whole.